
Towards Applying Normalized Systems Theory to Create Evolvable Enterprise

Resource Planning Software

A Case Study

Ornchanok Chongsombut, Jan Verelst, Peter De Bruyn, Herwig Mannaert and Philip Huysmans
Department of Management Information Systems

University of Antwerp

Antwerp, Belgium

e-mail: {ornchanok.chongsombut, jan.verelst, perter.debruyn, herwig.mannaert, philip.huysmans} @uantwerp.be

Abstract— Evolvability is widely considered to be an important

concern for the design and development of software

architectures, particularly in the area of information systems

(IS). Current IS continue to struggle to provide evolvability,

especially Enterprise Resource Planning (ERP) software.

Complexity in ERP packages leads to a limit on changeable

software. Normalized Systems (NS) theory has been proposed

with the purpose of incorporate evolvability of IS. In this

paper, an existing ERP package was subjected to reverse

engineering in order to analyze and explore in terms of

combinatorial effects (CEs), of which NS theory prescribes that

they are harmful for evolvability. The results indicate that it is

possible to redesign a data model for an existing ERP,

adhering to NS theory. We also identified some issues and

limitations with the current version of the ERP package.

Keywords- Normalized Systems theory; evolvability; software

architecture.

I. INTRODUCTION

IS have played an increasingly visible role over the past
few years in improving the competitiveness of businesses.
Organizations realize that ERP software is a crucial tool for
organizational perfection because it enables flawless
transactions and production runs, and can improve business
performances and profitability through implementation of
Business Intelligence [1][2]. An ERP system is a
departmental integration software system that allows a
company to have a unified enterprise view of the business
and to manage enterprise data in one database [2][3]. ERP
systems offer significant benefits to an enterprise through
improving strategic planning and operational efficiency.

Notwithstanding the significant benefits, however, ERP
systems have been criticized, since they are prone to extreme
complexities and are often difficult to implement [4]. This
complexity is mostly due to the fact that the system has to
integrate all functions and data of a company. This
contributes to development and maintenance costs, being
important barriers to realize the potential gains which can be
achieved through IS. Therefore, IS should exhibit a certain
amount of simplicity to result in the anticipated gains.

Moreover, IS should be evolvable as well. The business
environment is dramatically changing and the ability to

easily change software therefore becomes crucial [7]. In this
context, we consider software evolvability as the capability
of software to be easily changed (i.e., with a reasonable
effort). Current IS continue to struggle to provide such
evolvability, especially ERP software. The significant
complexity in these packages leads to a serious limit being
placed on their ability to change.

In particular, evolvability can be considered as a criterion
to evaluate and analyze the quality and usefulness of ERP
packages for several reasons. First, the main objective of
ERP is to support various organizations to achieve their
business goals. Therefore, ERP should be adaptable to the
specificities of organizations, for example, by means of
configuration. Second, as stated before, business
environments dramatically change. The evolvability of ERP
systems becomes an increasingly crucial condition to enable
changes for an enterprise as a whole and their increasing
complexity.

The design of IS which are evolvable has been addressed
in NS theory. For this purpose, the theory uses the stability
concept (i.e., requiring that a bounded set of functional
changes to the system should have a bounded impact within
the system). The theory argues that CEs are the main
obstruction to software evolvability. A CE occurs when the
size of the impact of a change depends on the size of the
information system [6]. In other words, NS states that the
evolvability and flexibility is largely determined by (the
absence of) CEs [8] and software without the CEs lead to
evolvable software [5]. The theory proposes a set of
theorems eliminating CEs.

The aim of this research is to identify CEs within existing
ERP packages and to rebuild them based on NS theory. To
this end, existing ERP packages are subjected to reverse
engineering in order to explore the existence of CEs and their
potential for other improvements. We describe how part of
the existing ERP package is designed and developed based
on the NS theory. Therefore, this paper tackles the
evolvability of existing ERP software by designing a set of
ERP guidelines to design and to develop existing ERP
software according to the aforementioned theory. The main
research question addressed by this paper is:

172Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

How to improve the existing ERP package based on NS

theory?

Consequently, the proposed research mainly deals with

the modularization of the data model of existing ERP
packages. The modularity of an information system is
important for the degree to which it exhibits evolvability
[11]. The design science research approach, focusing on the
creation and evaluation of IT artifacts and their surrounding
organizational preconditions in order to solve organizational
problems [7], is chosen as the methodology for the research.

This paper is structured as follows. Section II describes
the essence of NS theory. Section III provides the design
method of the paper. Afterwards, a partial analysis of the
ERP application’s data models is discussed in Section IV.
Finally, Section V presents some final conclusions,
limitations and suggestions for future research.

II. NORMALIZED SYSTEMS THEORY

NS theory is developed from the concept of stability
which implies that a bounded set of input changes (i.e.,
changes in requirements) should result in bounded amount of
output changes or impacts to the software (i.e., changes in
software). In other words, stability demands that the impact
of changes should only depend on the nature of the change
itself. The size of the impact of changes should therefore not
be related to the size of the system. If the size of the impact
of a change is related to the overall size of the system, this is
called a CE [9].

A CE is one of the biggest barriers to creating evolvable
software according to NS. The theory states that the
evolvability of software should be a characteristic embedded
at the level of the software architecture. This implies that the
software architecture should not only allow the realization of
current requirements but also facilitate the incorporation of
future ones. NS theory assumes an unlimited software
evolution (i.e., ever growing software throughout time). This
means that even the smallest change of which the impact is
dependent on the size of the system (i.e., CE) will become
troublesome over time and should therefore be removed. In
fact, if the CEs occur mainly in software architectures, the
software will become more difficult to cope with and the
software’s evolvability tents to increase.

A set of four theorems and five expandable elements has
been suggested by NS theory to prevent CEs and to develop
evolvable software.

The four theorems are the following [10][11][12][13]:

• Separation of Concerns: each change driver

(concern) should be separated from other change

drivers (concerns) in distinct modules;

• Data Version Transparency: the modification

(insert, update, delete) of data entities should not

impact other entities.

• Action Version Transparency: the modification

(insert, update, delete) of data entities should not

impact other entities.

• Separation of States: each step in a workflow

should be separated from other steps in time by

keeping state after every action or step.

Consequently, the systematic application of the theorems

results in a very fine-grained modular structure in which

each change driver has to become separated. Building

software which systematically adheres to the NS theorems

should result in software which is highly evolvable

software. Moreover, the theory emphasizing the CEs

identification will help to build IS that contain the smallest

in amount of the CEs.

Furthermore, the NS theory provided evidence of the

number of the CEs are the cause of a complex software and

difficultness of software maintenance [10]. The NS theory is

a modular structure that is free from the CEs. The CEs

should not be present at compile time, deployment time, and

run time in modular structures in order to constitute an

achievement in this [10].

Software architectures without the CEs can be

constructed as a set of highly structured instantiations and

loosely coupled design patterns that are called elements

[10]. For this reason, five elements have been proposed to

facilitate the achievement of these aims. There are the NS

elements:

• a data element, representing an encapsulated data

entity with its set and get methods to access

information in a version transparency way [14].

Then cross-cutting concerns should be added to the

element in separate constructs;

• an action element, executing a core action or

algorithm.

• a workflow element for the execution of the

sequence of action elements;

• a trigger element, controlling the states and

checking (time or status based) whether an action

element has to be triggered;

• a connector element, providing the possibility for

external systems to interact with the NS system

without calling the elements in a stateless way.

III. APPLYING DESIGN SCIENCE RESEARCH

A. The Research Design

The conceptual framework of this research adheres to the
IS research framework [15] shown in Fig. 1. The technology
problem has been defined in the problem space: the
requirement for ERP systems to exhibit evolvability. The
research addresses technology which needs to achieve a
higher degree of evolvability. The concepts of modularity
and stability from NS theory will be applied as the
foundation of the research. The NS theory will be used to
create artifacts at the software level. The theory will also be
used to develop a set of relevant measures or validation
criteria in order to ensure that the proposed artifacts can be
evaluated by appropriate evaluations. This should further
support the rigor within the considered IS research. Finally,

173Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

as can be seem in the middle of the conceptual framework,
we will explore and build an artifact which will be presented
in the method term to construct increasingly evolvable in
ERP systems. Also, we will create a working system
(instantiation) and explore a suitable method to evaluate the
artifact.

Figure 1. The research framework

Table I illustrates the appropriate evaluation methods
which assess the utility, quality, and reliability of our
designed artifact. Therefore, the evaluation activity is a
crucial process of the research process [15]. Five evaluation
methods have been proposed by [15]. In this research, we
will combine several types of evaluation to ensure that our
designed artifact is rigorously demonstrated via suitable
evaluation methods:

TABLE I. THE RESEARCH DESIGN EVALUATION METHOD

The research design

evaluation methods

Description Application

testing evaluation

Executing coverage
testing of some metric
in the artifact
implementation:
Structural (White Box)
Testing

Number of Change

Impacts

B. Desing Science Research in the Research

The behavioral sciences and design science are two
paradigms that characterize much of the research in the IS
discipline, having a different purpose. Whereas behavioral
science seeks to develop and verify theories that explain or
predict human or organizational behavior, design science
seeks to extend the human boundaries and organizational
capabilities by creating new and innovative artifacts [15]. In
the design science paradigm, artifacts are studied and created
in order to solve a practical problem of general interest
[15][16]. A practical problem is a gap between the current
situation and a desirable situation that is observed in practice
[16]. Therefore, this research was conducted using the design
science methodology in order to address the research
question.

Design science research includes six main activities
according to [17] identify problem and motivation, define
objectives of a solution, design and development artifact,
demonstration, evaluation, and communication. The
methodology allows the researcher to do the research in
multiple research iterations to ensure and to improve the

qualities of the artifact. The research design was aligned with
this iterative process to end up with the research findings.

Figure 2. Design Science Process Model

An ERP application is a large and complicated system
which often contains customized functions to fit the
requirements of organizations. This is why such systems
should be designed for evolvability so that maintenance costs
remain under control. The paper aims to explore this issue.
The processes of the research are demonstrated in Fig. 2.
First, a research problem has been sketched by studying the
architecture of an existing open source ERP package. Then
we have defined a specific objective for the research which is
to achieve a higher degree of ERP evolvability. We have
solved the problem by using the reverse-engineering
technique and applying it to an open source EPR system
apart to see how it works. Second, CEs have been identified
in the data model of the open source ERP package, which is
an output of the reverse-engineering process. Third, we have
redesigned the data model and built a prototype using the NS
theory to improve the evolvability of the ERP software. The
final stage of the design science process is white-box testing
was used to evaluate the CEs of the redesigned data model
and prototype that measure the number of change impacts.

IV. ANALYZING A PARTIAL OPEN SOURCE ERP MODULE:

A SALES MODULE

In this section, we discuss some implications of using NS
theory for developing evolvable ERPs in practice. An open
source ERP, Odoo, was analyzed. This paper was due to
several reasons. First, being open source, we have access to
the source code and can analyze the architecture of the
software in depth. Second, within the open source ERP
market, Odoo is a very popular package. Furthermore, Odoo
is an integrated suite of applications that includes modules
for project management, billing, accounting, inventory
management, manufacturing, and purchasing. However, we
only focus on a partial module of the ERP package in this
paper.

Fig. 3 illustrates a part of the data model of the sales
module of the chosen ERP package which comprises three
tables:

174Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

• res_partner for storing details of customer data

• sale_order for storing sales orders of customers

• sale_order_line for storing details of sales orders

Figure 3. A partial data model of Sale module

Next, we analyzed the entity relationships of the data
model. The res_partner table has a recursive relationship by
using the parant_id field as a foreign key (FK). The
parant_id filed save data to show partners is belonging to
which a partner. For instance, Fig. 4 describes that id 46 is a
parent of data of id 47, 48, 46. What’s more, all of them are
the same person.

The sales order table comprises the following foreign
keys: partner_id, partner_shipping_id and partner_inovoic_id
to join with the res_partner table as presented in Fig. 3. From
sales order, employees can know where they have to send
invoices and products to their customers.

Figure 4. The example of res_partner data

A. Implementation of the Evolvable ERP Application with

regard to NS Fundamentals

Previously, we described the existing ERP data model
from our case study. In this model, only one address is used
and it is incorporated in the res_partner table. However, the
model can be redesigned in other ways as well. For instance,
the sales order data might not want to use only invoice
address and shipping address but also other address types.
For instance, the organization might want to use different
addresses for invoicing and shipment. Moreover, customers
might want the company to send sales invoices to more than
one address. Initially, we aim to examine how the high
evolvable ERP software is designed. Then we have
proposed on alternative design explanation for evolvable
ERP software development.

Normally, practical requirement of Sale module should
be able to serve multiple customer addresses. We developed
new approach to meeting the requirements of the
evolvability of ERP software.

In order to attain the objective, the following data
elements are defined. Address data have been separated from
partner data in order to support the requirement. According
to the previous model, the tables have been split up into six
tables as illustrated in Fig. 5.

• Partner for storing only general data of customers
such as name, birthday, status of partner (active,
inactive), etc.

• Address_type for storing types of address. Hence,
the changing requirement for address type can be
supported.

• Address for saving all addresses’ details of partners.

• Sale_order_address_line to save details of
customers’ sale order addresses.

• Sale_order to represent sale order data of customers.

• Sale_order_line to keep sale order details.

Figure 5. A redesinged data model of Sale module

In this model, address fields are divided into two tables:
address and address type. Furthermore, the
sale_order_address_line table is created to support the idea
about multiple address in sales order data. Furthermore, the
foreign keys partner_shipping_id and partner_invocie_id, in
the sale_order table were removed.

Consequently, it was made possible to incorporate the
new requirement of having different addresses. For example,
if organizations can have other types of addresses by adding
a new address type into the address_type table. When they
want to record more types of customer address in sale order,
they can only add more address data details into
sale_order_address_line.

In NS theory, the objective of the theory is to design
software in an evolvable way. In case a new version of a
data model is designed, a new skeleton of the application can
be generated by applying the expanders on the defined model
[13].

175Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

In this study, a prototype of the new designed data model
has been created using these NS expanders. Accordingly, the
prototype has been developed without the CEs to increase
evolvability of software.

Figure 6. The prototype structure based on NS elements

According to NS theory, an evolvable application could
be implemented by using a set of five elements which are
already free of many CEs. For the case study that we
describe, six data element instances have been generated as
illustrated in Fig. 6. For each of these data elements, a set of
cross-cutting concerns (persistency, security, graphical user
interface, etc.) are automatically generated as well.

V. DISCUSSION

In this paper, we discussed how an existing open source
ERP package can be analyzed based on NS theory. The
paper raises some significant points. First, designing data
models and developing a software application should be
done in a modular way to enable the reusability of that
software. For example, by using address and address type
entities in a sales module. Second, the software should have
highly cohesive modules so that the impact of a user
requirement change on the actual application, remains
limited. In the case, we separated the address data of a
partner into two parts: address and address type entities. This
represents an attempt to decrease the amount of effect of
changes and increase software maintainability. Lastly, this
study confirms that NS software will have less ripple effects
in its system. For example, adding an address type into the
prototype. To record additional address data, a user should
now only add the data of the new address type. The change
does not affect the partner, sale order and address elements.

This paper made a considerable contribution towards
presenting the advantages of developing and maintaining
software as stated by NS theory. These advantages can
normally be commonly observed in amount of software
development life cycle time. The new designed data model
and prototype, which are designed using the NS theory, have
the smaller number of change impacts. Furthermore, the
software prototype can be created in a few days.
Additionally, this paper contributes to the redesigning
approach of building evolvable ERP software.

The limitations of our exploratory study need to be
acknowledged. First, we only analyzed a partial data model
of one ERP package. We could not perform reverse-

engineering and explore commercial ERP software packages
such as SAP, Oracle, etc. As part of future research,
analyzing and rebuilding all modules of an existing ERP
software package based on NS theory can be considered.

REFERENCES

[1] L. Shaul and D. Tauber, “Critical success factors in enterprise
resource planning systems: Review of the last decade,” ACM
Comput. Surv., 45(4): pp. 1-39, 2013.

[2] K. K. Hong, and Y. G. Kim, “The critical success factors for
ERP implementation: an organizational fit perspective.
Information & Management,” 40(1): pp. 25-40, 2002.

[3] E. J. Umble, R. R. Haft, and M. M. Umble, “Enterprise
resource planning: Implementation procedures and critical
success factors,” European Journal of Operational Research,
146(2): pp. 241-257, 2003.

[4] Y. Xue, H. Liang, W. R. Boulton, and C. A. Snyder, “ERP
implementation failures in China: Case studies with
implications for ERP vendors,” International Journal of
Production Economics, 97(3): pp. 279-295, 2005.

[5] G. Oorts, K. Ahmadpour, H. Mannaert, J. Verelst, and A.
Oost, “Easily Evolving Software Using Normalized System
Theory A Case Study,” The Ninth International Conference
on Software Engineering Advances, pp. 322-327, 2014.

[6] K. Ven, D. V. Nuffel, P. Huysmans, D. Bellens, and H.
Mannaert, “Experiences with the automatic discovery of
violations to the normalized systems design theorems,”
International journal on advances in software, 4:1/2(2011):
pp. 46-60, 2011.

[7] P. De Bruyn, “Generalizing Normalized Systems Theory:
Towards a Foundational Theory for Enterprise Engineering,”
in Faculty of Applied Economics. 2014, University of
Antwerp: University of Antwerp.

[8] J. Verelst, A. R. Silva, H. Mannaert, D. A. Ferreira, and P.
Huysmans, “Identifying Combinatorial Effects in
Requirements Engineering,” in Advances in Enterprise
Engineering VII: Third Enterprise Engineering Working
Conference, EEWC 2013, Luxembourg, Proceedings, H.A.
Proper, D. Aveiro, and K. Gaaloul, Editors. 2013, Springer
Berlin Heidelberg: Berlin, Heidelberg. pp. 88-102, May 13-
14, 2013.

[9] P. De Bruyn, P. Huysmans, G. Oorts, D. van Nuffel, H.
Mannaert, J. Verelst, and A. Oost, “Incorporating design
knowledge into the software development process using
normalized systems theory,” International journal on
advances in software, 6(1-2): pp. 181-195, 2013.

[10] J. Verelst, H. Mannaert, and P. Huysmans, "IT isn't different
after all: Implications of Normalized Systems for the
Industrialization of Software Development,” IEEE
International Conference on Business Informatics, pp. 357-
357, 2013.

[11] H. Mannaert, J. Verelst, and K. Ven, “Towards evolvable
software architectures based on systems theoretic stability.
Software: Practice and Experience,” 42(1): pp. 89-116, 2012.

[12] D. V. Nuffel, “Towards Designing Modular and Evolvable
Business Process,” in Department of Applied Economics.
2011, University of Antwerp.

[13] G. Oorts, P Huysmans, P. De Bruyn, H. Mannaert, J. Verelst,
and A. Oost, “Building Evolvable Software Using
Normalized Systems Theory: A Case Study,” 2014 47th
Hawaii International Conference on System Sciences, pp.
4760-4769, 2014.

176Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

[14] K. D. Ven, D. V. Nuffel, P. Huysmans, D. Bellens, and H.
Mannaert, “Experiences with the automatic discovery of
violations to the normalized systems design theorems,”
International journal on advances in software, 4(1/2): pp. 46-
60, 2011.

[15] Alan Hevner, “Design Research in Information System
Theory and Pratice,” 2010: Springer.

[16] Paul Johannesson “An Introduction to Design Science,” 2014:
Springer.

[17] K. Peffers, T. Tuunanen, M. Rothenberger, and S. Chatterjee,
“A Design Science Research Methodology for Information
Systems Research.,” J. Manage. Inf. Syst., 24(3): pp. 45-77,
2007.

177Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

