
Towards Easier Implementation of Design Patterns

Ruslan Batdalov and Oksana Nikiforova

Department of Applied Computer Science
Riga Technical University

Riga, Latvia
Email: Ruslan.Batdalov@edu.rtu.lv, Oksana.Nikiforova@rtu.lv

Abstract—Design patterns help in managing complexity of soft-
ware systems, but in many cases their implementation may entail
even greater complexity. We argue that this complexity is caused,
at least partially, by the lack of expressiveness of the mainstream
programming languages. In order to support this hypothesis, we
propose a set of potential language-level features that might make
implementation of design patterns easier, identified by dissecting
some widely used design patterns.

Keywords–design patterns; design patterns implementation.

I. INTRODUCTION

At present, design patterns are widely used in development
of software systems. Erich Gamma et al. defined the role of
patterns as follows: ‘A pattern gives a solution to a recurring
problem and allows developers not to invent a design from
scratch. [1]’ As Frank Buschmann et al. pointed out, ‘[a]ny
significant design will inevitably draw on many patterns,
whether consciously or otherwise. [2]’

At the same time, introducing design patterns into a soft-
ware system may increase the level of its complexity. This
danger was anticipated yet by Erich Gamma et al.: ‘Design
patterns should not be applied indiscriminately. Often they
achieve flexibility and variability by introducing additional
levels of indirection and that can complicate a design and/or
cost you some performance. [1]’ Frank Buschmann et al. in the
first book of the series ‘Pattern-oriented Software Architecture’
saw one of the goals of the patterns in helping developers
to manage software complexity [3], but in the fifth one
admitted: ‘There are also many tales of failure to relate: stories
about systems in which patterns were used intentionally and
explicitly in design, but whose architectures were penalized by
unnecessary and accidental complexity. [2]’ Peter Sommerlad,
an author of many design patterns and a co-author of the
same series, went even further and bluntly argued that design
patterns are bad for software design because of unnecessary
complexity [4].

We argue that the excessive complexity introduced by the
design patterns stems, at least partially, not from the patterns,
but from insufficient expressiveness of the existing program-
ming languages. The languages have trouble expressing the
ideas, on which the patterns are built, and that is a reason
why the implementation of the patterns is too complex. To
support this hypothesis, we propose an approach to coping with
the mentioned complexity by means of including necessary
constructs into the programming languages.

The goal of the study is to identify a set of language-level
features that could facilitate implementation of the common

design patterns. This result, as well as our approach in general,
could be used by the designers of programming languages to
identify new features that might be useful for reducing systems
complexity.

The remainder of this paper is organised as follows: Section
II briefly describes the background of the study related to the
common design patterns and their implementation. Section
III presents our approach and illustrates it with a detailed
example. Section IV contains the proposed set of language-
level features, their motivation and drawbacks. Related work
is covered in Section V, and Section VI concludes the paper.

II. BACKGROUND OF THE STUDY

There exist a lot of design patterns appearing again and
again in different systems. They are described in a huge num-
ber of books and papers. The seminal work by Erich Gamma et
al. [1] popularised the idea of a pattern in software design and
gave an impetus to studying, discovering and applying new and
new design patterns. Among other work, we should mention
the series ‘Pattern-oriented software architecture’, which gives
not only a catalog of patterns, but also many useful insights
into purposes of design patterns and relationships between
them.

These books are by no means the comprehensive descrip-
tion of the field. In 2007, Grady Booch mentioned that he had
catalogued almost 2,000 design patterns found in the literature
[5]. By now, this number is obviously much greater since the
process of detection of new patterns has not been standing
still. Nevertheless, the mentioned works describe perhaps the
most commonly used and verified patterns, so it is logical to
refer to them in the first place. In this paper, we work with the
design patterns described by Erich Gamma et al. in ‘Design
patterns’ [1] and by Frank Buschmann et al. in the first volume
of ‘Pattern-oriented software architecture’ [3].

The books describing implementation of design patterns
in the existing programming languages are numerous too. In
general, they are less relevant to our study, but we can get some
helpful insight from them. In particular, it is quite clear from
such descriptions that the process of extending programming
languages for the needs of the design patterns users is already
going on. For example, enumerators and for-each loop in C#
facilitate implementation of the Iterator pattern, and query
expressions provide the interface of this pattern to the results
of database queries [6]. These features were not supported in
the first version of the language. Our study is to support this
direction of programming languages development by providing
some ideas on what features could be included.

123Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

III. APPROACH TO IDENTIFICATION OF NECESSARY
LANGUAGE-LEVEL FEATURES

The simplest way to support design patterns that comes to
mind is direct inclusion of the known design patterns into a
programming language. In a sense, that is what happened with
the Iterator pattern in the example given above. Joseph Gil and
David H. Lorenz described the general characteristics and the
typical steps of this process in 1998 [7]. In our opinion, this
approach is fruitful, but not universal. In the late 1990s, just
a few dozens of patterns were documented well enough, but
there are thousands of them at present. The enormous number
of the patterns and the pace of their emergence clearly do
not allow to make them all language constructs. However, the
fact that patterns are so numerous suggests that there should
be recurring themes in them. So, we can try to find common
elements of different design patterns and discuss whether they
are able to become language-level features.

Another reason not to include a design pattern into a
language directly is that many patterns are rather instructive
than formal constructs and allow too high variation. Frank
Buschmann et al. give the example of the Observer pattern,
whose particular implementation may depend on the model
of interaction between the subject and the observer (push or
pull), on the presence of a middleware for the exchange of
messages, on the chosen data structures, etc. They conclude
that design patterns are not generic, but generative [2]. In our
opinion, decomposition of patterns may allow to implement
variation in patterns semantics by means of combining primi-
tive elements having strictly defined semantics. These elements
are better candidates for becoming language-level features than
the patterns themselves.

According to the goal of our study, we are interested in
the elements that are logically similar to the existing language-
level constructs, but are not supported currently. The motiva-
tion here is that introduction of design patterns into a software
system or getting rid of them may require substitution of such
elements in place of standard language-level constructs or vice
versa. If the required syntactical constructs are significantly
different, these operations may require complex co-ordinated
changes in different parts of the system, which is undesirable.
Examples of such differences may be seen below.

Eliminating design patterns from a working system as a
source of complexity was mentioned by Peter Sommerlad, who
stated that it is (somewhat counter-intuitively) more difficult
than their introduction [4]. On the basis of this observation,
he argued against using design patterns too frequently, but, in
our opinion, facilitating of such transitions is a more fruitful
approach.

So, we can try to use the following approach to identifica-
tion of potential language constructs:

• dissect a design pattern and decompose it into logical
elements at level with language constructs (in the
sense of the level of abstraction): elementary oper-
ations, simple relationships, etc.,

• find elements that are similar to the existing language
constructs and/or recur in different patterns,

• analyse the extent to which the discovered elements
are supported in the existing languages (they may
be partially supported) and similarities between the
elements and the existing language constructs,

• describe semantics of the discovered elements,
• analyse consequences of introduction of the potential

language features.

As an example, we try to dissect the Abstract Factory
pattern, described by Erich Gamma et al. [1], and identify
the language-level features that would make its usage easier.

According to the original description, Abstract Factory is
intended to provide an interface for creating families of related
or dependent objects without specifying their concrete classes.
Its application includes the following steps:

1) Declare an interface for creation of abstract objects
(AbstractFactory creating AbstractProduct).

2) Implement the operations for creation of concrete ob-
jects (ConcreteFactory creating ConcreteProduct).

3) Choose a concrete implementation of the family of
objects, depending on either compile-time or run-time
conditions (i.e., choose a ConcreteFactory that will
be used).

4) Instantiate required objects by means of methods
declared in the AbstractFactory and implemented in
the ConcreteFactory (usually implemented using the
Factory Method or Prototype pattern) [1].

A point in this description that can attract our attention
is that the last step is performed by auxiliary methods in-
stead of the standard instantiation operator (new or whatever
a particular programming language uses). That means that
introduction of the pattern or getting rid of it requires changes
in every client that instantiates the objects. It does not cause
problems in the languages where factory methods are the
primary means of objects instantiation (e.g., Perl), but in the
languages with a separate instantiation operator it might be
difficult. The problem is that such languages do not allow
to use the instantiation operator with an abstract class since
its concrete implementation that should be instantiated is not
known in advance. The cause of this ‘ignorance’, in turn, is
that the third step (choosing a concrete implementation) is not
supported at the level of the programming language and needs
to be implemented in the application itself. We may suppose
that turning this step into a language-level operation can make
implementation simpler.

We can turn to other patterns as well and see that the same
idea of choosing an implementation is utilised, for example,
in Builder, Bridge, Command and Strategy. So, this operation
is a recurring theme in design patterns and probably deserves
support at the language level.

The idea is to introduce an operator that would set a default
implementation for an abstract class. It could be used either
at the compile time or at the run time. If the choice has been
made by the compile time, the compiler should substitute the
constructor of the concrete class for the one of the abstract
class. If the choice is delayed until the run time, the compiler
should create an internal (hidden from the developer) Abstract
Factory and redirect all requests for instantiation of an object
of the abstract class to this factory.

We can foresee at least two problems related to this
approach. First, the choice of an implementation is a form
of binding, and its scope should be clearly defined. On the
one hand, the scope should not be restricted to a single class
(otherwise, we still need to change each and every client class

124Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

to change the used implementation). On the other hand, a
change of the binding from a class that would affect all other
classes in the program may lead to unpredictable results. The
second problem is that this binding is a shared state, so it
should be carefully treated in a concurrent environment.

The mentioned problems can make one conclude that this
feature should not be introduced, and such an argument would
be reasoned. Nevertheless, we believe that what we see here
is not a weakness, but a strength of the proposed approach.
The problems of the scope and the global state belong to
the pattern itself, not to its language-level support. An ad-
hoc implementation of the pattern still needs to deal with
the same issues. A native language-level support may provide
a developer with a ready solution of the potential problems
(inevitably limited, but suitable for most cases).

In a similar manner, we can see that responsibility del-
egation appears really often in various design patterns and
clearly deserves its place in a programming language. The
Builder, Command and Command Processor patterns gener-
alise common ideas of object initialisation, function and execu-
tor respectively. A number of patterns (Blackboard, Pipes and
Filters, etc.) provide alternatives to standard synchronous calls
between objects. The State pattern abandons the assumption
that a binding between an object and its class should remain
the same throughout the whole life time of the object. The
Template Method pattern involves switching between portions
of code implemented in a class and its superclass (in both
directions), which causes problems described below. We are
not going to describe analysis of these patterns at the same
level of detail as with the Abstract Factory pattern since the
argument is very similar. Instead, the next section presents
concrete language features that might be based on these
observations.

IV. PROPOSED FEATURES

This section contains the results of the analysis of the
patterns described in [1][3]. For each feature, we give a
context, in which it might be needed, and briefly describe the
current situation, our proposal, and the negative consequences
or issues that should be considered if the proposal is accepted.

The current state differs between programming languages,
but we do not have a goal to observe all existing languages
in this paper. Therefore, the description of the current situa-
tion is generally limited to a few mainstream object-oriented
languages (C++, Java, C#). Occasionally, other languages are
mentioned when it can give useful insight.

Limiting the scope of observed languages means that
some proposed features may be already supported in other
languages. Nevertheless, we believe that even in this case
motivation from the design patterns angle might be useful.
It may be illustrated by the example of for-each loop, iterating
through collection-like data. It has been in use in Unix shell
since the late 1970s, later it was added to some other languages
(e.g., Pascal, Perl), but the mainstream languages ignored this
feature for a long time, and incorporated it only after the rise
of the patterns (the Iterator pattern in particular).

Table I lists all proposed features and the patterns, im-
plementation of which they might facilitate. The table also
includes a classification, inspired by the classification of design
patterns according to their purpose by Erich Gamma et al. [1].
The features are classified according to whether they relate to
the object lifecycle (creation, initialisation, association to the
class), object behaviour (object’s actions between its creation
and destruction), or structural aspects (class hierarchy). It does
not mean that if a particular feature is described as related to,
for example, the lifecycle, then it is associated with creational
patterns only. Behavioural patterns may also include elements
related to the lifecycle or structure, etc.

A. Default Implementation
Context: An object may be declared to have an abstract

class and instantiated with a concrete subclass.
Current situation: The concrete subclass is defined by the

instantiation statement. If we need to change the used imple-
mentation, we have to change every instantiation statement.
The concrete implementation is fixed at the compile time and
cannot be changed at the run time.

Proposal: Introduce an operator that would choose the
default implementation of an abstract class. If the default
implementation has been defined (either at the compile time
or at the run time), an instantiation statement may refer to the
abstract class.

Known drawbacks: It is not clear what scope the binding of
a class to its default implementation should have. If the scope
is not local, the binding will be a shared state and require extra
care in concurrent environments.

B. Extended Initialisation
Context: Some languages make difference between phases

of the object lifecycle. For example, an object may be declared
constant, so that it is initialised once only and cannot change
its state later.

TABLE I. SUMMARY OF THE PROPOSED FEATURES

Related patterns
Feature Type

GoF [1] POSA1 [3]

Default implementation Lifecycle Abstract Factory, Builder, Bridge, Command, Strategy

Extended initialisation Lifecycle Builder, Factory Method

Chameleon objects Lifecycle State, Factory Method

Generalised functions and executors Behaviour Command, Strategy Command Processor

Object interaction styles Behaviour Façade, Proxy, Observer Blackboard, Broker, Forwarder-Receiver,
Master-Slave, Pipes and Filters, Proxy,

Publisher-Subscriber

Responsibility delegation Behaviour Adapter, Bridge, Chain of Responsibility, Composite,
Decorator, Façade, Flyweight, Mediator, Proxy

Broker, Layers, Master-Slave, Microkernel, Proxy,
Whole-Part

Subclassing members in a subclass Structure Template Method, Visitor

125Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Current situation: An object declared as constant must be
fully initialised with a single instantiation statement. At the
same time, the Builder pattern constructs a complex object in
a few operations. This prohibits using constant declaration for
such objects even if they are never changed later.

Proposal: Treat single-line and multi-line initialisation
uniformly. Allow the initialisation phase to consist of a few
operations, requiring it to have a definite boundary neverthe-
less. After the boundary has passed, a constant object cannot
be changed anymore.

Known drawbacks: Separation of initialisation phase will
require careful definition for work in concurrent environments.

C. Chameleon Objects
Context: The State pattern is used when an object needs to

change its behaviour at the run time (according to the original
definition, the object appears to change its class [1]).

Current situation: Usually the class of an object is fixed
at its creation. Some languages (e.g., Perl) allow to change
objects’ classes later, but it is uncommon.

Proposal: Allow to change an object’s class at the run
time.

This feature is also related to the Factory Method pattern.
A factory method may decide on the concrete class of an object
depending on its parameters. Being able to change class, we
could implement the same logic in a class constructor.

Known drawbacks: It is not obvious how to ensure at least
two natural requirements. First, the change should not involve
data conversion (i.e., the classes should differ in behaviour
only, not in their data structure). Second, in order to avoid
unexpected behaviour, both the client and the object itself
should ‘know’ the limits within which the class may be
changed. For example, the client might expect that all possible
classes of the object are descendants of one abstract class. If
the state is changed by the state object itself (which is allowed
by the original description [1]), it should declare that the class
will never be changed to something else. Then the client may
rely on the interface defined in the base class.

D. Generalised Functions and Executors
Context: The Command pattern describes a generalisation

of conventional functions, which has the following features: is
a first-class object, uses inheritance, may store internal state,
supports undo, redo and logging. Some of this functionality
may be implemented in a Command Processor instead.

Current situation: The existing languages have different
forms of generalised functions (lambda-expression, functors,
generators, etc.) that have some of these features, but not all.
These forms are summarised in Table II.

Proposal: Replace conventional functions with a general-
isation having the power of the Command pattern. Implement
classes responsible for functions execution (threads, executors,
debugging environments) according to the Command Proces-
sor pattern.

Known drawbacks: Such generalisation may be too com-
plicated for simple functions. On the other hand, the proposal
does not require implementing all mentioned operations for
each and every function. The essence of the proposal is
the opportunity to add them as smoothly as possible when

they are needed. Moreover, these operations may be needed
even for simple functions. For example, Online Python Tutor
supports undoing and redoing of every executed statement for
the purposes of studying and debugging [8] (in terms of the
design patterns, it means implementing undo and redo in the
Command Processor).

Another problem is that it may be hard to find a design
that is simple enough and suitable for the general case. The
proper distribution of responsibilities between functions and
executors is not obvious as well.

TABLE II. GENERALISED FUNCTIONS

First-
class

objects

May
inherit

May
store
state

Undo,
redo,

logging

Conventional functions Yes/Noa No No No
Lambda-expressions
(Java, Python, etc.)
Delegates (C#)

Yes No No No

Functors (C++) Yes Yes Yes Yes/Nob

Generators (Python)
Enumerators (C#) Yes No Yes No

a Depending on the language.
b May be implemented, but syntactically differ from conventional function

calls.

E. Object Interaction Styles

Context: Using the Façade or Proxy patterns, a single class
may represent a whole component, a subsystem or an external
system. With the Broker pattern, such a system may be even
distributed.

Current situation: There are different ways how com-
ponents may interact: synchronous request-response, asyn-
chronous request-response, pipe&filter, broadcast, blackboard,
publish-subscribe [9]. Nevertheless, synchronous call is the
predominant interaction style between objects in the existing
languages. Other styles are usually implemented with a com-
plex sequence of synchronous calls.

The need for a simpler approach may be illustrated by
the existence of interface definition languages for concurrent
and distributed systems. These languages describe interaction
between systems using richer sets of interaction mechanisms
(at least, including asynchronous requests and responses).

Proposal: Introduce constructs that would represent differ-
ent interaction styles at the language level. They may better
represent the way how developers think about components.
Interface definition languages would not be needed any more
since we would be able to define the required interactions
directly.

Known drawbacks: The resulting syntax may be difficult
to learn.

F. Responsibility Delegation

Context: A class may delegate its responsibility to another
class. Usually, this delegation involves some changes in the
call, but sometimes a request is simply forwarded.

126Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Current situation: Delegation adds an extra level of indi-
rection, even if it is unnecessary. Long chains of delegation
may be resource-consuming. Peter Sommerland mentioned
delegation as one of the main sources of excessive complexity
introduced if we use design patterns carelessly [4].

Another problem is that once the request is forwarded, the
reference to the object originally receiving the request is no
longer available (self problem) [10].

Proposal: Allow a method to be explicitly marked as
delegated. There may be different types of delegation, for
example, keeping the original reference or not. A starting point
in identifying which types of delegation should be supported
may be the types identified by Jan Bosch in [10].

Provided that the delegate is known in advance and the
method signatures are the same, the compiler or the run-time
environment may get rid of the extra level of indirection. Even
if this optimisation is impossible, delegation may be supported
in integrated development environments. It would facilitate
grasping code that uses delegation extensively.

Known drawbacks: Conditions of when the optimisation
is possible may happen to be very restrictive. Probably, most
delegations will not allow it. Furthermore, in our opinion, the
self problem often should not be solved, since keeping the
original reference may easily lead to violation of Demetra’s
law. Nevertheless, sometimes the original receiver of the call
is really needed.

G. Subclassing Members in a Subclass

Context: A class may use a member declared in its
superclass, but restrict the set of possible values (for example,
choose a concrete implementation of an abstract class). The
behaviour of the subclass may rely on this restriction since
the subclass never assigns an illegal value to this member.

Current situation: A member defined in the superclass
keeps its declaration in all subclasses. A subclass that have
decided to use a particular subclass for this member must
perform run-time casts, which is error-prone. It is especially
important when the behaviour is distributed between the class
and its superclass (e.g., using the Template Method or Visitor
patterns).

For example, programming a user interface for Android
requires to subclass standard classes, such as Activity,
Fragment, etc. The application may know that a fragment of
class MyFragment can be attached only to an activity of class
MyActivity. Methods of class MyFragment may need to
refer to methods and data defined in class MyActivity.
Nevertheless, method MyFragment.getActivity() re-
turns an object of class Activity, since it is defined in the
superclass Fragment. The result of every such call should
be dynamically casted to class MyActivity.

Proposal: Allow to redeclare a member in a subclass,
restricting the member’s class. It is known as depth subtyping
in the type theory [11] and may be generalised to predicate
subclassing, proposed earlier by Ruslan Batdalov [12].

Known drawbacks: To be useful, the change of class
should be propagated to getters and setters, which is difficult in
languages without a language-level association between fields
and getters/setters (C++, Java).

Another problem to solve is the issue of variance. Although
the proposal itself does not violate variance rules, its propaga-
tion to a setter would mean covariance of a method argument,
which is considered unsafe [13].

V. RELATED WORK

A number of approaches to incorporation of design patterns
into programming languages were proposed. The number of
attempts itself shows the desire to have a better support of
design patterns at the language level (even though the work in
this area is mostly rather old).

Joseph Gil and David H. Lorenz described gradual percola-
tion of design patterns into languages [7]. Unfortunately, they
did not provide a systematic approach to how to perform this
process and make related decisions.

Jan Bosch described design patterns in terms of layers and
delegations and proposed an implementation using so called
Layered Object Model [10]. Effectively, the approach involves
using a completely new language to solve their tasks. Some
ideas of this work are used in ours, but in general, the approach
does not solve the problem of identifying separate language-
level features.

Perhaps, the most notable are implementations of the
design patterns in aspect-oriented languages. Jan Hannemann
and Gregor Kiczales described an implementation of the de-
sign patterns described by Erich Gamma et al. [1] in Java
and AspectJ [14]. Miguel P. Monteiro and João Gomes did
the same in Object Teams [15]. Pavol Bača and Valentino
Vranić developed the idea further and proposed to replace the
commonly known object-oriented design patterns with aspect-
oriented ones [16].

Frank Buschmann et al. proposed the hypothesis that it is
possible to provide configurable generic implementations for
patterns that cover their whole design space, but refuted it in
just ten pages [2].

Our approach differs from the mentioned ones in that it
provides an insight on how we could find new language-
level features for easier implementation of design patterns.
The proposed features are also supposed to be suitable for
object-oriented languages and not require a less common pro-
gramming paradigm. At the same time, they may in principle
be used in aspect-oriented or other extensions as well. So,
these approaches can be considered rather complementary than
competing.

Another field of study related to our approach is decompo-
sition of design patterns. Uwe Zdun and Paris Avgeriou tried
to identify primitives of which architectural patterns consist
[17]. These primitives are of the architectural nature and not
directly related to programming languages features. Francesca
Arcelli Fontana et al. performed a detailed analysis of micro-
structures comprising common design patterns [18][19]. Their
primary goal was to facilitate design patterns detection, so
the found micro-structures are not necessarily at level with
language features either. In our opinion, the observation by
Frank Buschmann et al. that design patterns are not generic,
but generative [2] refers to many of these micro-structures as
well.

127Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

VI. CONCLUSION AND FUTURE WORK

Our study addressed the problem of excessive complexity,
often introduced by application of design patterns. The de-
veloped approach allowed to identify a set of language-level
features supporting the patterns described in [1][3]. We can
conclude that the problem of implementation complexity may,
at least in principle, be tackled by extending programming
languages, so that the design patterns would be easier to apply.
A sample set of such features is the main contribution of this
study. At the same time, these features have their drawbacks,
and their introduction requires to solve a number of problems.

The work may be continued in order to cover more patterns
from different sources. At the same time, we do not expect
finding a big number of new features in the course of this
work. Although some new discoverings are inevitable, the
viability of the system will be best justified if Table I grows
more rightwards than downwards. A language should not grow
infinitely with the number of expressions in this language.

Another direction of the future research is looking for
the ways how the proposed features can be implemented
in real programming languages and whether they can be
implemented at all. If they can, it will raise, perhaps, the most
important question of further study – the practical testing of our
hypothesis that introduction of the proposed features allows
to reduce complexity of the patterns usage in real software
systems.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Publishing Company, 1995.

[2] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-Oriented Soft-
ware Architecture, On Patterns and Pattern Languages, ser. Pattern-
Oriented Software Architecture. Wiley, 2007.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture, A System of Patterns, ser.
Pattern-Oriented Software Architecture. Wiley, 2013.

[4] P. Sommerlad, “Design patterns are bad for software design,” IEEE
Software, vol. 24, no. 4, pp. 68–71, 2007.

[5] G. Booch, “The well-tempered architecture,” IEEE Software, vol. 24,
no. 4, pp. 24–25, 2007.

[6] J. Bishop, C# 3.0 Design Patterns. O’Reilly Media, 2008.
[7] J. Gil and D. H. Lorenz, “Design patterns and language design,”

Computer, vol. 31, no. 3, pp. 118–120, 1998.
[8] P. J. Guo, “Online Python Tutor: Embeddable web-based program

visualization for CS education,” in Proceedings of the 44th ACM
Technical Symposium on Computer Science Education, ser. SIGCSE
’13. New York, NY, USA: ACM, 2013, pp. 579–584.

[9] I. Crnković, S. Séntilles, A. Vulgarakis, and M. R. V. Chaudron,
“A classification framework for software component models,” IEEE
Transactions on Software Engineering, vol. 37, no. 5, pp. 593–615,
2011.

[10] J. Bosch, “Design patterns as language constructs,” Journal of Object-
Oriented Programming, vol. 11, no. 2, pp. 18–32, 1998.

[11] B. C. Pierce, Types and programming languages. MIT press, 2002.
[12] R. Batdalov, “Inheritance and class structure,” in Proceedings

of the First International Scientific-Practical Conference Object
Systems — 2010, P. P. Oleynik, Ed., 2010, pp. 92–95.
[Online]. Available: http://cyberleninka.ru/article/n/inheritance-and-
class-structure.pdf 2016.07.11

[13] F. S. Løkke, “Scala & design patterns,” Master’s thesis, University of
Aarhus, March 2009.

[14] J. Hannemann and G. Kiczales, “Design pattern implementation in Java
and AspectJ,” ACM Sigplan Notices, vol. 37, no. 11, pp. 161–173, 2002.

[15] M. P. Monteiro and J. Gomes, “Implementing design patterns in Object
Teams,” Software: Practice and Experience, vol. 43, no. 12, pp. 1519–
1551, 2013.

[16] P. Bača and V. Vranić, “Replacing object-oriented design patterns with
intrinsic aspect-oriented design patterns,” in Proceedings of the 2nd
Eastern European Regional Conference on the Engineering of Computer
Based Systems (ECBS-EERC). IEEE, 2011, pp. 19–26.

[17] U. Zdun and P. Avgeriou, “A catalog of architectural primitives for
modeling architectural patterns,” Information and Software Technology,
vol. 50, no. 9-10, pp. 1003–1034, 2008.

[18] F. A. Fontana, S. Maggioni, and C. Raibulet, “Understanding the
relevance of micro-structures for design patterns detection,” Journal of
Systems and Software, vol. 84, no. 12, pp. 2334–2347, 2011.

[19] ——, “Design patterns: a survey on their micro-structures,” Journal of
Software-Evolution and Process, vol. 25, no. 1, pp. 27–52, 2013.

128Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

