
An Exploratory Study of DevOps
Extending the Dimensions of DevOps with Practices

Lucy Ellen Lwakatare, Pasi Kuvaja, Markku Oivo,

M3S, Faculty of Information and Electrical Engineering
University of Oulu,

P.O. Box 3000, 90014 Oulu, Finland
Email: firstname.lastname@oulu.fi

Abstract—Software-intensive companies constantly try to improve
their software development process for better software quality
and a faster time to market. The DevOps phenomenon emerged
with the promise of easing the process of putting new software
changes to production at a fast rate whilst also increasing the
learning and innovation cycles of their products. However, the
DevOps phenomenon lacks clear definition and practices, and
this makes it difficult for both researchers and practitioners
to understand the phenomenon. In this paper, we focus on
consolidating the understanding of DevOps and its practices
as described by practitioners using multivocal literature and
interviews. The study contributes to a scientific definition of
DevOps and patterns of DevOps practices to help identify and
adopt the phenomenon.

Keywords–DevOps; Continuous Deployment; Agile.

I. INTRODUCTION

Innovative online companies, such as Amazon, Google
and Facebook, have fuelled customers expectations for great
services at fast speed due to their quick response times to
customer demands. Consequently, more companies from most
fields are learning and emulating their capabilities in order to
cope with competition and technological changes in the field
of IT [1]. Today’s technology landscape and advances, such
as cloud computing, have changed the ways in which soft-
ware products are developed and delivered to customers. For
instance, in the cloud environment, providers of Software-as-a
Service (SaaS) applications are expected to update software
frequently and in much faster release cycles to customers.

The recent paradigm shift towards fast and frequent de-
livery of software updates to customers is referred to as
continuous deployment (CD) [2]. CD has been described as an
evolutionary step after Agile and continuous integration (CI)
practices [2] [3]. CD is a practice whereby software features
and updates are rapidly rolled out to production as soon as
they are developed, whilst also rapidly learn from real-time
customer usage of software [2] [3]. The advantage is that
companies can proactively identify and validate assumptions
of customer needs by applying practices, such as feature
experimentation, that tightly integrate runtime-monitored data
fromEmphsi production into the software development activi-
ties [4].

Responsiveness to customer needs achieved through CD
can put a strain on functional teams within an organisation
[2]. Consequently, the DevOps phenomenon emerged with the
aim of breaking down organisational silos and encouraging
cross-functional collaboration among stakeholders involved
in software development and delivery processes–especially

development and IT operations. The DevOps phenomenon,
despite its growing interest in software industry, faces several
challenges such as the lack of a clear definition [5]. This lack
of clear a definition has resulted to a number of problems and
criticisms, including tensions as to whether DevOps is about
culture, technical solution or, alternatively, an entirely new role
within a software development organisation [6].

The goal of this research is to consolidate the understanding
of DevOps phenomenon as described by practitioners. We use
an exploratory case study technique that involves a review of
multivocal ’grey’ literature and interviews. Our work extends
other previous studies that have tried to characterise the De-
vOps phenomenon. Multivocal literature review and interviews
were selected as appropriate approaches for this study because
DevOps is very much driven by practitioners, and as such,
contribution from non-scientific community are worthwhile.
The contribution of this paper is twofolds. First, to validate
and improve the scientific definition of DevOps proposed by
Penners and Dyck [7]. Second, to extend our work on the
dimensions of DevOps [8] with a set of examplary practices
and patterns of DevOps. The following research questions are
addressed in this study:

• RQ1: How do practitioners describe DevOps as a
phenomenon?

• RQ2: What are the DevOps practices according to
software practitioners?

This paper is organized as follows: Background and related
work, including a scientific definition of DevOps, are presented
in the next section. Section 3 presents our research methodol-
ogy. The results of the study are presented in Section 4, which
is followed by a discussion and conclusions in Section 5 and
7, respectively. Section 6 presents validity threats including
limitations of the study.

II. BACKGROUND AND RELATED WORK

According to Humble and Molesky [9], DevOps– a blend
of two words Development and Operations– is about align-
ing incentives of everybody involved in delivering software,
with particular emphasis on developers, testers and operations
personnel. The problems resulting from misalignment between
development and operations are not new, though their appear-
ance in the literature is scarce [10]. Prior studies investigating
cooperation between developers and operations personnel in
real contexts have revealed that very often development and
operational activities are not tightly integrated [10] [11]. The
latter, according to Iden, Tessem and Päivärinta [11], results

91Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

to a number of problems, including IT operations not being
involved in requirements specification, poor communication
and information flow between the two groups, unsatisfactory
test environments, lack of knowledge transfer between the two
groups, systems put into production before they are complete
and operational routines not established prior to deployment.
These problems were identified from a delphi study consisting
of 42 experts grouped in three panels representing the roles of
developers, operations personnel and systems owners. In the
latter study, the authors [11] concluded that operations person-
nel are to be regarded as important stakeholders throughout
system development activities, especially in systems require-
ment, testing and deployment.

The closest similar work, though different in terms of
the studied phenomenon, is by Tom, Aurum and Vidgen
[12]. Using a multivocal literature review (MLR) approach
supplemented by interviews, the authors of the latter study [12]
examined and consolidated the understanding on an unclear
phenomenon i.e., technical debt. The approach was used by
the authors to develop a theoretical framework that gives a
holistic view of the phenomenon comprising of dimensions,
attributes, precedents and outcomes. In this study we apply
similar approach used by Tom, Aurum and Vidgen [12] to
consolidate the understanding of DevOps phenomenon whilst
also compare and complement other related works of DevOps
particularly those done by Kerzazi and Adams [6] and Penners
and Dyck [7].

A. DevOps Definition and Practices
DevOps is a phenomenon that has often been said to a

lack clear and precise definition [5] [7] [8] [13]. Its ambiguity
and lack of clarity often hinders its adoption [5]. To address
this problem, a scientific definition of DevOps is proposed
by Penners and Dyck [7]. The definition was derived from
comparing and contrasting various descriptions of DevOps
and release engineering as the two terms seemed to have
a big overlap [7]. According to the authors, DevOps and
release engineering share the same goal of providing high-
quality software as fast as possible. However, DevOps tries
to achieve the goal by improving the collaboration aspect,
whereas release engineering addresses the goal in a holistic
way i.e., covers all aspects that impact or influence the delivery
process of software product to customer [7]. The authors [7]
define DevOps as:

”a mindset, encouraging cross-functional collabora-
tion between teams - especially development and IT
operations - within a software development orga-
nization, in order to operate resilient systems and
accelerate delivery of changes ”.

This definition of DevOps was developed through discus-
sion with some experts, but the feedback of its description
from practitioners was not as consistent as that of release en-
gineering. Based on this, the authors recommended additional
inquiry from more practitioners for a more precise definition of
DevOps. This study explores how different practitioners have
described DevOps and in addition compare our findings of
such descriptions with the definition provided by Penners and
Dyck [7] [13].

In addition to the definition of DevOps, different aspects
and dimensions characterising the DevOps phenomenon such

as culture, sharing, automation, collaboration and measurement
have been presented in other works [8] [9] [14]. However,
the various aspects or dimensions of DevOps seem to lack
a consolidated overview to a set of practices and patterns
attributed to DevOps [15] [16] [17]. The latter is largely due to
the limited number of scientific studies reporting the DevOps
phenomenon in practice, although this is changing as there
is presently an increasing number of studies of DevOps e.g.,
studies from IEEE Software special issue on DevOps [18] [19]
[20].

III. METHODOLOGY

We report an exploratory case study [21] on the DevOps
phenomenon conducted between September 2015 and April
2016. Exploratory case studies are useful in finding out what
is happening on a phenomenon whilst also seek new insights
and generate ideas for new research.

A. Data Collection
This study uses qualitative data–both primary and sec-

ondary data– collected from practitioners in two phases. Phase
1 involved collecting primary data using semi-structured in-
terviews with software practitioners from one case company.
Secondary data, consisting of readily accessible writings from
the Internet, such as blogs, white papers, trade journals and
articles, were collected in phase 2 of the study using Google
search. The documents gathered during Phase 2 are collectively
referred to as multivocal literature (ML) [22]. The multivocal
literature review provides a method for exploring a common,
often a contemporary topic of interest [22]. ML embodies
views and voices of diverse set of authors expressed in variety
of forms [12] [22].

1) Phase-1 Interviews: Three interviews with software
practitioners were conducted in one company (Company A),
that provides consultancy and product engineering services to
its customers. In the latter company, we focused our study
on one project, that involved the development of cloud-based
road maintenance reporting tool. The company was devel-
oping the tool for a customer in the public sector. Conve-
nience sampling was used to select suitable companies based
on their participation in the Need for Speed (N4S) project
(http://www.n4s.fi/en/), which the present study is part of. A
contact person from company A was asked to select a project
team that was applying DevOps practices. All interviews were
recorded and later transcribed for analysis. The roles of the
interviewed practitioners are summarized in Table I .

TABLE I. SUMMARY OF INTERVIEWEES.

Company A

Number of Employees < 350

Studied Project Road maintenance tool.

Team Size 7 (co-located).

Number of Interviews (role) 2 (senior developers) 1 (project manager)

A semi-structured interview guide was used during the
interviews and had questions that inquired about the (1) current
way of working in software development and deployment,
(2) strengths and weaknesses in ways of working and (3)

92Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

definitions, practices, benefits and challenges of DevOps and
CD. DevOps questions were guided by the results of our
previous work that analysed and synthesized the DevOps
phenomenon as described in academic literature [7].

2) Phase-2 review of multivocal literature: In phase 2,
we conducted MLR in the beginning of March 2016. In
this study, we selected the MLR as an appropriate method
because DevOps is a phenomenon that is largely driven and
discussed by practitioners in non-academic circles, and as such
it requests the review of the largely available information in
non-scietific forums, as seen also in a study done by Kerzazi
and Adams [5]. Despite the apparent issues of rigor associated
with MLR approach [22], the contemporary nature of DevOps
phenomenon suggests some value in reviewing ML that cannot
be overlooked. As noted by Ogawa [22], the information
presented in ML cannot be assessed in the same way as
that of academic literature. We therefore considered various
recommended procedures by Ogawa [22] in order to minimize
bias and error that can be transferred to, and incorporated in
the review of ML. The latter included focusing our study on
presenting a thicker picture of the DevOps phenomenon that
would serve as input for more sophisticated examination in
future research. We carried out the MLR in the following three
stages:

a) Data sources and search strategy: Google web
search engine (http://www.google.com) was used to source ML
from the World Wide Web. The query used to retrieve results
from the search engine was what is DevOps. From the retrieved
results, we went through the links provided, page by page,
saving the outputs of each link as a PDF file until the page
where job adverts started and at this point, the review was
stopped. A total of 230 records were collected as data sources
and included in subsequent steps.

b) Inclusion and exclusion: A total of 230 documents
were imported to NVivo (www.qsrinternational.com/product)
for analysis. The inclusion and exclusion of the records were
done simultaneously with the initial coding of these records.
The process also involved classifying the sources with different
attributes, such as author information, e.g. name, role and place
of work; and source information, e.g. publication year, forum
and link. After reviewing all 230 documents, 201 sources were
included as relevant documents and excluded 29 documents as
they were either duplicates, video links, pointers to catalogues,
course adverts, certification adverts or presentation slides.

c) Quality assessment: Quality assessment was mostly
done when classifying the sources with metadata, e.g. author
name, role, place of work/affiliation, year of publication, view
point. This process offered minimal assessment of position,
certainty and clarity of source or alignment with research goal
i.e., to consolidate the understanding of DevOps phenomenon
as determined by the research questions.

B. Data Analysis
Interview transcripts and results from the MLR (list of ML

at http://tinyurl.com/z3jpu5v) were coded in NVivo. At first,
codes were assigned inductively to the following categories:
(1) Definition (with referred as and description as subcate-
gories) and (2) Practices. Other emerging themes found within
and across the sources were also coded (e.g., Motivations
for DevOps, DevOps in relation to Agile and CD, Problems
addressed by DevOps). Following the inductive coding of raw

data into the main categories, i.e., Definition and Practices,
a second iteration of inductive coding was performed to form
other subcategories. The latter proceeded in multiple iterations
until similar patterns in the practices and definition were
identified and saturation reached. Interestingly, the practices
could be grouped into the dimensions of DevOps identified in
previous work [8]; however, a new dimension was also added.

IV. FINDINGS

In this section, we present the findings with respect to the
two research questions. Fig. 1 gives a summary of the findings
from MLR. For MLR, Internet blogs made up the largest
source with 53.2% (107) of all sources. Compared to personal
blogs, most of the blogs were affiliated with companies. The
MLR showed a growing number of sources writing about
DevOps over the past 5 years since its conception in 2009.

From the case company, the project team in company
A uses Scrum– agile software development method, with a
3-week sprint cycle. The development team has three en-
vironments to which software changes are deployed, i.e.,
development, test and staging. The production environment
was not in use at the time of the interviews because the project
was phased and the deliverables as well as the schedule of
each phase was determined by the customer. The development
team automatically deployed software changes from the test to
staging environment using Ansible playbooks. The infrastruc-
ture team located in another city supported the development
team by provisioning the virtual servers used to create the
environments.

A. How do practitioners describe DevOps as a phenomenon?
(RQ1)

Most practitioners acknowledge that DevOps is a concept
that is difficult to define with accuracy. However, many of
them still used different terms and descriptions to describe
the DevOps phenomenon as elaborated below:

1) DevOps referred to as: A large number of MLR
sources have referred to DevOps as a cultural and professional
movement (52). Other terms used to describe the DevOps
phenomenon in MLR sources include practices (41), culture
(38), approach (38), philosophy, mindset, ideology (37), tool
(36), a set of values and principles (30), software methodology
(24), role, team or engineer (19) and strategy (8). Fig. 2
summarizes the prevalence of the terms in MLR sources. It
should be noted that a single source of MLR can use more
than one term to describe the DevOps phenomenon.

2) DevOps descriptions: There is an agreement that the
term is a combination of development and operations, that
encourages collaboration between software development and
operations activities. However, when describing the concept
further, practitioners often diverge their descriptions depending
on whether they place the emphasis more on the goal or more
on the means of achieving collaboration. The most common
goals that were described include the following: to reduce
response time and fast deployment of high quality and reliable
software products and services, to allow instant interactions,
to unify workflows for transparency and collaboration. On
the other hand, those that emphasise means include: through
advanced automation and, by evolving traditional roles of

93Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

0

20

40

60

80

100

120

Article Blog
Posts

Other White
Paper

N
u
m
b
er
o
f
S
o
u
rc
es

Source Typle

ML Source Type

0

10

20

30

40

50

60

70

company
blog

Other Blog Personal
Blog

N
u
m
b
er
o
f
so
u
rc
es

Blog Type

ML Blog Type

0
10
20
30
40
50
60
70
80

N
u
m
b
er
o
f
so
u
rc
es

Publication Year

Publication year of ML sources

Figure 1. ML Sources.

0

20

40

60

N
u
m
b
e
r
o
f
S
o
u
r
c
e
s

Terms used to refer to DevOps phenomenon

DevOps Referred As

Movement- Cultural and professional
Practices
Culture
Approach
Philosophy, Mindset, ideology
Tool
A set of values and principles
Methodology, method, process
Role,Team, Engineer
Strategy

Figure 2. Terms referring to DevOps and their prevalance in ML.

development and operations. In company A, two out of three
interviewed practitioners had an understanding of DevOps.
One person, the project manager, had no prior understanding
of the concept and had learned about it through our study. The
following descriptions are extracts from interviewed practition-
ers in company A when asked how they understood DevOps.
The first developer described DevOps as

a set of practices to govern everything that is related
to installing the software, maintaining it, making
sure that all these connections work, i.e. firewalls,
version management, etc. It is kind of a little bit of
what happens, right after the actual development.

Another description given by the second developer was:

DevOps is mostly about the organisation of work,
tearing down the walls that separate typical devel-

opment organisation from the operational organisa-
tion...like instead of provisioning new systems with a
ticket, automation projects are modifying the servers
and developer can make or commit changes to them
by themselves when needed. If you have a separate
ops team, then you need to have a very good practice
in place for documenting changes and transferring
knowledge about the system. A DevOps person will
know how to run their own system .

B. What are the DevOps practices according to software
practitioners? (RQ2)

DevOps practices can be crystalized into five dimensions
that characterize DevOps. The five dimensions are further
elaborated with examplary DevOps practices and patterns to
the practices below. Table 2 summarizes some of the DevOps
practices in each of the dimensions.

1) Collaboration: rethinking and reorientation of roles and
teams in development and operations activities: The issue of
role is one of the most widely discussed topics by practitioners
in ML. On the otherhand, DevOps phenomenon offers no blue
print of how companies can reorganize those roles. A common
pattern that was observed is that, companies are forced to
rethink and reorient roles, whether new or existing, around the
performance of the entire system or service, as opposed to the
performance of a specific silo of department or an individual
module. Practices in collaboration are often seen as empow-
erment to team members, especially for the developer since
in some cases they gain more control over system operability.
This in turn helps to broaden their skillset and knowledge.
According to some practitioners, such control allows a single
team to be responsible for all aspects, i.e. development and
operations of the entire software product or service. Some
criticism to this was also observed, including coding time for
developers is reduced and the fact that developers need to find
ways to effectively balance the support and operations tasks
alongside development tasks. Others agree that, companies will
need to pick right technology and methodologies to be able to
empower developers, as advocated by DevOps. We identified
the following two common practices in the collaborative aspect
of DevOps.

94Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

TABLE II. DEVOPS DIMENSIONS, PATTERNS AND PRACTICES

DevOps
Dimension

Patterns of DevOps prac-
tices

Examples of practices found in ML

Collaboration Rethinking and reorientation
of roles and teams in develop-
ment and operations activities

Increasing the scope of responsibilities
• Developers paying closer attention to deployment scripts, configuration files, load and performance testing

and other activities usually associated with operations groups
• Developers learning from operations about resilience, monitoring and diagnosing distributed systems
• Developers leverage the support enabled through virtualization, microservice architecture and automation

in deployment pipeline to do less operations work, e.g., Docker to remove the need for specifying
environments specifications

• Development has access and can make changes to critical environments, e.g. production
Intensifying cooperation and involvement in each others daily work

• Development rotates roles with operations teams, operations attend developer stand-ups and showcases
• Operations involved earlier in development to understand what project environments are required to support

the application. Also, regular meetings, e.g. weekly to discuss cross-team priorities
• In circumstances in which production incidents occur, development and operations come together to

troubleshoot and resolve problems as one team
• Setting-up shared (virtual and physical) workspace

Automation Infrastructure and deployment
process automation

Infrastructure-as-code
• Automate and maintain infrastructure configurations and files using tools such as Chef, Puppet
• Developers are shielded from infrastructure issues and are able to create virtual development, test and

production environments as well as deploy application using tools like Vagrant and Docker
• Scripts used to handle infrastructure are versioned, testable and repeatable
• Immutable infrastructure, i.e. artifacts, in their production environments are not updated, rather the

infrastructure is always replaced
Deployment process automation

• Production-like environments are used by development teams for development and testing
• Developers self-service environments and deployments
• Consistent, reliable and repeatable deployment mechanism across different environments
• Configuration changes across environments are automated

Culture Empathy, support and good
working environment between
development and operations

• Both developers and operations wear pagers as responsible persons to handle incidents
• Integrating development into blameless production post-mortems
• Making communication between development and operations non-adversarial and less formal
• Mutual respect, support and willingness to work together and share responsibilities

Monitoring Instrumenting application and
aggregating monitored data
into insights

• Developers and operations are both involved in determining and implementing monitoring parameters of
a system

• Set-up monitoring on the production environment for development teams visible through radiators
• Development team, including QA, use small subset of high-priority test cases to be executed in production

to actively monitor the environment
• Effective instrumentation of software by development in collaboration with operations to give information

about its health and performance. Also, developers are able to quickly recover code failures in production
using aids, such as feature flags

Measurement Useful Metrics
• Both operations team and development team are incentivized and rewarded by the same metrics
• Both development and operations focus on business value as the essential unit of measurement
• Progress in development is measured in terms of a working system in production environment
• Developers use production feedback to drive decisions, improvements, and changes to the system

a) Increasing the scope of responsibilities: This prac-
tice is particularly prominent in the developer role and is
the most common implementation of DevOps phenomenon.
According to practitioners, developers are responsible for other
tasks in addition to designing, coding and testing. Increasing
the scope of responsibilities involves pro-activeness of team
members in learning the new tasks or alternatively leverage
on the automation done to the technical infrastructure of the
project. This was also evident from the interviewed practition-
ers as expressed by the developer from company A: Shared
access to change things, so not just that there’s collaboration

within the ops teamand ask should you even have an ops
team and a development team. If something is broken on the
production machine, why do you need an ops team to fix it?
It should be possible for anyone in the dev team or any other
team to just fix things that are broken.

b) Intensifying cooperation and involvement in each
others daily work: DevOps requires both groups to recognise
their key skills in order to share and learn from each other. This
aspect may not necessarily mean retraining or crossskilling but
encourages providing feedback and visibility across the teams
in order to improve. Involving members from each others

95Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

teams, development and operations teams can provide valuable
information outside individuals areas of expertise. As such,
practices such as early involvement of operations in devel-
opment are emphasized. The following interview extract is a
response given by an interviewed practitioner from company
A when asked to elaborate how the development team interacts
with the infrastructure team:

We interact with them through HipChat, which is
like an IRC channel. We have a project channel and
a member of infrastructure team; [name] has been
allocated to support our project. We are basically
just sending a message to [name]if we need some
help, e.g., we want two more servers to run Java
virtual machine and Jenkins, and then he waves some
magic and we get what we want. It’s pretty instant
even if we are technically in a different team i.e.,
virtual team element, in it.

2) Automation: infrastructure and deployment process au-
tomation: Automation underlies most of the practices that
constitute DevOps. Two common practices include automation
of deployment process and infrastructure-as-code (IaC). The
two practices help to eliminate error-prone manual processes
associated with deployments and configuration settings for
improved traceability and repeatable workflows. For instance,
the use of IaC practice to standardize development, test and
production environments.

a) Deployment process automation: as evident in de-
ployment pipeline that views the entire development to opera-
tions lifecycle as one coherent end-to-end process rather than
numerous multiple and diverse steps. The deployment pipeline
is an integrated flow that puts great emphasis on the automation
of build, test and deployment processes. It involves continuous
development whereby code written and committed to version
control is built, tested and installed (deployed) in the produc-
tion environment. An automated deployment process takes into
account and ensures the management of dependencies, versions
and configurations of application and infrastructure, which is
often challenging. The following interview extract is a response
given by an interviewed practitioner from company A when
asked to give an example of a DevOps practice they have had
in their team:

The actual building of the CI pipeline has been
done collaborative with ops team, who basically just
provisions machines for us. They have a library of
useful profiles that can be helpful, e.g., our servers
have Java 8, database servers have PostgreSQL
installed, etc. So, we’ve been pretty active in building
and modifying our own CI pipeline, and we have had
within ourselves actual tangible tasks to deploy our
stuff to production.

In addition to the development team interacting with the
operations team to implement the deployment pipeline, the
teams collaboratively work together to improve the pipeline
in order to improve their processes. This is described by an
interviewed practitioner when asked to give an example of a
problem that the development team encountered and needed
help from the infrastructure team:

We are using Jenkins in CI, and whenever we want
to update software, we push the newest version to

Jenkins and it runs unit tests. If everything goes
fine, it automatically installs the new version to the
test environment. At some point, we started using
Selenium for automated end-to-end functional tests.
We have had quite a lot of random failures with
Selenium tests, for example, we did not know if the
software or just the test tool was broken. Quite often,
either of these were true, and sometimes I think we
also run out of space in CI machines and the Jenkins
build would fail because there is no space left. So
we have used [name of the assigned person from
Infrastructure team] to debug and have a look at
what’s going on when we have encountered failure
that we shouldn’t have.

b) Infrastructure-as-code: This practice is central to au-
tomation dimension and entails treating infrastructure the same
way developers treat code. This includes making the process
of infrastructure provisioning, orchestration and application
deployment reproducible and programmatic. Application code
has a defined format and syntax that follows the rules of the
programming language in order to be created. Typically, the
code is stored in a version-management system that logs a
history of code development, changes and fixes. When code
is compiled (built) into an application, the expectation is that
a consistent application is created. When the latter occurs, the
build process is said to be repeatable and reliable. Practic-
ing IaC means applying the same rigor of application code
development to infrastructure provisioning, orchestration and
deployment. All configurations should be defined in a declara-
tive way and stored in a version management system, just like
application code. With IaC, it becomes possible to quickly
provision application environments and deploy application
automatically and at scale as needed. The following interview
extract is a response given by an interviewed practitioner from
company A about how the team handles their infrastructure:

We use Ansible for all server automation, so we
have Ansible tasks and playbooks for the infras-
tructure, i.e. we use Ansible projects for setting up
the machines and installing. When a new machine
comes, we just automatically run that and it sets
up everything. Then we have other playbooks for
deploying our software on top of the page.

3) Culture: empathy, support and good working evironment
for teams especially development and operations: Many of
DevOps practices also involve changing culture and mindset to
the one that encourages empathy, support and a good working
environment for those involved in software development and
delivery processes.

a) Empathy: According to majority of ML authors,
development and operations need to empathize with each other
and more importantly also with users of software product
or service. For operations engineers, empathy helps them to
understand the needs as well as to appreciate the importance
of being able to push code quickly and frequently, without
problems. To developers, it also allows them to recognise
the problems resulting from writing code that is erroneous,
unstable or insecure. Generally, empathy in DevOps culture
allows software developers and operators to help each other
deliver the best software possible. Information exchanges
require (and can contribute to) mutual understanding. As an

96Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

example to this pattern includes having both developers and
operations, personnel wear pagers as responsible persons to
handle incidents.

b) support and a good working environment for
teams: The need for mindset change and cross-discipline
learning associated with DevOps necessitates the support
from members within and across development and operations
teams, as well as of those outside the two functions or roles.
A good working environment that welcomes innovation,
experimenting and stops finger pointing when mistakes
are done as long as they constantly improve learning, helps
to facilitate and embrace DevOps phenomenon amongst others.

4) Monitoring: Instrumenting application and aggregating
monitored data into insights: This pattern involves having
a continuous feedback loop that runs from the production
environment to the start of the development cycle, including
a complete timeline of development and operations events.
It involves proactive detection and awareness of events in
critical environments, such as test and production, in order
to expose (know the state of) issues before they cause failures.
According to practitioners, the latter is important especially for
SaaS application because development teams are increasingly
placing more reliance on detection and recovery than standard
QA testing practices. Since the cost and time of fixing defects
in production for SaaS are less than packaged software, teams
tend to reduce reliance of extensive testing and instead rely
more on production monitoring to detect defects as long as
they can be quickly fixed. On the other hand, monitoring of
advanced architectures with highly distributed systems and
nodes that appear and disappear pose challenging tasks that
should not only involve operations engineers. Two common
patterns in monitoring include emphasis on instrumentation of
application and increased use of modern tools for monitoring
purposes.

a) Instrumenting application: A well-instrumented
software system can provide rich data and insights about its
health and performance that can be used in bug reporting,
troubleshooting, feature suggestion or general finetuning of
the system. Effective instrumentation of an application tries
to minimize problems associated with the aggregation of
large amounts of data from a variety of sources by capturing
feedback as part of the application. Reliance on monitoring, de-
velopers can quickly recovery from code failures by the use of
feature flags that enable or disable code functionality through
configuration settings. Additionally, instrumentation can help
to extend features of monitoring tools with domain knowledge.
To implement this, a broad set of skills are required amongst
developers that involve mainly scripting and knowledge of
performance-monitoring practices, often a responsibility of
operations. The following interview extract is a response given
by an interviewed practitioner from company A when asked
to give an example of a DevOps practice experienced by their
team:

When we do not know how to do something, the
ops team, i.e. the infrastructure team, has shared
services that I use, like log aggregation services and
monitoring services. We have asked them to set these
up for us.

b) Aggregation of monitoring data into insights: For
comprehensive system monitoring, several tools at different

system levels are used, and different tools are used to monitor
application and infrastructure. Although modern tools try to
provide insight into almost every aspect of system behaviour,
the biggest challenge facing the tools is developing data
analytics that predict problems before they become outages.
Some practitioners also argue that it is impossible to catch all
the issues using the out-of-the box features of such tools.

5) Measurement: different metrics are used to monitor
and assess the performance of processes in development and
operations activities, e.g., developers on system quality and
operations on system stability. As such, instead of using proxy
metrics, DevOps, according to practitioners, emphasizes the
use of common metrics that are often business focused to
assess and give incentive to both development and opera-
tions teams. Additionally, developers, operations and other
stakeholders can use production feedback to drive decisions,
improvements and changes to the systemnot just problem
reports and user suggestions, but measurable data collected on
how the system is working according to the conversion rate or
whatever metric that the business uses to determine success.

V. DISCUSSION

Our findings show that often practitioners vary their de-
scription of DevOps depending on whether they put their
emphasis on either the goal or the means for achieving collabo-
ration between development and operations. The most common
goal according to practitioners was to reduce response time and
provide fast deployment of high-quality and reliable software
products and services. This finding supports the second part
of the definition proposed by Penners and Dyck [7]. Evidence
from how practitioners referred to the DevOps phenomenon
also supports that DevOps is a mindset as stated in the pro-
posed definition. However, the results showed that, in addition
to being a mindset, DevOps constitutes practices attributed
to it. We therefore argue that both mindset and practices be
included in the definition and that the first part of the definition
should not exclude the results. By doing this, we improve the
definition to be DevOps is a mind-set substantiated with a
set of practices to encourage cross-functional collaboration
between teams - especially development and IT operations
- within a software development organization, in order to
operate resilient systems and accelerate delivery of change.

On the other hand, the DevOps phenomenon has no explicit
one-size-fits-all set of practices that guide its adoption and
implementation, but that common patterns can be identified
from its diverse set of practices. For each pattern of DevOps,
practitioners can choose different ways to implement it even
though it was possible to identify similar implementation.
Patterns to the DevOps practices are more useful than one-
fits-all set of practices that will not suffice due to contextual
limitations in organisations, e.g., team members skill and
scenarios vary among companies. As an example, we can
observe the reorientation of roles and teams in development
and operations activities pattern in studies reported by Balalaie,
Heydarnoori, and Jamshidi [19]. In the latter study, the authors
depict the formation of small and autonomous teams consisting
of multi-skilled persons of both development and operations
activities as a DevOps practice. According to the authors,
the practice helps to minimize development and operations
inter-team coordination, which is important for Microservices.

97Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Callanan and Spillane give empirical evidence to infrastructure
and deployment automation pattern [18]. Continuous monitor-
ing of both infrastructure and application, as a DevOps practice
helping to bridge development including quality assurance and
operations are described as lesson learned and experiences by
authors of these studies [15] [16] [17] [18] [19] [20].

Generally, the results of our study signify the importance
of considering context when describing DevOps practices. In
our case study, even though most practitioners elaborated the
practices in the context of cloud and web development, other
contextual information, such as size and maturity, influenced
the ways in which some practices are implemented. This is an
important consideration that needs to be taken into account
when discussing DevOps practices, i.e., to understand the
context in which the practices are described.

VI. THREATS TO VALIDITY

This study has a number of validity threats that need to be
taken into account. We considered three categories of validity
threats– construct validity, reliability, and external validity
[21]– and used different countermeasures to minimize the
threats. The countermeasures included: (a) consulting multiple
sources in MLR (b) maintaining chain of evidence, and (c)
incorporating practitioners reviews. In addition, particulary to
MLR approach, three minimal standards for enhancing rigor
in ML suggested by Ogawa [22] were considered.

To ensure construct validity, we only included one out of
three contacted and interviewed case companies. The latter is
due to not having the two other companies implement DevOps
as well as the lack of DevOps understanding thereof. As a
result of the selection process, our study faced some limitation
with regards to the few number of interviews included in
this study. This limitation serves as an opportunity for further
inquiry in future works. On the otherhand, the interviews were
conducted with at least two researchers to minimize researcher
bias. A document describing the background and objective of
the study was sent to practitioners prior to the interviews. With
regards to the MLR, a threat to construct validity comes from
different constraints, e.g., the selected search term as well as
the inclusion and exclusion criteria of ML. To ensure construct
validity and minimal rigor, prior to MLR, the objective of the
study was clearly defined which served as the primary criterion
for seeking and selecting ML.

To ensure the reliability of results, initial results were made
available for discussion to practitioners and other researchers
prior to the writing of this report. One meeting (with company
representatives of the interviewed company) and a workshop
with practitioners of the N4S research program were also
conducted to solicit feedback from practitioners. Both events
were useful for collecting feedback. We also ensured an audit
trail, i.e., maintain all records and analysis in NVivo. With
regards to ML, the reliability of the study would have improved
further with contact and additional discussion with the authors
of the ML. However, due to the large number of ML sources
and diverse set of authors, at the time of writing the report,
this was not feasible due to limited time.

External validity and the generalization of the findings is
threatened by the small number of interviewees as described
earlier as well as our reliance on ML sources as data sources
for analysis. For this reason we acknowlede this limitation and
, the results serve as a basis for empirical evaluations.

VII. CONCLUSION AND FUTURE WORK

The analysis of multivocal literature and interviews with
software practitioners showed software practitioners use dif-
ferent terms and variety of practices when describing the
DevOps phenomenon. We used findings from our analysis
to provide more evidence that supports and builds upon the
scientific definition of DevOps proposed by Penners and Dyck
[6]. Our findings showed that DevOps as a phenomenon
is not just a mind-set but rather some patterns of DevOps
practices described by the practitioners can be identified. This
study presents the identified patterns in relation to the five
dimensions of DevOps, i.e. collaboration, automation, culture,
monitoring and measurement. Our findings show that DevOps
phenomenon is more prominent in organisations providing
services over the Internet. It would be beneficial for future
research to focus on further empirical evidence of DevOps
practices and patterns in companies that claim to have imple-
mented it. More important will be a research that not only
identifies the practices but also for which kinds of system,
organisations and domains are DevOps practices applicable.

ACKNOWLEDGMENT

This work was supported by TEKES (Finnish Funding
Agency for Innovation) as part of the Need for Speed project
(http://www.n4s.fi/) of DIGILE (Finnish Strategic Centre for
Science, Technology and Innovation in the field of ICT and
digital business).

REFERENCES

[1] M. Leppanen et al., “The Highways and Country Roads to Continuous
Deployment,” IEEE Software, vol. 32, no. 2, mar 2015, pp. 64–72.

[2] P. Rodrı́guez et al., “Continuous Deployment of Software
Intensive Products and Services: A Systematic Mapping Study,”
Journal of Systems and Software, jan 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121215002812

[3] H. H. Olsson, H. Alahyari, and J. Bosch, “Climbing the ”Stairway to
Heaven” – A Mulitiple-Case Study Exploring Barriers in the Transition
from Agile Development towards Continuous Deployment of Software,”
in 38th Euromicro Conference on Software Engineering and Advanced
Applications. IEEE, sep 2012, pp. 392–399.

[4] T. Karvonen, L. E. Lwakatare, T. Sauvola, J. Bosch, H. H. Olsson,
P. Kuvaja, and M. Oivo, “Hitting the Target: Practices for Moving To-
ward Innovation Experiment Systems,” in 6th International Conference
on Software Business. Springer International Publishing, 2015, pp.
117–131.

[5] J. Smeds, K. Nybom, and I. Porres, “DevOps: A Definition and
Perceived Adoption Impediments,” in 16th International Conference on
Agile Software Development (XP). Springer International Publishing,
2015, pp. 166–177.

[6] N. Kerzazi and B. Adams, “Who Needs Release and DevOps Engi-
neers, and Why?” in International Workshop on Continuous Software
Evolution and Delivery. ACM Press, 2016, pp. 77–83.

[7] R. Penners and A. Dyck, “Release Engineering vs. DevOps-
An Approach to Define Both Terms,” Full-scale Software
Engineering, 2015. [Online]. Available: https://www2.swc.rwth-
aachen.de/docs/teaching/seminar2015/FsSE2015papers.pdf#page=53

[8] L. E. Lwakatare, P. Kuvaja, and M. Oivo, “Dimensions of DevOps,”
in 16th International Conference on Agile Software Development (XP).
Springer International Publishing, 2015, pp. 212–217.

[9] J. Humble and J. Molesky, “Why enterprises must adopt DevOps to
enable continuous delivery,” Cutter IT Journal, vol. 24, no. 8, 2011, pp.
6–12.

[10] B. Tessem and J. Iden, “Cooperation between developers and operations
in software engineering projects,” in In Proceedings of the 2008
international workshop on Cooperative and human aspects of software
engineering. ACM, 2008, pp. 105–108.

98Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

[11] J. Iden, B. Tessem, and T. Päivärinta, “Problems in the interplay of
development and IT operations in system development projects: A
Delphi study of Norwegian IT experts,” Information and Software
Technology, vol. 53, no. 4, apr 2011, pp. 394–406.

[12] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical debt,”
Journal of Systems and Software, vol. 86, no. 6, jun 2013, pp. 1498–
1516.

[13] A. Dyck, R. Penners, and H. Lichter, “Towards definitions for release
engineering and DevOps,” 2015.

[14] F. Erich, C. Amrit, and M. Daneva, “Cooperation between information
system development and operations: a literature review,” p. Article
No.69, 2014.

[15] J. Roche, “Adopting DevOps practices in quality assurance,” Commu-
nications of the ACM, 2013, pp. 1–8.

[16] D. Cukier, “DevOps patterns to scale web applications using cloud
services,” in In Proceedings of the 2013 conference on Systems,
programming, & applications: software for humanity. ACM, 2013,
pp. 143–152.

[17] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s
Perspective. Addison-Wesley Professional, 2015.

[18] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “DevOps,” IEEE
Software, vol. 33, no. 3, may 2016, pp. 94–100.

[19] M. Callanan and A. Spillane, “DevOps: Making It Easy to Do the Right
Thing,” IEEE Software, vol. 33, no. 3, may 2016, pp. 53–59.

[20] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices Architec-
ture Enables DevOps: Migration to a Cloud-Native Architecture,” IEEE
Software, vol. 33, no. 3, may 2016, pp. 42–52.

[21] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineer-
ing, vol. 14, no. 131, 2009, pp. 131–164.

[22] R. Ogawa and B. Malen, “Towards rigor in reviews of multivocal
literatures: Applying the exploratory case study method,” Review of
Educational Research, vol. 61, no. 3, 1991, pp. 299–305.

99Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

