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Abstract— In agile software development, user stories contain 
feature descriptions that are used as the entry points of 
discussions about the design, specification, requirements, and 
estimation of the software features. The first step in 
implementing a user story is to find proper files in the code base 
to make changes. To help the developers, in this paper, we 
describe a new approach that automatically recommends the files 
where a feature will most likely be implemented based on a given 
user story that describes the feature.  
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I. INTRODUCTION 
Since 2010 more than 200 big software companies have 

adopted Agile software development methodology [1]. 
Important motivations behind the widespeard adoption of Agile 
software development are fast delivery to the market, efficient 
handling of new requirements, and increased overall 
productivity of development teams. 

The development team in an Agile setting typically 
receives the new requirements in the form of a user story 
(hereinafter interchangeably referred to as story). A user story 
is a very high-level definition of a requirement, which contains 
enough information so that the developers can produce a 
reasonable estimate of the effort to implement it. Given a story, 
developers go through three basic steps of 1) identification of 
code locations as starting points, 2) finding and applying a 
solution, and 3) testing and validating the implemented change.  

Any delay in one of the above-mentioned steps will result 
in a delayed implementation of the story and undermines the 
important goal of fast delivery. In fact, it has been shown that 
developers could get stuck in the first step of finding the right 
location to start making their changes to implement the request 
[2], [3]. While experienced developers are usually faster in 
identifying and understanding the subset of the code relevant to 
the intended change, studies have shown that developers spend 
up to 50 percent of their time searching for information [4], [5] 
to answer their questions about the system under development.  

The reason that experienced developers are faster in their 
identification step is because of their higher familiarity with the 
system and with the previously implemented similar 
requirements. Their knowledge and experience makes them a 
valuable source for answering others’ questions during their 
program comprehension [6]. If an experienced developer 
leaves the team, usually, part of that knowledge will also go 
with him. We think that externalizing this knowledge and how 
it is gained could enable everybody in the team to speed up and 
improve their deliveries and, in turn, make the team less prone 
to personnel changes. A recommendation system that could 

provide team members with suggestions to help with 
identification of changes locations seems like a perfect fit for 
this scenario. 

Once implemented, a user story could be usually mapped to 
the creation or modification of one or more classes in the code 
base. Many companies use ticket management (e.g., JIRA [12]) 
and code management (e.g., Bitbucket [13]) ecosystems to 
respectively maintain and store the stories, the code and the 
mapping between them. For example, each story in JIRA has a 
ticket number. When committing the code that implements a 
story to Bitbucket, the developer could include the story’s 
ticket number in the commit message so that JIRA creates a 
link between the story and the committed code. The 
information accumulated in ticket/code management systems 
could be leveraged by the recommendation system in creating 
insightful recommendations that could help developers in faster 
and more reliable deliveries. 

In this paper, we propose ReUse a recommendation system 
that employs techniques from information retrieval, text 
mining, and the field of recommender systems to automatically 
suggest a list of files where a story will most likely be 
implemented. We evaluated the effectiveness of our 
recommendation system in an industrial setting on the Order 
Management System (OMS) product at SAP Hybris. The 
results show that our recommendations are of 71% precision.  

We start by reviewing a few related works in Section II. In 
Section III, we describe the proposed approach. Section IV 
discusses the results of our case study on OMS. In Section V, 
we discuss the threats to validity. We conclude the paper and 
describe future avenues in Section VI.  

II. RELATED WORK 
To the best of our knowledge, no other work has been 

reported on a recommendation system for user stories in Agile 
software development. However, a few works have been done 
on recommendation systems for bug localization during 
software maintenance. Kim et al. [11] propose a prediction 
model to recommend files to be fixed. In their model, the 
features are created from textual information of already 
existing bug reports, then Naive Bayes algorithm is applied to 
train the model using previously fixed files as classification 
labels, and then use the trained model to assign multiple source 
files to a given new bug report. Our evaluation of the 
effectiveness of a recommendation is also quite different. They 
“consider the prediction results to be correct if at least one of 
the recommended files matches one of the actual patch files for 
a given bug report”. We think for a developer to go through the 
recommended files he needs to be assured about the precision 
of the list.  Zhou et al. [3] proposed a revised Vector Space 
Model approach for improving the performance for bug 
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localization. They measure the lexical similarity between a new 
bug report and every source file and also give more weight to 
larger size files and files that have been fixed before for similar 
bug reports.  Their approach relies on good programming 
practices in naming variables, methods and classes. In 
comparison, our approach is independent of file names or the 
content of the files. 

III. THE PROPOSED APPROACH 
The idea behind our approach is based on the assumption 

that there are naturally occurring groups of user stories in any 
project that can be identified by looking at their description. By 
using such information, our system could provide 
recommendations for a new user story by first finding the 
group of user stories it belongs to by computing its similarity to 
existing user stories. Thus, a user story could have a set of 
nearest neighbors that can be used to make recommendations 
about the files needed to implement that user story based on the 
files that were modified during the implementation of similar 
user stories.  

As shown in Fig. 1, our recommendation system performs 
its task through three main steps:  

§ Analyzing the textual content of the new story to 
prepare it for next steps by tagging the content with 
meta information,  

§ Creating a weighted vector of the new story and use it 
in finding other stories that are closely similar to it, and  

§ Preparing a recommendation for the new story by 
providing a precise set of recommended files to be used 
by developers. 

A. Text Analysis and Preparation 
A common pre-processing step in many information 

retrieval approaches is one that removes stop-words - The 
words that add little value to the process of finding relevant 
information. Stop-word identification, which is the process of 
identifying these words, makes use of domain and global 
information. For example, in the domain of English literature, 
stop-words include auxiliary verbs (e.g., have, be), pronouns 
(he, it), or prepositions (to, for).  

In our text analysis and preparation, our stop-word remover 
component uses Lucene’s StandardAnalyzer to remove the 
terms in a user story that are listed in a set of common English 
stop-words dictionary. Another pre-processing step in our 
approach is Stemming. A stemmer maps different forms of a 
term to a single form. A stemmer, for example, could strip the 
“s” from plural nouns, the “ing” from verbs, and so on to 
extract the stem of the term. That way, a stem could act as a 
natural group of terms with a similar meaning. Our stemmer 
component uses Lucene’s EnglishStemming to find the stems; 
the English stemmer is an updated version of the famous Porter 
Stemmer [9].  

Whether it is in a query or in a document some terms can 
represent different meaning depending on the role that they 
take. The role is even more important when there are processes 
like Stemming that changes a term to an alternative (usually 
simpler) that could result in an unjustifiable similarity while 
the original form of the term had a different meaning because 
of the role it had. For example, the term “dogs” has a different 
meaning in the sentence “The sailor walked the dogs” in 
comparison to the meaning that it has in “The sailor dogs the 
hatch” because of its roles that are correspondingly noun in the 
first sentence and verb in the second one. This role is also 
referred to as the part-of-speech (POS) for that term. The 
similarity between two similar looking terms should increase 
only if their roles are the same in the places that the word has 
appeared in. That is why we perform a POS tagging on a user 
story before we pass it to our stemming component. Our 
current POS tagger component is implemented using Maxent 
part-of-speech tagger from the Stanford NLP group.  

B. Weighting and Similarity Calculation 
We use a weighting process for finding representative 

terms in each user story and add them to a corresponding terms 
vector that is weighted based on the representativeness of each 
term for that user story. Our weighting function is implemented 
as a Term Frequency, Inverse Document Frequency (TF-IDF) 
[10] schema. The goal of TF-IDF term weighting is to obtain 
high weights for terms that are representative of a document’s 
content and lower weights for terms that are less 
representative.  

In our case, the weight of a term depends both on how 
often it appears in the given story (term frequency, or tf) and on 
how often it appears in all the stories (document frequency, or 
df) of the ticket management system. In general, a high 
frequency of a term (high tf) in one story shows the importance 
of that term while if a term is scattered between different 
stories (high df), then it is considered less important. Therefore, 
if a term has high tf and low df (or high idf -inverse document 
frequency) it will have a higher weight. Since the importance 
of a term does not increase proportionally with the term’s 
frequency, the weight of term i in story k is calculated as 
shown in (1): 

𝑤",$ =
𝑙𝑜𝑔 𝑡𝑓",$ + 1 ∗ log 𝑁 𝑛"

log 𝑡𝑓3,$ + 1 ∗ log 𝑁
𝑛3

4
5
367

														(1) 

where term frequency 𝑡𝑓",$ of term i in story k is the number of 
times that i occurs in k, N is the total number of stories, 𝑛" is 
the number of stories where the term i has appeared in and e is 
the total number of terms. The factor log	(𝑁 𝑛") is the “idf” 
factor that decreases as the terms are used widely in all user 
stories. The denominator in the equation is used for weight 
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Figure 1. Overview of the ReUse recommendation system 
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normalization. This factor is used to adjust the terms vector of 
the story to its norm, so all the stories have the same modulus 
and can be compared no matter the size of the story. 

Once we have the terms vector of each story ready, we 
need to measure the similarity between stories. The similarity 
between two objects is in general regarded as how much they 
share in common. In the domain of text mining, the most 
commonly used measure for evaluating the similarity between 
two documents is the cosine of the angle between term vectors 
representing the documents. In the same way, as shown in (2), 
we calculate the similarity between two stories x and y by 
measuring the cosine similarity between their terms vectors 𝑉< 
and  𝑉=:  

𝑆 𝑉<, 𝑉= =
𝑤",< ∗ 𝑤",=?

"67

(𝑤",<)4?
"67 ∗ (𝑤",=)4?

"67
														(2) 

where 𝑤",<  and 𝑤",=  are respectively the weight of term i in 
vectors 𝑉<  and 𝑉=, and the denominator of the fraction is for 
normalization. The weights cannot be negative and, thus, the 
similarity between two vectors ranges from 0 to 1, where 0 
indicates independence, 1 means exactly the same, and in-
between values indicate intermediate similarity. 

C. Building Recommendations 
Recommendation systems are now part of many 

applications in our daily life. These systems provide the user 
with a list of recommended items and help them to find the 
preferred items in the bigger list of available items [7], [8]. Our 
recommendation system is based on collaborative filtering. In 
collaborative filtering, the items are recommended to the users 
based on the previously rated items by the other users. 
Mapping the idea back to our case, our recommendation 
system should recommend files for a new user story based on 
the previously modified files by other user stories. More 
formally, as shown in (3), the usefulness of file 𝑓  for 
implementing story 𝑠 noted as the utility 𝑢(𝑠, 𝑓) of file 𝑓  for 
story 𝑠 has the following form 

𝑢 𝑠, 𝑓 :	Func 𝑢 𝑠", 𝑓 												∀𝑠" ∈ 𝐶K																(3) 

where 𝑢(𝑠", 𝑓) is the utility assigned to the file 𝑓 for story  𝑠" in 
𝐶K	the set of stories that are similar to story 𝑠. Different utility 
functions could be plugged into our recommendation system to 
be used in creating recommendations. When building the 
recommendation, our goal is to provide the user with a highly 
precise list of recommended files that our recommendation 
system deems necessary to implement the user story.  

The recommendation can help developers in building their 
mental model in a quicker and more accurate way. If the 
developer is already familiar with the code base, she could use 
the recommendation as a potential checklist to increase her 
confidence in the changes that are planned. The basic idea in 
creating a precise recommendation is to find the files that are 
associated with similar stories and are frequently changed to 
implement those stories. More formally, as presented in (4), to 
build the recommendation, we calculate the utility 𝑢M	of file 𝑓 
for a given story 𝑠 as follows  

𝑢M 𝑠, 𝑓 = 𝑢 𝑠", 𝑓 ∗
?

"67

𝑆 𝑉K, 𝑉KN 						if		𝑆 𝑉K, 𝑉KN > 𝑡

	0																																																				otherwise

				(4) 

where 𝑆 𝑉K, 𝑉KN  is the calculated similarity between the given 
story 𝑠 and a similar story 𝑠", 𝑡 is a certain cut-off threshold, 𝑛 
is the maximum number of similar stories to be considered, and 
𝑢 𝑠", 𝑓  is the utility of file 𝑓 for story 𝑠" which is defined as 
𝑢 𝑠", 𝑓 = 𝑐",[  where 𝑐",[  is the number of commits in which 
the file 𝑓 has appeared for implementing story  𝑠". 

IV. EVALUATION 
To evaluate the effectiveness of the ReUse  

recommendation system, we use it in an industrial setting on 
the OMS project at SAP Hybris. The OMS enables customers 
to flexibly pick and choose from a set of omni-channel order 
management and fulfillment functionalities. We use release 5.7 
of OMS in 2015. This version of OMS contains 3018 files in 
928 packages. The total number of tickets (excluding bugs) for 
this release was 176. All 176 tickets were already implanted at 
the time of evaluation and each ticket was linked to the 
modified files in the Git repository management system 
Bitbucket. The tickets were extracted from JIRA as a CSV file. 
Although the exported file contained many attributes for each 
ticket we only kept Summary (the name of the ticket), 
Description, Issue Type, Ticket ID, Sub-task ID, Parent ID for 
the experiment. 

Technically, the goal in our evaluation is to find out how 
effectively our recommendation system can predict the set of 
files that need to be changed for each story and compare the 
recommended set with the actual set of files that were modified 
for that story. This way, our recommendation problem could be 
seen as a classification problem where our recommendation 
algorithm tries to classify the source code files into two class of 
relevant and irrelevant for each story.  The effectiveness of 
classification in this case would be the rate of true and false 
predictions that the algorithm makes. These rates can be 
arranged in a contingency table that is called the confusion 
matrix (see Table I).  

TABLE I.  CONFUSION MATRIX 

	 Relevant	 Irrelevant	 	
Recommended TP FP TP + FP 
Not recommended FN TN FN +TN 
 TP + FN FP + TN  

 

As seen in Table II, True Positive (TP) is the number of 
correctly predicted the relevant files. False Positive (FP) is the 
number of incorrectly predicted relevant files. False Negative 
(FN) is the number of incorrectly predicted irrelevant files. 
True Negative (TN) is the number of correctly predicted 
irrelevant files. 

As shown in (5), Precision or true positive accuracy is 
calculated as the ratio of recommended files that are relevant to 
the total number of recommended files: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
																														(5) 

Recall or true positive rate, as presented in (6), is calculated 
as the ratio of recommended files that are relevant to the total 
number of relevant files: 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
																																	(6) 
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Comment under OMSE-28 
Developer X added a comment - 10/Jul/15 3:13 PM GMT-0400 

“We have split this story in 2 (other ticket: OMSE-540). This ticket 
should now represent the actions that happen after the consignment 
is confirmed […]” 

 
Comment under OMSE-540 
Developer X added a comment - 10/Jul/15 3:14 PM GMT-0400 

“[… We] will write the service for marking items as shipped […]” 
 

Figure 2. OMSE-28 and its comment (top), OMSE-540 and its comment 
(bottom) 

 

Specificity or true negative accuracy is calculated as the 
ratio of not recommended files that are irrelevant to the total 
number of irrelevant files as shown in  (7): 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
																												(7) 

Then as presented in (8) Accuracy is calculated as the ratio 
of correct predictions: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
																	(8) 

 
In our evaluation, we needed to have a portion of our 

tickets as a training set for the recommendation system to use 
them to build recommendation and a second portion as our test 
set (set of stories that we want to feed to the recommendation 
system and evaluate the suggestions that the system provides 
for each of those stories). To avoid any bias in the selection of 
the training and the test set we use k-Folds Cross Validation. In 
k-Folds cross validation, sometimes called rotation estimation, 
the data set 𝐷  is randomly spilt into  𝑘  mutually exclusive 
subsets (the folds) 𝐷7	, 𝐷4	, … , 𝐷$ of approximately equal size. 
The algorithm is trained and tested  𝑘 times; each time  𝑡	 ∈ {1, 
2, …,	𝑘}, it is trained on 𝐷\𝐷m (i.e., 𝐷 minus	𝐷m) and tested on 
𝐷m.  
 The result presented in this section uses the following 
configuration: we fold the data by splitting our set of 176 
stories randomly into 18 sets (roughly 10 stories per set). On 
each iteration, we use 17 sets as our training set and 1 set as the 
test set. That is, a cross validation (k = 18). In our experiment 
we only consider the most similar story (n = 1) and the cutoff 
threshold is (t = 0.5). The number of files that will be 
recommended in this case is equal to the number of files 
modified files for the most similar story. The following table 
shows the result of our evaluation as the average of 18 
iterations. 

TABLE II.  EVALUATION RESULTS 

Metric	 Value	
Precision	 0.7125751	
Recall	 0.4658216	
Accuracy	 0.9178191	
Specificity	 0.9363258	

 

Execution of the experiment on a typical developer 
machine (Intel Core i7 2.5 GHz processor of 4 cores and 16 
GB of Ram) took less than 30 seconds. This time includes the 
time for training and the time to run the test of each iteration. 
As shown in the Table I, the files that our recommendation 
system suggests to the developers in the recommendation are 
71% of the time the files that they certainly needed to make a 
change to implement the user story. At the same time, our 
recommendation system scores a very high specificity and 
accuracy. Our system, is successful in avoiding the 
recommendation of irrelevant files 93% of the time while in 
general makes a correct prediction 91% of the time in its 
recommendation.  

We also performed a case by case analysis for the stories 
for which our recommendation system scored lower than 50% 
precision.  One of such stories was OMSE-31, for which the 
precision of the recommended files was only 4%.  

Our investigation showed that, the story description was 
updated during a sprint but the previous content was not 
deleted (the content was rather formatted with strikethrough). 
The csv parser in our system ignores all text formatting and 
could not detect such situations and as a result recommended 
files associated to a story that was similar to OMSE-31 
considering the content that should have not been considered.  

Another case was for story OMSE-540 with only 8% of 
precision. The recommendation system detected OMSE-28 as 
highly similar story and recommended the modified files 
accordingly. However, the list of files that was actually 
modified was significantly different than the predicted one. 
Further investigation showed that OMSE-28 was describing a 
feature from the end user perspective. While, as shown in 
Fig. 2, later on, the story was split into two smaller stories one 
to implement the user interface and the second one to 
implement the services in the backend that will be used by the 
user interface to implement the feature. For this, the developer 
cloned the original user story (OMSE-28) and created OMSE-
540 and made a minimal change to the description. However, 
he left two comments, one for each story. The current version 
of our recommendation system does not take comments into 
account.  

V. THREATS TO VALIDITY 
 There are potential threats to the validity of our work. The 
effectiveness of our recommendation system is highly 
dependent on the quality of the stories that the members of the 
Agile team maintain for their project. Although our 
recommendation system showed an impressive effectiveness 
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on the commercial project of OMS at SAP Hybris, not all 
teams or companies have similar level of standards when it 
comes to creating and maintaining their backlog of the stories. 
TF-IDF alone is prone to misspellings and multi-word verbs 
and expressions. To have a resilient approach we need to check 
the frequency of those cases and remove them.  

VI. CONCLUSION AND FUTURE WORK 
In this paper we proposed an approach to help developers 

in during their implementation tasks by taking benefit from the 
suggestions that our recommendation system provides them on 
where to make code changes. Our recommendation system 
called ReUse, builds a precise recommendation list of files that 
are need to be changed with high probability. We evaluated our 
recommendation system on the OMS at SAP Hybris and the 
results show 71% precision in recommending the files that 
need to be changed. 

For our future work, we would like to look into automatic 
fine tuning of parameters in our recommendation builder along 
with plugging in new utility functions to increase the recall and 
take advantage of our recommendation system on other 
projects at SAP. Taking other sources of information such as 
comments or the links to other tickets (the hierarchy of tickets) 
into account could help us take advantage of relations other 
than the textual and conceptual relation between stories to 
improve the results.  

Handling the rich texts by the parser in our work, as shown 
in our case study, could potentially reduce the chances of 
inaccurate similarities and result in better recommendations. 
Also, adding components to our system to deal with misspelled 
words and expressions could also potentially be beneficial in 
detecting the similarities between stories. 
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