
Configuration Management to Tests Automatics in
a Software Factory

Marcelo dos Santos Ferreira
C.E.S.A.R - Educational

Recife Center for Advanced Studies and Systems
Recife, Brazil

e-mail: marsantosfer@gmail.com

Ana Paula Cavalcanti Furtado
Informatics Center – C.I.n

Federal University of Pernambuco
Recife, Brazil

E-mail: anapaula.cavalcanti@gmail.com

Abstract—Artifact traceability during software development
allows reusability and increases quality and productivity.
Software requirements should be traceable because they
represent the needs of a certain product. In several processes
during software development cycle, requirements are related
to other artifacts such as test suites and automation scripts.
Configuration management assures the usage of an input file
version corresponding to a software requirements version
during automated tests. This research proposes an integrated
process for software development, using configuration
management from requirements up to test suites for automated
tests. This article describes the effect of absence of
configuration management on the control over software
artifacts versions.

Keywords-configuration management; reuse; tests
automations; traceability; sotware requirements;

I. INTRODUCTION

The increasing demand for high quality products, made
in shorter time, and at lower cost, requires from both
academic world and industry innovative strategies and
actions. Because software production is an industry of
intangible goods, it has strong challenges in its production
line as compared to conventional industry, which has fixed
process input, tools, techniques and defined output [1].
Software production is tailor-made work, to fit client needs,
with demands on functional and non- functional
requirements. These requirements form input artifacts to
several processes in a software factory.

During software development, the requirements might
change due to variable market needs or legal regulation.
Therefore artifacts traceability is necessary during the
software building process [1].Configuration management
assures artifacts traceability and keeps it in storage to control
artifacts versions.

This article describes the impact of lack of configuration
management on tools for test automation, and therefore
legitimating the research on integrated process applied to
software production.

This article has 5 sections, wherein the first section is an
introduction. The motivation and problem definition are
described in the second section. The third section addresses

the methodology and its phases, and the proposed integrated
process is discussed in the fourth section. Finally, in the fifth
section, we have conclusion and future works.

II. LITERATURE REVIEW

Rework, low-quality products, demotivated teams, high
software production and delays are symptoms caused by the
absence of configuration management during software
development, which directly affect users and development
team [2]. This absence of configuration management creates
the possibility for a software product does not meet the
requirements.

The lack of version control of test suits and/or automatic
test script to for the software requirements automation tests
tools [1], reduces the reliability of such tools. In this way,
software products can present nonconformities affecting
directly the product acceptance by the client.

Configuration management (CM) should be active during
whole software development, from infrastructure definition
to information generation and maintenance. CM will support
requirements changes during the development process
resulting in flexibility during development. In addition to
information and content of software requirements [3], the
development process in software factories should perform
requirements validations in all process sub-phases in order to
guarantee continuous information and its understanding.
Isolation of requirements after initiation phase can lead to
wrong validation of content and its changes, consequently
affecting the product that will be create.

The reusability of artifacts originated from software
requirements, as well as source codes, tests suits and/or
automatized scripts [4], is impaired by lack of relationship
dependence between artifacts. This generates uncertainty
concerning completeness of available artifacts, versions, and
compatibility to project characteristics [5]. In this way, at
each new automated test cycle, a new tests suite and/or
automated scripts should be create to validate the most actual
software requirements

Configurations management has only as unit control the
configuration items [6] that are identified, controlled and
kept, according the configurations management plan. The
control realized in order to manage configurations does not
include dependences and relationships between artifacts, in

86Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

other words, are isolated unit controls, without dependence
relationship with other software artifacts. This configurations
management approach has only a data and code reposition
function.

The software tests that have as input software
requirements to created test plans and tests projects are
impaired by the lack of requirements traceability if requested
changes are accepted included in requirements during
development phase and the information is discontinued [2].
In this case, we might have scenarios where we will obtain
software products having old versions of requirements. This
affects products certification, as it does not meet their
specifications. The tests automation tests when used in
software process development [7], has as main function the
coverage of regression tests and test suit. At one side, this
will open the opportunity for the tests analysts to follow and
test new features or to perform exploratory tests. On the
other side, the use of automation test tools becomes a risk
when tests suites and/or automatized scripts do not
correspond to the actual version of software requirements.
This will lead to loss of computation and human resources,
which should be used to repair the missing update due to
lack on artifacts traceability. The losses of computational and
human resources reflect on delays in the product delivery
and quality.

Based on these scenarios, we formulated the following
research question: How to introduce a product-guided
configuration management for automation tests in the
development process of software factories?

Software requirements traceability was subject of study
for Gotel [5] and Antoniol [3]. They realized interviews and
surveys to identify support to requirements traceability. In
addition, they identified problems related to providers or
users of the software requirements. However, the research
focus was limited to the requirement creation phase. Our
research has the objective show how use configuration
management [3] of software requirements and test suites for
tests automatization tools will be able to solve several
problems found in software factories.

III. RESEARCH METODOLOGY

The research approach was divided in four phases, as
shown in Figure 2. The first phase corresponds to a literature
review, that comprising bibliographical review and
systematic review. In the second phase, we will postulate a
proposal. Afterwards, we will evaluate the proposal with a
case study and survey research. Finally, phase four should
lead to suggestions for improvement.

BIBLIOGRAPHICAL REVIEW SYSTEMATIC REVIEW

1. LITERATURE REVIEW

2. PROPOSAL

3. EVALUATION

CASE STUDY

4. IMPROVEMENTS

Figure 1. Schematic flow research activities.

A. Bibliographical Review

The review has as main objective the identification and
exploration of scientific publications related to this study
area. It will give an analysis of the previous studies in the
field.

This review will be based on articles in the period of
2010 and 2015 available at IEEE digital libraries, ACM,
Scopus, and Science Direct.

B. Systematic Review

The systematic review provides interpretation of relevant
research in the field [8], followed by structure analysis [9]
leading to gaps identification which might guide future new
investigations in the field [10].

C. Case study

The case study has as main objective the analysis of a
phenomenon within its context. The experimentations is an
attempt to replication the phenomenon, taking into account
factors, which affect software engineering results [11].

Software engineering involves development, operation,
and maintenance of software and related artifacts [12]. The
case study applies the research proposal and experimentation
to determine the applicability of proposed solution, and to
solve issues that prior application to process were not
possible to predict.

D. Improvements

The activities performed in this phase are evaluation of
current process in the software factory, development of a
configuration management plan, implementation and
validation. This will be followed by a process of continuous
improvements. In short:

• Process implementation, identification of deviations
and followed by continuous improvement

• Finally, analysis of proposed process impact.

This process has a requirements information update flow
directly affecting the test suits and automated scripts as its
differential. In other words, changes realized in software
requirements will be able available during the whole

87Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

software development cycle, and consequently having an
efficient management of automation tests.

The research approach presented here will result in a
structured research process, which allows more control over
activities and as scientific research process, will be
applicable to new researches.

In the next session, we will present a proposal of
integrated process to insert configuration management in
automation tests, including phases, input and output artifacts,
roles and responsibilities.

IV. PROPOSAL

The proposal presented here is partially a process of
configuration management that might be implemented in a
software development company in such way that it includes
configurations items updates related to automatic tests. The
proposed process objective is to maintain integrity,
traceability of artifacts that affects automatic tests, and reuse
of software components.

The process presented here was divided in two steps: The
first step consists in evaluating the actual process of
configuration management of a software factory; this will be
used as study case resulting in the identification and analysis
of gaps in the process. In the second step, we have a creation
of integrated process of configuration management with the
purpose to maintain integrity of artifacts during the whole
software development cycle, developing the capacity to
incorporate project scope changes. Bellow, we have a more
detailed description of these two steps.

A. Actual configurations management process evaluation
in a software factory

An analysis is performed to identify gaps related to items
configuration control, and their impact in the utilization of
automation tests tools; this step has two phases:

• Actual configuration management evaluation in a
software factory chosen as study case. During this
phase, we will use quality assurance such as process
analysis and quality audits.

• Software development process evaluation. During
this phase, we will use quality controls such as root
cause diagrams, Pareto diagram, management of
change revision and evaluation

B. Preparation of an integrated configuration
management process

After the first step, we will create an integrated
configuration management process to maintain integrity of
the software requirements and automatic tests employed
during the software development process. As part of the
proposed process, we will define activities, roles, artifacts
and tools, according description in Figure 2.

Figure 2. Integrated process flow chart. Source: Autor.

The integrated process is explained bellow
• The process is divided in between the two phases in

a software development cycle, known as Planning
and Execution Phase.

• During planning phase, we have as start point the
changes request. The changes request might be
initiated due to market reasons or regulation. The
business analyst is responsible for the translation of
the changes request into artifacts requirements. The
change control is recorded in a bug tacker tool,
making it possible to follow its evolution.

• Impact evaluation activities are performed by the
project management that uses techniques such as
learned lesson and expert opinion, as a technical
evaluation of the changes request impact is needed.
The changes request will be updated in a bug tracker
tool.

88Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

• The options creation activity has as goal to generate
many scenarios to fulfill the changes request, taking
into consideration risk mitigation and impact into the
product and finally project objectives. This activity
is realized with the whole project team.

• Options validation has as purpose to simulate the
implementation results obtained by the different
proposed scenarios. After that, an unbiased selection
process is possible, discarding the options that do not
fit to the boundaries of project. The whole project
team will realize this activity.

• After options validation, the next step is the internal
acceptance, where consensus and finally approval
and consensus of team on the solution to be applied
to the changes request is obtained. The project
management looks for consensus within project
team.

• External acceptance is the final control activity in the
integrated process; this activity has the purpose to
obtain approval of project sponsor. The Project
management is responsible to present and get
approval from project sponsor.

• After the external acceptance of the integrated
process for changes control is obtained, the software
requirements will be updated. The System Analyst
will be responsible for modification in software
requirements. The approved change request is used
as input for this activity, and as output, the software
requirements updated should be available for the
team in a repository. To finalize this activity, an
automatic communication will be send to quality
administration, reporting the requirements that were
updated, and the modifications applied.

• The execution phase of project will be start when the
communication on the software requirements update
arrives.

• The software quality administration should analyze
the changes, in order to guarantee the quality of the
software development process. As responsible for
this activity, we have a Quality Analyst. This activity
has the updated software requirements as input. The
analyst uses inspection and validation techniques.
The updated software requirements keep a pendent
status, as it reference sessions will have to wait for
the new product version and new version to scripts
designation to perform automatic tests.

• After Quality analysis, Systems Analysts modify the
applications source code conform the updated
software requirements. For this activity, we have the
updated and QA verified software requirements as
input. As output for this activity, we have a new
software component for a new product baseline
generation to be performed by the configuration
management.

• In parallel to the changes implementation activity,
the tests analysts will build the test suits and scripts
for automatic tests. This activity has as input the

updated software requirements, and previous
versions test suits and scripts for automatic tests.

• The baseline generation activity, which has a
configuration management as responsible, should
update in the software requirements documents the
product version that fulfills the requirements. , In
addition, he should make the new package available
as repository. In case of Release, it is necessary to
send a package to distribution.

• The Tag creation activity for test suites and scripts
used for automatic tests will be realized by
Configuration Management, who should updated in
software requirements document the artefacts
version used for tests suites and scripts for automatic
tests that attend this software requirements, in
addition to verify, this item configuration in the
repository.

• The Release notes creation activity, has as input the
updated software requirements, test suites and scripts
for automatic tests, product version, as well as
components necessary to demonstrate it. The
responsible to build this note is configuration
management this activity finalizes the proposed
process.

V. CONCLUSION AND FUTURE WORKS

This article presented a process proposal to support
configuration management in automated software tests
environments. The main objective was to provide better
specific items configuration management between software
requirements and automatic tests. Besides that, we aimed to
improve artifacts traceability artifacts throughout software
development cycle. The literature review has been finalized
and we are working on the proposal implementation.

As this is a work in progress, we planned the proposal
validation through a case study and survey, in order to
evaluate the adherence and applicability this process. This
will be combined with the identification of possible
adjustment points in in view of its application to software
development process.

The main obstacle in this proposal is the resistance
against changes to the current software development process,
and the absence of tools that support infrastructure of the
proposed process. We used as constraints the minimization
of the changes that impact the software development cycle
inside the software factory used for case study. Other phases
in the software development cycles are out of the scope of
this research, e.g. project closure, business and software
implementation processes.

The next step in this research is the implementation and
evaluation of the proposed process in a software factory that
builds payment applications and has a safe software
development cycle.

REFERENCES

[1] M. Ferreira, C. Santos, T. Novais, and C. Albuquerque, “Gerência de
Configuração para Testes Automatizados em uma Fábrica de

89Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Software : Um estudo de caso Configuration Management to Tests
Automations in a Software Factory : A case study.

[2] U. Ali and C. Kidd, “Barriers to effective configuration management
application in a project context: An empirical investigation,” Int. J.
Proj. Manag., vol. 32, no. 3, pp. 508–518, 2014.

[3] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,”
IEEE Trans. Softw. Eng., vol. 28, no. 10, pp. 970–983, 2002.

[4] W. B. Frakes and S. Isoda, “Success factors of systematic reuse,”
Software, IEEE, vol. 11, no. 5, pp. 14–19, 1994.

[5] O. C. Gotel, A. C. W. Finkelstein, and L. Sw, “An Analysis of the
Requirements Traceability Problem Imperial College of Science ,
Technology & Medicine Department of Computing , 180 Queen ’ s
Gate,” pp. 94–101, 1994.

[6] T. View, C. M. Plans, and T. View, “IEEE Standard for Software
Configuration Management Plans,” IEEE Std, vol. 2005, no. August,
pp. 0{_}1–19, 2005.

[7] K. Petersen and M. V. Mantyla, “Benefits and limitations of
automated software testing: Systematic literature review and
practitioner survey,” 2012 7th Int. Work. Autom. Softw. Test, pp. 36–
42, 2012.

[8] O. C. Gotel, A. C. W. Finkelstein, and L. Sw, “An Analysis of the
Requirements Traceability Problem Imperial College of Science ,

Technology & Medicine Department of Computing , 180 Queen ’ s
Gate,” pp. 94–101, 1994.

[9] B. Kitchenham and S. Charters, “Guidelines for performing
Systematic Literature Reviews in Software Engineering,”
Engineering, vol. 2, p. 1051, 2007.

[10] P. Jamshidi, A. Ahmad, and C. Pahl, “Cloud Migration Research: A
Systematic Review,” IEEE Trans. Cloud Comput., vol. 1, no. 2, pp.
142–157, 2013.

[11] F. Selleri Silva, F. S. F. Soares, A. L. Peres, I. M. De Azevedo, A. P.
L. F. Vasconcelos, F. K. Kamei, and S. R. D. L. Meira, “Using
CMMI together with agile software development: A systematic
review,” Inf. Softw. Technol., vol. 58, pp. 20–43, 2015.

[12] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering,” Empir. Softw. Eng.,
vol. 14, no. 2, pp. 131–164, 2009.

[13] A. Jedlitschka, M. Ciolkowski, and D. Pfahl, “Reporting experiments
in software engineering,” Guid. to Adv. Empir. Softw. Eng., pp. 201–
228, 2008.

[14] D. Tofan, M. Galster, P. Avgeriou, and D. Weyns, “Software
engineering researchers’ attitudes on case studies and experiments:
An exploratory survey,” Eval. Assess. Softw. Eng. (EASE 2011),
15th Annu. Conf., no. 638, pp. 91–95, 2011.

90Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

