
From Language-Independent Requirements to Code Based on a Semantic Analysis

Mariem Mefteh

IT department, Mir@cl Laboratory
ENIS, Sfax University

Sfax, Tunisia.
Email: Mariem.Mefteh.Ch@gmail.com

Nadia Bouassida

IT department, Mir@cl Laboratory
ISIMS, Sfax University

Sfax, Tunisia.
Email: Nadia.Bouassida@isimsf.rnu.tn

Hanêne Ben-Abdallah

Faculty of computing and Information
Technology, King Abdulaziz University,

Jeddah, KSA
Email: HBenAbdallah@kau.edu.sa

Abstract—This paper presents a new approach, which allows
building Java codes from language-independent requirements.
In other terms, it does not require any manual transformation
of the requirements into the syntax of a specific programming
language. To handle these challenges, our approach relies on a
set of English-based mapping rules to generate a semantic repre-
sentation of the input requirements. This semantic representation
is used to produce the source code via existing code generators,
such as Pegasus f. Indeed, our approach extracts the Pegasus
code from the semantic representation. This code is refined by
eliminating the redundancy among the code elements’ names
thanks to the Term Frequency/Inverse Document Frequency
(TF/IDF) method and the Density-based spatial clustering of
applications with noise (DBSCAN) algorithm. Finally, Pegasus f
transforms automatically the resulting Pegasus code to Java. The
proposed approach is implemented through the Code Recovery
tool (CodeRec-tool), which accepts the English and the French
languages in its actual version. The simplicity and the usefulness
of our approach have been evaluated using measurements and
based on experts’ feedback.

Keywords–Natural Language Processing; Semantics; Require-
ments; Naturalistic programming; Syntactic/Semantic grammar.

I. INTRODUCTION
All programming languages are progressing. Programmers,

working within a company, are forced to update always their
knowledge to recover this progress and to be able to use
them. This leads to a significant waste of time in acquiring
the programming languages’ instructions and syntax. However,
if programmers were able to express their program ideas in
natural language, they would not have to transform them into
programming language structures anymore. Programmers are
obliged to transform their thoughts into the existing program-
ming languages. Thus, it would be useful if we resort to the
development of new ones, which are completely different from
what exist. In fact, ideas are almost the same if we express
them in several languages. It would be valid as long as the
language, in which they are expressed, exists and is understood
by people.

Referring to Knöll et al. [1], current programming tech-
niques suffer from four main problems, namely: (i) the mental
problem, which reflects the obligation of program ideas’ ad-
justment to the conditions of a specific programming language
(like restructuring them in the form of classes, methods and at-
tributes in the object-oriented languages); (ii) the programming
language problem, which reflects the mandatory implementa-
tion of the same program ideas and algorithms but in many
ways depending on each programming language conditions;
(iii) the natural language problem, i.e. the fact that people

from different countries and working together are obliged to
document and comment developed software in a well-known
language, especially in English, which is less productive than
using their mother tongue (they can make errors when using
a non-native language if they could not use it correctly); (iv)
the technical problem causing the waste of developers’ time,
spent for implementing and debugging the programs although
ideas are unique. In fact, they still have to deal with minor
issues like choosing the right character set and doing number
conversions, instead of facing the really challenging tasks of
programming: describing, modeling and enhancing the actual
idea of a program [2]. These problems incur time loss and
productivity decrease for software development companies.

To leverage the aforementioned problems, the project Pe-
gasus [3] was elaborated as a new, naturalistic programming
language. Naturalistic Programming means writing computer
programs with the help of a natural language [1]. Pegasus
accepts instructions written in a semi-natural language, and it
produces the respective program accordingly. Besides Pegasus,
several works were proposed to generate code from instruc-
tions written in a natural language, cf. [4]–[7]. The majority
of these works is either semi-automated, or accepts inputs
that are not written in a purely natural language. Similar to
Pegasus, most of them require that the input instructions are
in a particularly structured English format.

In this paper, we aim to address the gap between how
we think and how we shall resort to operational details to
explain the same ideas in several natural languages. To do so,
we take advantage of the high stage of advancement achieved
in Pegasus and the version Pegasus f of code generator [8].
We extend this project with a new approach that lets Pegasus f
accept instructions written in any and purely natural language.
This approach transforms the language-independent input re-
quirements into a formal, semantic representation within the
semantic model. This latter is based on a set of mappings,
called mapping rules, that maintain the semantics among the
input sentences. The semantic model was initially proposed in
[9] [10]. In this paper, we enhance it with new features, useful
for treating language-independent requirements. In addition,
we apply the enhanced semantic model to different languages,
like English and French, in order to show the applicability
of our program generation approach, independently of the
language used for the requirements specification.

To implement our approach, we created the CodeRec-tool,
which automates all its steps. More specifically, we used the
linguistic development environment NOOJ [11]. Indeed, we
transformed the mapping rules into a NOOJ syntactic/semantic

145Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

grammar for each supported natural language (English and
French for the actual version of CodeRec-tool). The appli-
cation of this grammar on input requirements generates their
representation in the semantic model. This representation is
then transformed into a Pegasus code that is finally converted
automatically to a Java code using the Pegasus f generator.

The remainder of this paper is organized as follows: In
Section II, we overview existing approaches for informa-
tion extraction from texts and source code generation from
requirements. In Section III, we present our approach for
synthesizing source code (in Java) from requirements written
in different languages. Our approach is illustrated through the
Library management case study [3]. Section IV overviews the
implementation of our approach. In Section V, we present and
discuss the results of an experimental evaluation of our ap-
proach. Finally, Section VI summarizes the paper and presents
an overview of our future works.

II. RELATED WORK
This section deals with the state of the art on (i) information

extraction from texts, and (ii) source code generation from
textual requirements.

A. Works for Information Extraction from Texts
There is a large body of the literature that treats the problem

of information extraction from texts. For instance, Glavas
et al. [12] proposed the event graphs for structuring event
based information from text; their system performs anchor
(i.e., a word that conveys the core meaning of an event, e.g.,
“killed” or “bombing”) extraction, argument (i.e., protagonists
and circumstances of events, e.g., “agent”, “time”, “location”)
extraction, and relation extraction (i.e., temporal relation ex-
traction and event coreference resolution). This system treats
only the events, i.e., the situations that happen. Thus, we
cannot rely on this work because extracting source code from
natural language requirements necessitates exploiting various
naturalistic entities, not only events; naturalistic types are
types for programming, which are inspired by natural-language
notions [3].

On the other hand, many works focused on the Frame Se-
mantics and the FrameNet project [13]–[17]. The Framework
Semantics is based on lexicons. A lexicon contains entries,
which are composed of: (a) some conventional dictionary-type
data, mainly for the sake of human readers, (b) FORMULAS
that capture the morphosyntactic ways in which elements of the
semantic frame can be realized within the phrases or sentences
built up around the word, (c) links to semantically ANNO-
TATED EXAMPLE SENTENCES, which illustrate each of
the potential realization patterns identified in the formula, and
(d) links to the FRAME DATABASE and to other machine-
readable resources such as WordNet and COMLEX [17]. The
Framework Semantics assumes that the lexicon is made of
a background knowledge, whose structure is represented by
“frames”; The definition of a frame implies: (i) the discovery
of participants, i.e., the frame elements and are defined as
their unique semantic roles to the situation, (ii) the mandatory
participants of a frame called core frame elements, and (iii)
the optional participants, called peripheral frame elements [13]
[15]. The model of frame semantics has attracted the attention
of a number of linguists interested in the lexicon of a specialty
field [18]. Besides, it was applied to the field of football (e.g.,
[19]), biomedicine (e.g., [20]), law (e.g., [21]) and environment
(e.g., [18]).

Nobody can deny the importance of these works, in gen-
eral, and the frame semantics approach, in particular. However,
they are relevant for specific domains and frames, namely those
which are already defined by them, unlike our approach, which
is applicable regardless of the studied domain. Besides, the
information of the type of a sentence (e.g., a definition, a
statement, an assignment, etc.) cannot be determined by the
frame semantics approach, although this fact is required for a
relevant code extraction method. In this context, the semantic
model is one of the best solutions for us while it gives adequate
and precise information, relevant for the code derivation task
thanks to the naturalistic entities that it relies on (see Section
III-A).

B. Works for Source Code Generation from Textual Require-
ments

Several works propose to generate source codes from
requirements. For example, Franců et al. [6] propose a frame-
work including a generator that produces an implementation
in the form of methods. The major limitation of this work
is the necessity of a manual processing to build a domain
model, required by the generator. On the other hand, Smialek
et al. [22] [7], Nowakowski et al. [23] and Kalnins et al. [24]
propose approaches that transform the requirements, in par-
ticular behavior scenarios written in a semi-natural language,
into UML models and the final Java code. These approaches
are based on a special Requirements Specification Language
(RSL) to express the use case scenarios of a system. The
major limit of these approaches is that the use case scenarios
must be pre-processed and written in a semi-natural language,
according to the SVO grammar (i.e., in Subject+Verb+Object);
this means that there is no use of “naturalistic” types like links,
references, etc. For instance, a conditional sentence in RSL
must be preceded by “=> cond:” in order to be treated.

On the other hand, Liu et al. [4] developed a tool, called
Metaphor, that accepts program ideas written in English with
the form of a story, and that generates the corresponding pro-
gram template in Python; Metaphor mines nouns to program
objects, verbs to functions and adjectives to properties. In
their work, Cozzie et al. [25] proposed the Macho system;
this uses a natural language parser that parses descriptions
written in natural language into a simple program, by asking
the programmer to provide one or more examples of correct
input and output as unit tests. Özcan et al. [26] developed
an intelligent natural language interface based on the Turkish
language to create Java class skeleton and listing the class and
its members; Turkish sentences are converted into instances of
schemata representing classes and their members. These above
works use simple mapping models that map nouns to objects
and arguments, verbs to methods and adjectives to attributes.
However, the semantics of a natural language sentence should
not be exploited using only these types of mapping models.
There are other facts that should be taken into account.

On the other hand, Gvero et al. [5] proposed a system that
accepts free-form queries containing a mixture of English and
Java, and it produces Java code expressions that take the query
into account and respect syntax, types, and scoping rules of
Java, as well as statistical usage patterns. This system focuses
only on API-related queries, and not any type of instructions.

Overall, the majority of the existing approaches treat only
requirements written in one single language (English in most
cases). In contrast, ours accepts requirements written, theoret-

146Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

ically, in any natural language. Moreover, it does not require
a manual transformation of the requirements into the syntax
of a specific language. These two merits rely on the concept
of semantic model, which we introduce in Section III-A.
Moreover, our approach relies on this model as a solution
to hold (almost) all the semantics of the input requirements
written in a purely natural language.

III. OUR APPROACH FOR SOURCE CODE
EXTRACTION FROM REQUIREMENTS

In this section, we describe our approach, which is com-
posed of three main tasks: (i) extraction of the semantic model
representation from input requirements written, theoretically,
in any and in purely natural language, (ii) conversion of
the resulting representation into a Pegasus code, and (iii)
refinement and transformation of the Pegasus code to Java.
Figure 1 shows the functional structure of our approach.

As illustrated in Figure 1, the proposed approach first
applies the semantic model on the input language-independent
requirements in order to extract their semantic representation
as English-mapping rules (step 1 in Figure 1). Then, our ap-
proach applies some transformation rules to extract the Pegasus
code corresponding to the extracted mapping rules (step 2 in
Figure 1). Afterward, our approach refines the Pegasus code by
eliminating the redundancy among the code elements’ names
(step 3 in Figure 1). The resulting Pegasus code is finally
used as an input to the Pegasus f generator to get the target
Java code (step 4 in Figure 1). Note that our approach does
not extract directly the Pegasus code from the input texts
for two reasons: (i) Pegasus f accepts Pegasus codes written
only in the English language; our approach treats multilin-
gual texts and extracts the corresponding Pegasus codes in
English; (ii) Pegasus codes contain instructions written in a
controlled natural language (i.e., following a specific syntax);
our approach treats quite complex and ambiguous texts, from
which it extracts relevant information useful for building the
target Pegasus codes. These challenges are handled thanks to
the semantic model, which can be considered as a transition
model between the language-independent requirements and the
Pegasus f inputs (i.e., Pegasus codes).

In the remainder of this section, we detail the process
followed by our approach, which we illustrate through the
library management case study [3]. We choose this example
because it contains ambiguous sentences’ structures, proving
the potential of our approach in extracting relevant information
leading to good Java codes. The following texts (1 and 2)
belong to our case study, where the first is written in the
English language, and the second is in French.

1- “A library consists of several rooms containing shelves,
on which stand books. A book has a three-letter key, which
corresponds to the three initial letters of the surname of its first
author. The books are ordered in the library by this key. If a
visitor lends a book, then a new loan card is created. Besides, it

Figure 1. Functional structure of our approach

is added to the card index box. Moreover, the book, as well as
the name, the address and the telephone number of the visitor,
are noted on the loan card. In addition, the actual date is put
down; now the book is not lendable anymore. If a visitant
returns a book, then the loan card belonging to the book and
the visitor is thrown away; now the book is lendable again.”.

2- “Une bibliothèque se compose de plusieurs salles, con-
tenant des étagères, sur lesquelles les livres se positionnent. Un
livre a une clé de trois lettres, qui correspond aux trois lettres
initiales du nom de famille de son premier auteur. Les livres
sont ordonnés dans la bibliothèque par cette clé. Si un visiteur
prête un livre, alors une nouvelle carte de prêt est créée. En
outre, elle est ajoutée à la boı̂te d’index de la carte. De plus, le
livre, ainsi que le nom, l’adresse et le numéro de téléphone du
visiteur, sont notés sur la carte de prêt. Outre, la date actuelle
est déposée; maintenant, le livre n’est plus prêtable. Si un
visiteur retourne un livre, la carte de prêt appartenant au livre
et au visiteur est rejetée; maintenant, le livre devient prêtable.”

A. Requirements Representation within the Semantic Model
In this section, we present the semantic model, which

treats, in particular, the semantic nature of a sentence, as well
as its constituents. In this context, Mitch Kapor states that
”the critical thing in developing software is not the program,
it’s the design. It is translating understanding of user needs
into something that can be realized as a computer program”
[27]. In this sight, we proposed the semantic model as a first
step towards representing formally raw ideas (i.e., following
the way in which we think) independently of the used natural
language and without resorting to operational details (like
creating variables, defining their types, methods signatures,
etc.). In fact, an idea would be represented always in the
same notational way, no matter in which language it was
originally expressed. For instance, the following sentences
“A loan card is a card” (in English), “Une carte de prêt
est une carte” (in French), “Eine Darlehenskarte ist eine
Karte” (in German) and “Una carta di prestito è una carta”
(in Italian) have equivalent meanings: the hierarchy (i.e.,
generalization/specialization) relationship between the objects
“loan card” and “card”. In this context, the semantic model
analyzes the semantics among these sentences and represents
them by one common representation. Originally [9] [10], the
semantic model didn’t handle all the characteristics of the
natural language, so as to treat any type of sentences. In this
paper, we explain in details this model’s features. Furthermore,
we accomplish it by new entities in order to be more useful
for treating language-independent requirements.

The semantic model is based on many naturalistic entities,
whose notation is inspired from [8], namely concepts, prop-
erties, actions, statements, sentences, references, compression,
quantities and ordinalities. In addition, it supports the different
types of loops, which are frequently used in natural language.
Figure 2 shows the semantic model metamodel; it presents the
semantic information that should be extracted from a language-
independent instruction. More specifically, our approach relies
on this metamodel to build the mapping rules; they represent
a text, written in any natural language, in a formal and unique
way. They are relevant to all natural languages. In other words,
a sentence written in different languages will have the same
representation as a mapping rule in English. In this section, we
will present each mapping rule by using the EBNF notation
[28] as follows: unquoted words denote a non-terminal symbol;

147Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Figure 2. The semantic model metamodel

quoted words denote a terminal symbol, i.e., a symbol, which
should be mentioned obligatory; the content of [] is optional;
the content of {} denote symbols repeated zero or more times;
the content of {}- denote symbols repeated one or more times;
the character “=” denotes a definition; the semicolon denotes
a rule terminator; the character “|” allows getting a choice
from multiple options. In addition, some mapping rules contain
the words “type” and “something”. A “type” denotes the
naturalistic entity. It can be a concept, a property, a quantity,
statements preceded by a possessive pronoun, or a combination
of these constituent [8]; and “something” stands for the most
general type (it corresponds to the class “Object” in Java).

1) Quantification and Ordinality: Natural languages offer
an elaborated system of quantification (e.g., “two books”,
“several books”, etc.) over instances. Besides, ordinal numbers
are used for counting, e.g., “first”, “second”, “third”, etc. These
two concepts are represented by the following mapping rule:

Quantity/Ordinality =
"(quantity/ordinality," value ")";

2) Naturalistic References: Referencing is an integral part
of natural languages. For example, we say “A book has a three-
letter key, which corresponds to the three initial letters of the
surname of its first author”; the words “which” and “its” are
references, respectively, to “three-letter key” and “book”. The
semantic model accepts several references’ types, such as:

- Explicit reference: it allows retrieving a subset of in-
stances from a broader set of instances using the keyword “the”
in English, e.g., “the card”. It is represented in the semantic
model by the following mapping rule:

Explicit reference =
"(reference, explicit," type ")";

- Symbol self reference: it represents a symbol, which refers
to a concept, e.g., “the button ’Loan”’; in this example “Loan”
is a symbol that describes the concept “button”. This reference
is represented in the semantic model by the following mapping
rule:

Symbol self reference =

"(reference, symbol self," type, symbol ")";

- Possessive pronoun reference: it represents possessive
pronouns in combination with a type, e.g., “its author”. It is
represented in the semantic model by the following mapping
rule:

Possessive pronoun reference =
"(reference, possessive pronoun," type ")";

- Relative reference: it is characterized by the use of relative
pronouns like “which”, “who”, “whose”, “with”, etc. It is
represented in the semantic model by the following mapping
rule:

Relative reference = "(reference,
relative," ["possessive," type] ")";

- Attribute/relation reference: it resolves expressions like
“the type of the message”. In fact, this type of expressions
contains two other references. The first one placed before the
word “of” is called a “filter reference”. The second one, which
is placed after the word “of”, is called a “collection reference”
[8]. The collection reference can be any reference; however the
filter reference can be either an explicit or an ordinal reference.
It can also consist simply of a concept. The attribute/relation
reference is represented in the semantic model by the following
mapping rule:

Attribute/relation reference = "(reference,
attribute/relation," collection reference,

filter reference ")";

For example, considering the sentence “The books have a
three-letter key, which corresponds to the three initial letters
of the surname of its first author” from our case study; it is
represented in the semantic model with the following mapping
rule:

[...] (reference, attribute/relation,
(reference, possessive pronoun,
(author, (quantity/ordinality, first)),
(reference, attribute/relation,
(reference, explicit, surname), (letter,
(quantity/ordinality, three), initial))))

148Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

3) Concepts: A concept is any “thing” from the real
world, being abstract or concrete, e.g., “Book”, “Student”,
“Amount”, etc. It is the homologue of an object in object-
oriented programming languages. Concepts can contain or
be contained in other concepts. This fact corresponds to the
“concept possession relation”. Likewise, concepts can be sub-
concepts of other ones. This fact represents the “concept
hierarchy relation”. When we use a natural language, we do
not create new instances explicitly like in existing program-
ming languages. This process is done implicitly using some
words like “take”, or by talking about non-existing things like
“There are some books on the shelves”. The semantic model
proposes the following mapping rule to represent the concept
initialization (with its eventual properties) formally:

Concept initialization =
"(initialization," concept ")";

In some cases, we may find a quoted string, which is not
related to any concept. Thus, the semantic model treats it as a
symbol with the following mapping rule:

Symbol definition= "(symbol," the_string ")";

Another type of concepts is the “anonymous concept”;
it must be always contained into a concept and it describes
different situations of this latter, using properties. For instance,
let us consider the sentence “the type of a book can be science
fiction, drama, action, romance, mystery or horror”; we note
that the concept “type” is anonymous, belonging to the concept
“book”, and supporting the values “science fiction”, “drama”,
“action”, “romance”, “mystery” and “horror”, which serve to
describe the concept “book”. We also note that an anonymous
concept should contain neither other concepts, nor actions.
Otherwise, it would be a simple concept. The anonymous
concept is represented by the following mapping rule within
the semantic model:

Anonymous concept definition = "(anonymous
concept," concept "," {value}- ")";

For instance, considering the above example, it is repre-
sented in the semantic model with the following mapping rule:

(anonymous concept,
(reference, attribute/relation,
(book, (quantity/ordinality, abstract)),
(reference, explicit, type)),
(adjunctive, science fiction, drama, action,
romance, mystery, horror))

where “adjunctive” is a type of compression (see section
III-A6).

4) Properties: Properties describe concepts. There are sev-
eral types of properties among which the type “simple” is
the most used in the requirements. A simple property can be
either the case or not, e.g., “short”, “lendable”, etc. It can
be expressed by an adjective like “The shelve is empty”. A
simple property is defined by assignment. It can be assigned
in two ways: (i) directly, using the predicate “to be”, “can
be”, “equal”, etc., which implies that there is a relationship
between a concept and possibly several properties; or (ii) by
initialization of a new instance. The semantic model represents
these two mechanisms by the following mapping rules:

Property assignment = "(property assignment,"
concept "," {property}- ")";

Property concept relation definition =
"(property concept relation," concept ","
{property}- ")";

For example, considering the sentences “Let the book
be borrowable” (in English) and “Lassen Sie das Buch sein
ausleihbar” (in German); they are represented by the same
mapping rule, as follows:

(property assignment,
(reference explicit, book), borrowable)

5) Statements: A statement is a declarative clause that is
either true or false. We often use statements to express a
relationship between different instances. The semantic model
defines five types of statements, namely: Concept hierarchy
relation and Concept possession relation statements, Predicate
statement, Property statement and Instance type relation state-
ment.

a) Concept hierarchy and possession relation state-
ments:: The two types of concept relations, “concept posses-
sion relation” and “concept hierarchy relation”, may appear
both in concept definitions and in statements. These statements
are respectively represented in the semantic model as the
following mapping rules:

Concept possession relation = "(definition/
statement, concept possession relation,
(possessor," possessor_concept "),
(possessed," possessed concept "))";

Concept hierarchy relation =
"(definition/statement, concept hierarchy
relation, (super-concept,"
general_concept "), (sub-concept,"
specialized_concept "))";

Note that the word “negation” is put when the statement
(whatever is its type) is in the negative form. For instance,
the clauses “A book has a three-letter key” (in English) and
“Un livre a une clé de trois lettres” (in French) from our
case study convey to one common representation within the
semantic model, as follows:

(statement, concept possession relation,
(possessor,
(book, (quantity/ordinality, abstract))),

(possessed, (key, (quantity/ordinality,
abstract), three-letter)))

b) Predicate statement:: This type of statements deals
with predicates. A predicate refers to a verb. It belongs to
a class (state or action). The difference between a state and
a property is that this latter is unchangeable, whereas the
state can change depending on the time, the location, etc. A
predicate requires a number of arguments, which correspond
to specific “semantic roles”. The semantic model treats, in
particular, the following semantic roles (where some of them
are introduced by the semantic model): (i) Agent: the entity
that performs the action; (ii) Object: the entity that under-
goes the action; (iii) Comparassant: designates the compared
element as a part of a comparison; (iv) Comparator: desig-
nates the comparing element as a part of a comparison; (v)
Possessor: something that has or contains someone/something;
(vi) Possessed: something that is owned or in the disposal of
someone/something; (vii) Sub-concept: a specialized concept
in a hierarchical relationship; (viii) Super-concept: the gener-
alized concept in a hierarchical relationship; (ix) Origin: the
place from where an action is done; (x) Destination: the place
towards which the action is directed; (xi) Location: the place
or space of a predicate expressed by an action or a state; (xii)
Time: indicates the date or the period when an action or a state
is done; (xiii) Manner: describes the way of doing something.
The predicate statements are represented in the semantic model
with the following mapping rule:

149Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Predicate statement = "(statement,
(" predicate_class "," predicate "),"
{"(" semantic_role "," parameter ")"}- ")";

For instance, considering the sentence: “Les livres sont
ordonnés dans la bibliothèque par cette clé” (in French) from
our case study; our approach generates the following English-
mapping rule:

(statement, (action, order), (object,
(reference, explicit, (book, multiple))),

(location, (reference, explicit, library)),
(manner, (reference, explicit, key)))

c) Property statement: : This type of statements fo-
cuses on properties. It is represented by the following mapping
rule:

Property statement =
"(statement, property," ["negation,"]
["comparative"|"superlative",] property_name
","{"(" semantic_role "," instance ")"}- ")";

For example, considering the sentences “A book has a
three-letter key, which corresponds to the three initial letters
of the surname of its first author” (in English) and “Un livre a
une clé de trois lettres, qui correspond aux trois lettres initiales
du nom de famille de son premier auteur” (in French) from
our case study; our approach generates the same mapping rule
for them:

[...]
(statement, property, (reference, relative),
(reference, attribute/relation,
(reference, possessive pronoun,
(author, (quantity/ordinality, first)),

(reference, attribute/relation,
(reference, explicit, surname),
(letter, (quantity/ordinality, three),
initial)))))

d) Instance type relation statement:: This type of state-
ments takes interest in relationships between instances and
their properties. It is represented in the semantic model with
the following rule:

Instance type relation statement =
"(statement, instance type relation,"
["negation,"] something "," type ")";

For example, considering the sentence: “If the type of the
book is not drama...”; our approach generates the following
mapping rule:

(condition, (statement, instance type,
negation, (reference, attribute/relation,
(reference, explicit, book),
(reference, explicit, type)), drama)

6) Compression: Compression means grouping different
syntactic structures together by some special words like “and”,
“or”, etc. We distinguish four types of compression: copulative
(using conjunctions like “and”, “added to”, “as well as”...),
adjunctive (using conjunctions like “or”), contravalent (using
conjunctions like “either.. or..”, “whether.. or..”) and exclusion
(using conjunctions like “neither.. nor..”). The compression is
represented in the semantic model following this rule:

Sentence = "(" ("copulative"|"adjunctive"|
"contravalent"|"exclusion") ","

{something}- ")";

We will present an example of the compression in the
following section.

7) Sentences: A sentence is composed of clauses linked by
conjunctions (assembling links). A link belongs to a semantic
class among the following ones: (i) Temporal: links two ex-
pressions in time; (ii) Condition: uses conditional conjunctions
like “if”, “in case of”; (iii) Contrary: the opposite of condition
using conjunctions like “if not”, “otherwise”, “else”; (iv) Final:
expresses something happening as a result; (v) Cause: refers to
a situation which is the cause of another situation; (vi) Illative:
expresses something inferred from another statement or fact;
(vii) Loop: represents five types of loops, namely: “for”,
“while”, “do...while”, “foreach” and “switch”. The following
mapping rule represents the link relation (excluding loops)
within the semantic model:

Sentence =
"(" link_semantic_class "," something ")";

For instance, the mapping rule corresponding to the sen-
tence “If a visitant returns a book, then the loan card belonging
to the book and the visitor is thrown away” is the following:

(condition, (statement, (action, return),
(agent,
(visitant, (quantity/ordinality, abstract))),

(object,
(book, (quantity/ordinality, abstract)))),

(statement, (action, throw away),
(object, (reference, explicit,
(loan card,
(statement, possession concept relation,
(possessor, (copulative,
(reference, explicit, book),
(reference, explicit, visitor))),

(possessed, (reference, relative))))))))

Concerning the loops links, the following mapping rules
represent them:

Loop-do/while = "(loop," ("do"|"while") ","
statement "," {something_result}- ")";

Loop-for = "(loop, for," counter_start_value
"," counter_end_value "," step ","
{something_result}- ")";

Loop-foreach = "(loop, foreach," concept ","
statement "," {something_result}- ")";

Loop-switch = "(loop, switch," variable_name ","
{ value "," {something_result}- }- ")";

In summary, our approach works on requirements written
in different languages, even the Asiatic ones, thanks to the
semantic model. We refer the reader to our reference [29]
for an example of our approach application on requirements,
which are written in English, French, Spanish and Chinese
languages.

B. Converting the Semantic Model Representation to a Pega-
sus Code

The resulting mapping rules can be transformed into the
input of existing code generators, such as Pegasus f. This
latter accepts requirements written in the Pegasus naturalistic
programming language syntax, in English. Besides, it produces
the corresponding Java code automatically. In this context, our
approach transforms the mapping rules into the corresponding
Pegasus code, based on some transformation rules. Due to

150Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

space limitation, we will present only some of them (we
suppose that the resulting Pegasus code is stored in the file
“pegasus code.peg”):

Rule 1: For each concept, Conc, involved within a map-
ping rule, a declaration of Conc as a Pegasus concept is added
to the file “pegasus code.peg” following this syntax:
"concept: " Conc "{}"

We have to mention that our approach recognizes
some keywords within the concepts’ names (as well as
the properties’ and the actions’ names). Therefore, it does
not create the corresponding objects. For instance, our
approach admits that each concept name, which contains at
least one of the following words {“text”, “string”, “word”,
“letter”, “paragraph”, “line”, “verse”, “number”, “integer”,
“float”, “sum”, “fraction”, “numeral”, “amount”, “period”,
“menu”, “menu-item”, “button”, “form”, “option”, etc.} do
not correspond to a Pegasus concept. Indeed, Pegasus f can
recognize, automatically, the predefined Java types and GUI
components, and thus, it does not require the creation of the
corresponding Pegasus concepts.

Rule 2: For each property, Prop, in relation with a
concept, Conc, a declaration of Prop is added to the Pegasus
concept Conc in the file “pegasus code.peg” according to the
following syntax:
"concept: " Conc "{ property:" Prop "; }"

In fact, a Pegasus property declaration does not require
the declaration of its type; this latter is deduced automatically
by Pegasus f.

Rule 3: Every concept possession relation within a
mapping rule, involving a possessor concept, cpossessor, and
a possessed concept, cpossessed, leads to the declaration of
a Pegasus property cpossessed within the concept cpossessor
following this syntax:
"concept:" c_possessor "{

property:" c_possessed ";}"

Rule 4: Every concept hierarchy relation within a mapping
rule, involving a sub concept, csub, and a super concept,
csuper, leads to the declaration of the two Pegasus concepts
csub and csuper, where the first extends the second, by
following this syntax:
"concept: " c_sub "extends" c_super "{}"

Rule 5: Each concept initialization within a mapping
rule, involving a concept, Conc, and a property, Prop,
is transformed to a Pegasus instruction according to the
following syntax:
"let" Conc "be" Prop ";"

Rule 6: A copulative compression is transformed into a
Pegasus syntax as follows:

- For each type, typ, involved within the compression,
create a copy of the current mapping rule, in which the
copulative compression clause is replaced by typ.

- Replace the current mapping rule by the new copies of
mapping rules and treat them by applying the transformation
rules adequate for them.

Rule 7: For each symbol self reference within a mapping

rule, which involves a type corresponding to a concept, Conc,
a Pegasus property called “label” is created within Conc. In
fact, the involved symbol serves as a label to this concept.

We have to note that the concepts and the properties names
convey to the standard notations, i.e., the units composing
a noun are separated by putting the first letter of each term
capitalized. After applying the transformation rules, we obtain
the Pegasus code corresponding to the mapping rules of the
input text. For example, our approach generates the following
Pegasus code for our case study by applying the guidelines of
the above rules on the extracted mapping rules:

concept: Library{ property:rooms;}
concept: Room{ property: shelves;}
concept: Shelve{}
concept: Book{

property: key;
property: author;
property: isLendable;
property: loanCard;
action: to stand in (shelve){}
(key) is ((three initial letters)
of ((surname) of (first author)));}

concept: Author{
property: isFirst;
property: surname;}

concept: LoanCard{}
concept: Visitor{

property: name;
property: address;
property: telephoneNumber;
property: loanCard;
action: to lend (book){}
action: to return (book){}}

concept: Visitant{ action: to return (book){}}
[...]
(three-letter key) is ((three initial letters)
of ((surname) of (first author)));
order (books) in (library) by (key)!
statement:{

take (loan card)!
add (loan card) to (card index box)!
note (book) in (loan card)!
note ((name) of (visitor)) in (loan card)!
note ((address) of (visitor)) in
(loan card)!

note ((telephone number) of (visitor)) in
(loan card)!

put down (actual date);
NOT((book) is lendable now);

} : if (visitor) lend (book);
statement:{

throw away (loan card)!
(book) is lendable now;

} : if (visitor) return (book);

Hence, this example shows that our approach is capable
of generating a structured Pegasus code from quite complex
and ambiguous input texts (containing sentences in the passive
form with too much references), which are written in different
languages.
C. Pegasus Code Refinement

The input textual requirements may use synonymous words
to describe the same concept. For instance, in our case study,
the input text uses the words “visitor” and “visitant”, which
are semantically synonyms. They are however represented in

151Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

the Pegasus code by two concepts, “Visitant” and “Visitor”,
even though they are equivalent (see the generated Pegasus
code in the previous section). To avoid such code redundancy
and unify the names of Pegasus concepts, properties and
actions belonging to the same concept, our approach uses
an unsupervised classification of the names within the group
of concepts names; this classification starts by getting the
grammatical units from these names, by splitting these latter
according to the capitalized letters used in them.

We choose the TF/IDF method [30], which relies on the
calculation of the cosine similarity measure. This method is
composed of queries and documents; our approach considers
that a query consists of the units composing a Pegasus concept
name, and a document is made up of the association of these
latter, added to their synonyms extracted from WordNet [31];
WordNet is used only for the classification task, independently
from the mapping rules synthesis process. TF/IDF begins
by computing the weight of each grammatical unit, which
composes a query qj and belongs to a document di. The weight
of each unit is calculated thanks to the following equation:

wij = tfi,j × idfi,j = tfi,j × log(
m

D(i)
) (1)

where: wij is the weight of the grammatical unit i in the
document j; tfi,j is the frequency of the unit i in the document
j; m is the total number of documents in the collection (i.e.,
the selected group of concepts, in this step); and D(i) is the
number of documents where the unit i occurs. After that, our
approach computes the cosine similarity, Sim(di, q), between
a document di and a query q, using the following equation:

Sim(di, q) ≈ cos(
−→
di ,−→q) =

∑
tj∈U wij × wqj√∑

tj∈U w2
qj ×

∑
tj∈U w2

ij

(2)
where: wij is the weight of the grammatical unit in di;
wqj is the weight of the unit uj in q; and U is the set of
grammatical units composing all the documents. Thus, our
approach computes the cosine matrix (where the rows are
the documents and the columns are the queries) according to
equation 2. After performing this calculation, our approach
applies the DBSCAN algorithm [32] on the cosine matrix,
in order to group the concepts names into semantic classes.
Then, it selects a name for each class. After that, it refines the
generated Pegasus code by replacing the existing concepts’
names by the selected semantic class names and merging the
content of the initial similar concepts into the resulting concept
names. These same steps are then applied for each group of
actions and of properties that belong to the same Pegasus
concept. To conclude, our approach generates a refined Pegasus
code, which is then transformed automatically to Java using
the Pegasus f generator.

In the following section, we will present an implementation
of our approach with the CodeRec-tool.

IV. IMPLEMENTATION OF OUR APPROACH
To implement our approach, we developed a tool, named

CodeRec-tool (Code Recovery tool), which allows generating
a Pegasus code, as an input to the Pegasus f generator, by
starting from requirements written in different and in purely
natural languages. Actually, this tool accepts the French and
the English languages. However, it can be extended by inte-
grating other languages.

This tool is composed of three modules: (i) the first module
treats an input text and generates the corresponding mapping
rules, which are then stored in a TXT file; (ii) the second
module converts the mapping rules from the TXT file into a
Pegasus code, which is stored in a PEG file, (iii) the third
module refines the PEG file’s content and uses it as an input
to the Pegasus f generator, which executes automatically the
Pegasus code and generates the corresponding JAVA code.

Concerning the implementation of the mapping rules, we
used the NOOJ environment [11] (our results are not com-
pletely dependent from the use of NOOJ; in fact, relying on
this environment in the implementation of CodeRec-tool is
just a choice.). NOOJ is a linguistic development environment
that includes tools to create and maintain dictionaries, mor-
phological and syntactic grammars. Dictionaries and grammars
are applied to texts in order to locate morphological, lexical
and syntactic patterns and tag simple and compound words
[11]. Our main goal is to synthesize the different mapping
rules that match each instruction of the input text to its
formal representation within the semantic model in the English
language. To this end, our tool does not follow a specific
algorithm for the synthesis task, in contrast, it relies on gram-
mars. Indeed, the mapping rules synthesis task is performed
by developing a “syntactic/semantic grammar” that treats one
specific language. In other words, in practice, we have to build
a syntactic/semantic grammar for each natural language to be
treated by our tool in order to generate the mapping rules of
an input text written in that language.

Taking into account a text written in a language, L,
different from English, our tool starts by exploiting this text
by using the corresponding developed grammar, as well as the
predefined NOOJ dictionary (available in [11]) appropriate to
L. Then, our tool generates the corresponding mapping rules.
However, these latter contain terms belonging to the language
L. To solve the problem of the mapping rules translation to
the English language, CodeRec-tool uses the Google Translate
API [33] in order to transform the components of the generated
mapping rules (i.e., the names of concepts, properties, states,
actions, etc.) into English.

CodeRec-tool accepts the English and the French lan-
guages. To this end, we developed a NOOJ syntactic/semantic
grammar for each language, including the syntactic and the
semantic information of each language; these grammars allow
to synthesize mapping rules in English, in cooperation with the
predefined NOOJ dictionaries for the English and the French
languages, as well as the Google Translate API. We refer the
reader to our previous work [10] for a detailed example on
the application of our NOOJ syntactic/semantic grammar on
an input sentence.

Considering our case study, CodeRec-tool generates the
corresponding mapping rules, which it stores in the file “Li-
brary management MRs.txt”. After that, it treats this file con-
tent, in order to extract the corresponding Pegasus code, which
is stored in the file “Library management Pegasus.peg”. In-
deed, CodeRec-tool implements the transformation rules from
the semantic model representation to the pegasus syntax (see
Section III-B).

The “Library management Pegasus.peg” file is then re-
fined and used as an input to the Pegasus f generator, which
produces the corresponding Java code; it generates, in partic-
ular, the following extract of Java code:

152Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

public class Book{
/*** Attributes declaration ***/
private Key key;
private Author author;
private boolean isLendable;
private LoanCard loanCard;
/*** Constructors ***/
public Book(){
this.key=new Key();
this.author=new Author();
this.isLendable=false;
this.loanCard=new LoanCard(); }

public Book(Author author,
boolean isLendable, LoanCard loanCard){

this.author=author;
this.key=this.author.surname.substring(0,3);
this.isLendable=isLendable;
this.loanCard=loanCard; }

/*** Methods declaration ***/
public void stand(Shelve shelve){}
/*** Getters and setters ***/
public Key getKey(){return this.key;}
public void setKey(Key key){
this.key=key;} [...] }

[...] }
We have to mention that our approach, and thus our tool,

are able to generate, automatically, Java packages, as well.
For example, let us consider the following sentence “The
visitor selects the button ‘Lend”’; CodeRec-tool generates the
following mapping rule and the corresponding Pegasus code:

Mapping rule

(statement, (action, select),
(agent, (reference, explicit, visitor)),
(object, (reference, symbol self, button,
"Lend")))

Pegasus code

[...] (visitor) select (button "Lend");

Using this latter Pegasus code as an input to the Pegasus f
generator, CodeRec-tool generates, namely, the following Java
code:

import java.awt.*;
import java.swing.*;
[...]
public class BookLending extends JFrame

implements ActionListener{
JButton button1=new JButton("Lend");
button1.addActionListener(new ActionListener()
{ public void actionPerformed(ActionEvent e)
{[...]}});

[...] }

V. EVALUATION
To evaluate our approach and our tool, we adopted the

process proposed by Wohlin et al. [34], which decomposes
the evaluation into different parts, like goal, task, subjects,
preparation, conduction and evaluation.

Goal: The overall objectives of our evaluation is to show
the ability of our approach, and thus tool, in deriving useful
Pegasus codes (implicitly good Java codes) from input re-
quirements, written in purely and in several natural languages
(English and French for its current version), and to examine
the conformity degree between our Pegasus codes and those
built by Pegasus experts. We rely on Pegasus experts in our

evaluation, instead of Java programmers because the main
outputs of our approach are Pegasus codes. Indeed, producing
good Pegasus code leads, implicitly, to the generation of good
Java codes.

Subject and Preparation: While a use case scenario
contains useful description of a system behavior, from which
we can deduce an important amount of source code, we decide
to rely of the use case scenarios belonging to five different
domains, and which are given to two Pegasus experts (two
natural language processing PhD students from our laboratory,
who are familiar to Pegasus programs), as follows:

- 16 use case scenarios belonging to a Health complaint
application [35]; this latter allows citizens to report complaints
(food, animal and special complaints) via internet.

- A well developed scenario of the use case “Withdraw
cash” belonging to a banking system [36].

- 28 use case scenarios belonging to the Go-phone system
[37]; this latter is based on a hypothetical context of the mobile
phone company “Go-Phone” Inc and it has clone based Go-
phone products, such as “S”, “L”, “Elegance”, “Com”...

- 9 use case scenarios belonging to a crisis management
system [38]; this latter treats crisis, which can range from
major to catastrophic affecting many segments of society.

- Use case scenario of the game of war cards [39], which
involves two players where the one who has no more cards at
the end of the game is the looser.

- 5 use case scenarios belonging to Emptio [40], which is
a mobile phone application for selfservice shopping.

Task: We asked the Pegasus experts to give us the correct
Pegasus codes corresponding to the adopted subjects.

Conduction: We compare the experts’ Pegasus codes to
the corresponding ones generated by our tool by using the
precision and recall metrics in terms of Pegasus concepts (pC,
rC), properties (pP , rP) and actions (pA, rA). For example
these measures are calculated as follows for the concepts:

pC =
number of true concepts

number of found concepts
× 100 (3)

rC =
number of true concepts

number of real concepts
× 100 (4)

Moreover, we decide to use two other metrics taken from
the standard ISO 25020, in order to measure:

- The completeness (Com) degree of our results according
to the input requirements, which are also treated by the Pegasus
experts; for example, it is measured, in terms of concepts, as
follows:

Comc = 1−number of unfound pertinent concepts

number of pertinent concepts
×100

(5)
- The correctness (Cor) of our results according to the

input requirements, which are also treated by the Pegasus
experts; for instance, it is computed, in terms of concepts, as
follows:

Corc =
number concepts adequately implemented

number of pertinent concepts
× 100

(6)
We have to mention that the correctness measure is only

computed for the Pegasus concepts and the actions because it
deals with their internal implementation. Besides, the number
of concepts/actions adequately implemented means that the

153Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

TABLE I. EVALUATION

Average Precision Recall Complet. Correct.
Concepts 73,78% 91,60% 90,43% 80,13%
Properties 81,59% 82,66% 78,41% -
Actions 70,22% 82,41% 76,78% 83,02%

majority of their implementations are pertinent according to
the experts’ implementations.

Table I shows the resulting averages of the adopted mea-
surements in terms of Pegasus concepts, properties and actions.

Evaluation: Table I shows the high average values of the
adopted metrics, which exceed 73,78% in all cases. More
specifically, the precision (respectively recall) values in terms
of concepts range from 67,86% to 80% (respectively from
84,62% to 96%). Similarly, we note high average values of
completeness and correctness, reaching respectively 90,43%
and 83,02%. For example, in the case of the Go-phone
system, we obtained the highest values of precision in terms
of concepts (80%), with a completeness rate 91,67% and
correctness of 87,5%. This fact means that our tool generates
a good number of true positives (TP, i.e., the number of
pertinent concepts generated by our tool), which equals 24, vs.
a low number of false positives (FP, i.e., the number of none-
pertinent concepts, not found by the experts and which are
generated by our tool), which equals 6. Moreover, the recall
value in terms of concepts for the Go-phone system equals
92,31%, reflecting that our tool generates the majority of
pertinent concepts. The high values of completeness (91,67%)
and correctness (87,5%) confirm this fact. Consequently, we
deduce that the code generated by our tool is of a high quality
and helps the developers in the programming task by saving
their time, and thus money for the companies.

We have to mention that the false positives generated by
our tool and decreasing the precision values in some cases (like
the case of the Withdraw cash scenario, which equals 67,86%
with 38 TPs and 18 FPs) are caused by the fact that our tool
generates a Pegasus concept for each met concept within a
mapping rule, except for some concepts whose names can be
recognized by our tool and for which this latter does not pro-
duce a corresponding Pegasus concept (see Rule 1 in Section
III-B). For instance, concerning the Emptio application, our
tool generates, in particular, the concept “URL”. In contrast,
the Pegasus experts realize that this concept corresponds to
a simple string and puts it as a Pegasus property within the
Pegasus concept “Application”. This fact is due to the full
automation of our approach. However, we believe that the
extra-generated concepts do not really matter because they will
be removed by the developer, later. Indeed, the completeness
(82,81%) and the correctness (81,82%) in terms of concepts
for the Emptio application confirm the utility of the Pegasus
concepts generated by our tool.

On the other hand, the precision values in terms of prop-
erties range from 75% to 96%. For example, in the case of
the Health complaint system, our tool generates 42 TPs, vs.
12 FPs; in fact, the use case scenarios of this system treat
each “type” of a “query” on its own. Thus, our tool generates
four properties corresponding to four queries’ types: “onSpe-
cialities”, “onHealthUnits”, “onDiseases” and “onComplaint”
within the concept “Query”. In fact, the input scenarios do
not contain any information allowing our tool to recognize,

automatically, the nature of the property “type”. However, the
expert realizes that these properties correspond to only one
property “type”, which corresponds to an anonymous concept
with four possible values: “onSpecialities”, “onHealthUnits”,
“onDiseases” and “onComplaint” within the Pegasus concept
“Query”. In contrary, the important value of recall (80,77%)
and completeness (76,19%) confirm that our tool generated
a good number of pertinent properties, regardless of some
exceptions caused by the full automation of our approach.

Finally, the precision in terms of actions are relatively
low in comparison with the concepts and the properties ones.
More specifically, the precision in terms of actions for the
Game of war equals 66,66%. This result is justified by the
fact that our tool generates an action definition for each met
action predicate within a mapping rule, especially for the
human manual actions, which should not be implemented. For
example, our tool generates the Pegasus actions “show(cards)”,
“select(card,pile)” and “select(menu-item)”, although they cor-
respond to simple mouse clicks on buttons or items done by
a human actor. However, the experts do not create Pegasus
actions for them because they know that they will be treated
automatically by Pegasus f, which will implement the corre-
sponding treatment within their methods “addActionListener”.
We believe that this fact does not really matter while we
get a good correctness value for the Game of war (83,33%)
and which implies the good quality of the generated actions’
implementations.

Threats to validity. One external threat of our approach
consists of the Pegsaus project, in particular the version
Pegasus f of code generator; it has not yet been finished
totally; there are still some small improvements to integrate in
this project, such as treating the ellipses. However, the current
version of Pegasus f is powerful and it generates good results,
shown in our evaluation. Besides, although our approach is
original and treats an original topic thanks to its ability to
work on any natural language, it is rather theoretic. In fact,
on the practical level, we have to possess a huge number of
rich dictionaries in order to parse an input instruction and
deduce the corresponding mapping rule. However, the NOOJ
project is always processing and many dictionaries for many
languages are integrated each year. On the other hand, our tool
presents an internal threat: a grammar should be created for
each integrated language in order to synthesize the mapping
rules. However, we believe that this is not a problem while the
creation of this grammar is done only one time, then it becomes
ready to treat the input instructions in that language. Another
internal concern consists of the generation of an important
number of concepts and actions (and thus Java classes and
methods). However, we believe that this concern does not
really matter because the unnecessary classes and methods
generated by our approach will be latter removed by the pro-
grammer when revising the generated version of source codes.
Another threat against our approach is its dependance from
the input requirements. More specifically, the more complete
input requirements are, the better results we get. In fact, the
evaluation of our approach showed interesting results in terms
of the adopted measurement values (i.e. precision, recall, F-
measure...) because we have got good inputs in terms of use
case scenarios. However, these values would decrease in case
of a lack of information within the input requirements.

154Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

VI. CONCLUSION AND FUTURE WORK
This paper presented a new, original approach for extracting
source code from requirements written, theoretically, in any
and purely natural language. Firstly, the proposed approach
takes the textual descriptions (requirements) and translates
them into the semantic model by extracting the corresponding
mapping rules. This model gives our approach the advantage
of using semantic information to explore and interpret the
syntax and the semantics of the requirements. Moreover, our
approach allows the translation of the mapping rules to English
in case where their contents are in a language different from
English. Secondly, our approach deduces a refined Pegasus
code corresponding to the mapping rules based on some
transformation rules. Finally, Pegasus f translates this code
into Java. Thus, the developers will save time because they
are not obliged to create the initial classes of the system
(including the constructors, the attributes, the getters and the
setters, as well as at least the methods signatures) or to import
the required packages. Our approach is implemented by the
CodeRec-tool, which automates its steps.

In contrast to the existing approaches, our approach is very
simple; it does not necessitate any pre-study on a particular
language to be used. In fact, it accepts language-independent
descriptions, understandable even by a non-IT person. In
addition, another power of our approach is its ability to be
used with many code generators, not necessarily Pegasus f.

We think that the future programming techniques will
follow the same direction in which a human thinks. It is our
belief that the naturalistic programming will have a prominent
place in the future of programming languages. The research
that we presented in this paper constitutes a contribution in
programming using any and purely natural language thanks to
the semantic model.

In our future works, we aim to conduct an evaluation
on a larger set of products to confirm the presented results.
Another practical extension of the herein presented work is
the application of our approach on other code generators, such
as the ReDSeeDS tool, which extracts a Java code, following
a Model/View/Controller architecture, from use case scenarios
written in the RSL language.

REFERENCES
[1] R. Knöll and M. Mezini, “Pegasus: First steps toward a naturalistic

programming language,” in Companion to the 21st ACM SIGPLAN
Symposium on Object-oriented Programming Systems, Languages, and
Applications. New York, NY, USA: ACM, 2006, pp. 542–559.

[2] L. Khaylov, “Implementation of the naturalistic programming language
pegasus,” Master’s thesis, Darmstadt University of Technology, Ger-
many, 2009.

[3] R. Knöll. Pegasus project. [Online]. Available: http://www.pegasus-
project.org/en/Welcome.html [retrieved: August, 2017] (2006)

[4] H. Liu and H. Lieberman, “Metafor: Visualizing stories as code,” in
Proceedings of International Conference on Intelligent User Interfaces.
New York, NY, USA: ACM, 2005, pp. 305–307.

[5] T. Gvero and V. Kuncak, “Synthesizing java expressions from free-form
queries,” in Proceedings of ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions. New York, NY, USA: ACM, 2015, pp. 416–432.

[6] J. Franců and P. Hnětynka, Automated generation of implementation
from textual system requirements. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 34–47.

[7] M. Smialek and W. Nowakowski, Introducing requirements-driven
modelling. Switzerland: Springer International Publishing, 2015, ch.
From Requirements to Java in a Snap, pp. 1–30.

[8] R. Knöll, V. Gasiunas, and M. Mezini, “Naturalistic types,” in Pro-
ceedings of SIGPLAN Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software. New York, NY, USA:
ACM, 2011, pp. 33–48.

[9] M. Mefteh, N. Bouassida, and H. Ben-Abdallah, “Feature model ex-
traction from documented uml use case diagrams,” Ada User Journal,
vol. 35, no. 2, 2014, pp. 108–117.

[10] ——, “Mining feature models from functional requirements,” Computer
journal, vol. 59, no. 7, 2016, pp. 1–21.

[11] M. Silberztein, Formalizing natural languages: The NooJ approach.
John Wiley Sons, Inc., 2016.

[12] G. Glavas and J. Snajder, “Construction and evaluation of event graphs,”
Natural Language Engineering, vol. 21, no. 4, 2015, pp. 607–652.

[13] C. J. Fillmore, “Frame semantics and the nature of language,” in Origins
and evolution of language and speech, S. Harnad, Ed. Academy of
Sciences, 1976, pp. 155–202.

[14] C. J. Fillmore and B. T. Atkins, Towards a frame-based lexicon: The
semantics of RISK and its neighbors. Hillsdale: Lawrence Erlbaum
Associates, 1992, pp. 75–102.

[15] C. J. Fillmore and B. Collin, A frames approach to semantic analysis.
Oxford: Oxford University Press, 2010, pp. 313–339.

[16] J. Ruppenhofer, M. Ellsworth, M. R. L. Petruck, C. R. Johnson,
and J. Scheffczyk. Framenet II: Extended theory and practice.
[Online]. Available: http://framenet.icsi.berkeley.edu [retrieved: July,
2017] (2010)

[17] C. F. Baker, C. J. Fillmore, and J. B. Lowe, “The Berkeley FrameNet
project,” in Proceedings of the 36th Annual Meeting of the Association
for Computational Linguistics and 17th International Conference on
Computational Linguistics - Volume 1, ser. ACL ’98. Stroudsburg,
PA, USA: Association for Computational Linguistics, 1998, pp. 86–90.
[Online]. Available: http://dx.doi.org/10.3115/980845.980860

[18] Marie-Claude L’Homme, “Terminologie de l’environnement et
sémantique des cadres,” Congrès Mondial de Linguistique Franaise,
SHS Web of Conferences, vol. 27, 2016, pp. 1–14.

[19] T. Schmidt, “The kicktionary a multilingual lexical resource of football
language,” in Multilingual FrameNets in computational lexicography :
methods and applications, H. C. Boas, Ed., 2009.

[20] A. Dolbey, M. Ellsworth, and J. Scheffczyk, “Bioframenet: A domain-
specific framenet extension with links to biomedical ontologies,” in In
Proceedings of the Biomedical Ontology in Action Workshop at KR-
MED, 2006, pp. 87–94.

[21] J. Pimentel, “Description de verbes juridiques au moyen de la
sémantique des cadres,” in Terminologie and Ontologie : Théories et
applications, 2010, pp. 26–27.

[22] M. Smialek, W. Nowakowski, N. Jarzebowski, and A. Ambroziewicz,
“From use cases and their relationships to code,” in International
Workshop on Model-Driven Requirements Engineering, Chicago, IL,
USA, September 24, 2012, pp. 9–18.

[23] W. Nowakowski, M. Smialek, A. Ambroziewicz, and T. Straszak,
“Requirements-level language and tools for capturing software system
essence,” Comput. Sci. Inf. Syst., vol. 10, no. 4, 2013, pp. 1499–1524.

[24] A. Kalnins, et al., Handbook of research on innovations in systems and
software engineering. IGI Global, 2014, ch. Developing Software with
Domain-Driven Model Reuse.

[25] A. Cozzie and S. T. King, “Macho: Writing programs with natural
language and examples,” University of Illinois at Urbana-Champaign,
Tech. Rep., 2012.

[26] E. Özcan, S. E. Seker, and Z. I. Karadeniz, “Generating java class
skeleton using a natural language interface,” in Natural Language
Understanding and Cognitive Science, Porto, Portugal, April 2004,
2004, pp. 126–134.

[27] M. Kapor. Brainy quote. [Online]. Available:
http://www.brainyquote.com/quotes/quotes/m/mitchkapor690403.html
[retrieved: August, 2017] (1950)

[28] R. S. Scowen, “Extended BNF - A generic base standard,” in Pro-
ceedings of the 1993 Software Engineering Standards Symposium
(SESS’93), Aug. 1993.

[29] M. Mefteh. Requirements analysis with the semantic model. [On-

155Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

line]. Available: http://spl-nlp-with-semanticmodel.com/translation.html
[retrieved: August, 2017] (2017)

[30] J. Ramos, “Using TF-IDF to determine word relevance in document
queries,” Department of Computer Science, Rutgers University, 23515
BPO Way, Piscataway, NJ, 08855e, Tech. Rep., 2003.

[31] G. A. Miller. Wordnet. [Online]. Available:
https://wordnet.princeton.edu/ [retrieved: August, 2017] (2015)

[32] M. Ester, H. peter Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the International Conference on Knowledge Discovery
and Data Mining. AAAI Press, 1996, pp. 226–231.

[33] J. Trimble. et al., Google translate API. [Online]. Available:
https://www.programmableweb.com/api/google-translate [retrieved: Au-
gust, 2017] (2011)

[34] C. Wohlin, M. Höst, and K. Henningsson, Empirical research methods
in web and software engineering. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 409–430.

[35] L. P. Tizzei, C. M. F. Rubira, J. Lee, A. Garcia,
and M. Barros. Health complaint system. [Online]. Available:
http://www.ic.unicamp.br/ tizzei/phc/jss2013/ [retrieved: August, 2017]
(2013)

[36] K. Bittner and I. Spence, Use case modeling. Pearson Education Inc.,
2002, pp. 301–330.

[37] D. Muthig, I. John, M. Anastasopoulos, T. Forster, J. Dörr, and
K. Schmid, “Gophone - a software product line in the mobile phone
domain,” No. 025.04/E, Version 1.0, Fraunhofer IESE, Tech. Rep., 2004.

[38] J. Kienzle, N. Guelfi, and S. Mustafiz, Crisis management systems: A
case study for aspect-oriented modeling. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 1–22.

[39] G. Blank. Game of war. [Online]. Available:
http://www.cse.lehigh.edu/ glennb/csc10/WarDesign.htm [retrieved:
June, 2017] (2010)

[40] C. R. van der Burg, T. Kirke, and A. Rokic, “Emptio - a mobile
phone application for selfservice,” Master’s thesis, Aalborg University,
Germany, 2011.

156Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

