
ADA Language for Software Engineering

Diana ElRabih
 Research & Development Department

Monty Holding Company
Beirut, Lebanon

E-mail: diana.elrabih@montyholding.com

Abstract— Software engineering is significantly more complex
than just programming and as a result, then different tools are
needed since software reliability cannot be compromised. ADA
was designed as a coherent programming language for complex
software systems, unlike other languages which grew by gradual
addition of features. ADA is a modern programming language
designed for large, long-lived applications and embedded
systems in particular where reliability and efficiency are
essential. Also ADA can be used as a communication language
for some aspects of the needs and for some aspects of the design.
In this paper, we present the concepts of ADA, as well as the
strengths of ADA for software engineering.

Keywords-ADA, software engineering, embedded systems, real
time systems

I. INTRODUCTION
Software engineering is significantly more complex

than just programming, and it should not be surprising that
different tools are needed. The structure of the software
market for personal computers has caused reliability to be
consciously neglected. Software packages are compared by
lists of features as performance (46 seconds is better than 47
seconds), and occasionally price. Vendors feel pressured to
bring new versions to market, regardless of the reliability of
the product. They can always promise to fix the bug in the
next version. But word-processors, presentation graphics and
interactive games are not the only type of software being
developed. Computers are now controlling the most
complex systems in the world: airplanes, spacecraft,
communications networks, international banks, stock
markets, military systems and medical equipment. The
social and economic environment in which these systems
are developed is totally different from that of packaged
software. Each project pushes back the limits of engineering
experience, so delays and cost overruns are usually
inevitable. A company’s reputation for engineering
expertise and sound management is more important in
winning a contract than a list of features. Consistent, up-to-
date, technical competence is expected, not the one-time
genius of a startup. Above all, system reliability cannot be
compromised. The result of a bug is not just a demoted
reporter or the loss of a sales commission. A bug in a medical
system can mean loss of life. The crash of a communications
system can disrupt an entire economy. The failure of a
spacecraft can cost hundreds of millions of dollars. In fact,
all these have occurred because of software faults. Software
engineering is the term used to denote the set of techniques
for developing large software projects. It includes for
example, managerial techniques, such as cost estimation,

documentation standards, configuration management and
quality assurance procedures. It also includes notations and
methodologies for analysis, design and testing of the
software itself. There are many of us who believe that
programming languages play an essential role in software
engineering. In the end, a software system is successful if
the ‘code’ of the program executes reliably and performs
according to the system requirements.

The best managed project with a superb design is a
failure if the delivered ‘code’ is no good. Thus, managerial
techniques and design methodologies must be supplemented
by the use of a programming language that supports
reliable programming. The alternative to language support
for reliability is ‘bureaucracy’. The project manager must
write conventions for interfaces and specifications of data
representations, and each convention must be manually
checked in code inspections. The result is that all the
misunderstandings, to say nothing of cases where
conventions were ignored by clever programmers, are
discovered at best when the software components are
integrated, and at worst after the software is delivered. Why
cannot these conventions be formalized in the programming
language and checked by the compiler? It is strange that
software engineers, who make their living from automating
systems in other disciplines, are often resistant to
formalizing and automating the programming process itself.

ADA is a modern programming language designed for
large, long-lived applications and embedded systems in
particular where reliability and efficiency are essential. In
fact, ADA is a design language as much as a programming
language. It is designed to be read by ADA programmers and
programmers not knowing ADA. Then from the point of view
of the software engineers, in addition to being a programming
language, ADA can be used as a communication language for
some aspects of the needs and for some aspects of the design
with its embodiment of modern software engineering
principles. In this paper, we present the concepts of ADA, as
well as the strengths of ADA for software engineering. ADA
has rigid requirements for making entities such as
subprograms and variables visible globally. This leads to a
separation of ADA code into specifications or "specs" and
bodies.

In section 2 we describe what ADA is, section 3 presents
how ADA can be used for software engineering. In section 4
we talk about the development of ADA, while in section 5 we
show the concepts of ADA. In section 6 we present the
strengths of ADA. Section 7 concludes the paper.

128Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

II. WHAT IS ADA
The ADA language was designed to present a general

language, unifying, standardized and supporting the precepts
of software engineering. ADA is beginning to prove itself of
reliability, robustness but has youthful defects. From 1990 to
1995 the revision of the standard leads to ADA95 , which
corrects small defects, fills a big lack by making the language
completely object (ADA is the first object language
normalized). ADA95 adds its lot of novelties still
unpublished 10 years later. Today ADA does not seem to
have the place he deserves especially in first learnings of
computer science where we must mix the programming itself
with the good practice of programming. Since a long time
ADA can largely replace Pascal the excellent teaching
language. Paradoxically, ADA is more readily taught in high-
level training because, again, it makes it possible to teach
clearly, this time qualified and more arduous concepts. ADA
is well used (even unavoidable) in avionics and embedded
computing (rocket Ariane for example), as well as for traffic
control (air, rail) where reliability is crucial. It is also
appreciated when the code to develop is consequent (so very
difficult to maintain). But the fact remains that currently few
small or medium-sized companies admit to using ADA.
Modest, productivity gains with ADA are proven and very
significant.

Computer teachers eager to develop a quality code will be
able to use ADA which is the culmination of procedural
languages. A free, open and portable compiler (GNAT)
allows (especially for academics) to run it and to adopt the
language for a formation (or a culture) of computing.

Advantages of ADA by comparing to others: ADA
appears more cost-effective compared to other similar
languages [5]. ADA, unlike other languages which grew by
gradual addition of features, was designed as a coherent
programming language for complex software systems. In
many instances in other similar languages to ADA such as C
language, rules require a non-trivial amount of code
development and verification, while the ADA solution is
trivial [5]. For instance, achieving object initialization in
similar languages requires the use of carefully implemented
constructors, while specifying default initialization for ADA
records is relatively trivial [5]. Another example is multi-
threading with several rules for the use of locks, and
condition variables. For ADA, the built-in facilities for direct
task communication with protected objects for
communication through shared buffers, includes implicit
control of locks, and condition variables [5].

III. ADA FOR SOFTWARE ENGINEERING
The ADA language is complex because it is intended for
developing complex systems, and its advantages are only
apparent if engineers are designing and developing such a
system. Then, and only then, they will have to face numerous
dilemmas, and they will be grateful for the ADA constructs
that help them resolve them. Next, we ask questions on ADA

and we respond on these questions: How can I decompose the
system? I can decompose the system into packages that can
be flexibly structured using containment, hierarchical or
client-server architectures. How can I specify interfaces? I
can specify interfaces in a package specification that is
separate from its implementation. How can I describe data? I
can describe data with ADA’s rich type system. How can I
ensure independence of components of my system? I can
ensure independence of components of my system by using
private types to define abstract data types. How can data types
relate to one another? Data types can relate to one another
either by composition in records or by inheritance through
type extension. How can I reuse software components from
other projects? I can reuse software components by
instantiating generic packages. How can I synchronize
dozens of concurrent processes? I can synchronize dozens of
concurrent processes synchronously or asynchronously. How
can I get at the raw machine when I need to? I can get at the
raw machine by using representation specifications. How can
I make the most efficient use of my expensive testing facility?
I can make the most efficient use of my experience testing
facility by testing as much of the software as possible on a
host machine using a validated compiler that accepts exactly
the same standard language as the target machine.

Programming in ADA is not, of course, a substitute for
the classical elements of software engineering. ADA is
simply a better tool. The software engineers design their
software by drawing diagrams of the package structure, and
then each package becomes a unit of work. The effects caused
by incompetent engineers, or by personnel turnover, can be
localized. Many, if not most, careless mistakes are caught by
type checking during compilation, not after the system is
delivered. Code inspections can focus on the logical structure
of the program, because the consistency of the conventions
and interfaces is automatically checked by the compiler.
Software integration is effortless, leaving them more time to
concentrate on system integration. Though ADA was
originally intended for critical military systems, it is now the
language of choice for any critical system.

IV. DEVELOPMENT OF ADA
The ADA language was developed at the request of the US

Department of Defense which was concerned by the
proliferation of programming languages for mission-critical
systems. Military systems were programmed in languages not
commonly used in science, business and education, and
dialects of these languages proliferated. Each project had to
acquire and maintain a development environment and to train
software engineers to support these systems through decades
of deployment. Choosing a standard language would
significantly simplify and reduce the cost of these logistical
tasks. A survey of existing languages showed that none would
be suitable, so it was decided to develop a new language based
on an existing language, such as Pascal. There were several
unique aspects of the development of ADA: The ADA
language was developed to satisfy a formal set of
requirements. This ensured that from the very beginning the

129Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

ADA language included the necessary features for its intended
applications. The language proposal was published for
scientific review before it was fully implemented and used in
applications. Many mistakes in the design were corrected
before they became entrenched by widespread use. The
standard was finalized early in the history of the language, and
facilities were established to validate compilers against the
standard. Adherence to the standard is especially important for
training, software reuse and host/target development and
testing.

V. CONCEPTS OF ADA
This part is a quick overview of some of the strong points

of the ADA language that allow engineers to discipline the
development process and thus satisfy the precepts of software
engineering.

A. Typing
ADA proposes few predefined types (so-called standard

or primitive). Types: character, string, Boolean, integer
numeric and actual numeric (comma floating). Their
implementation is not specified by the standard and therefore
it is recommended to define one's own, even the most basic,
types in particular the numerals (integers, real floating and
even real fixed) pledge of a safer programming (especially
portability). ADA offers unparalleled power for the
declaration of new types (and not necessarily numerical).
This declaration inserts into the code a knowledge of the
domain that usually stays in the comments, or in documents,
or ... nowhere. This statement is portable and, in addition, the
overflows are checked in the code generated. ADA is
strongly typed which implicitly forbids mixtures.

B. Encapsulation

This property remains relevant with classes and objects.
It is a question of rendering specific statement, closely
intertwined the data of a software component and associated
operations. Today, we are talking about member data and
methods. In ADA, this software envelope is realized with the
packages (package). But unlike Java (which takes this
concept 20 years later). It is, in ADA, of a very concrete entity
since declared in a clean file. This property is the pledge of a
great federation of concepts where nothing is scattered. The
package remained with ADA95 the basic structure of the
language as it is a Robust and elegant code factorization
technique.

C. Specifications and realization

The ADA package (ideal structure of a software
component) houses these two entities well distinct (usually in
two files). Package declarations on the one hand and package
body on the other hand are the labels of these two entities
(respectively spec and production). The spec part (not quite
specifications but more surely a contract) only presents the
declarations (data and sub-programs). The body of the
package will realize, meanwhile, the contract proposed by the
spec. Brand new entity (subroutine or package) relying on an

already specified package announce this addiction with. The
compiler then only refers to the part spec to control the syntax
of the new entity. The coding of the realization can be
deferred. This separation encourages prototyping without
thinking about implementation and this development
technique is very important. In the teaching of computing this
process helps to force students to think before coding and it's
the language (and the compiler) that gives teachers valuable
help for this educational challenge. ADA provides novices
with solid foundations that these will be able to transgress or
use in other languages but with knowledge of be deferred.
This separation encourages prototyping without thinking
about implementation and this development technique is very
important. In the teaching of computing this process helps to
force students to think before coding and it's the language
(and the compiler) that gives teachers valuable help for this
educational challenge. ADA provides novices with solid
foundations that these will be able to transgress or use in other
languages but with knowledge of cause (and not out of
ignorance). For example in the definition of subroutines the
scope and direction of information exchanged is very clear.
The passage of arguments for the procedures is specified in
the prototyping. (Mentions In, Out, or In Out). Note that an
ADA function remains a function (it accepts parameters in
input and provides a single output result), for a novice, these
basic notions appear very clearly. The impacts on the
modification of the parameters during the use of an external
procedure or function are equally clear.

D. Genericity

In ADA, these parameters (called of genericity) are as
complex as desired. The parameters range from very
traditional (constant or variable) through the types,
subroutines and up to packages themselves generic! This
profound degree of abstraction is absolutely remarkable. In
ADA, the implementation of the genericity (declaration,
instantiation and use) is very simple and elegant (so easy to
teach). Packages generic ADA are compiled with authority
without waiting for them to be instantiated which is not the
case of C++ templates. This authoritative compilation
validates the generic contract and to ensure that any instance
respecting the contract will compile and will work as
expected. Genericity allows and facilitates reuse and is even
the safest technique to reuse reliably.

E. Exceptions

The exceptions are present in the language from ADA83.
This concept is obviously essential in programming and
allows to take into account the "anomalies" during the course
of an application. ADA implementation of exceptions
(declaration, initiation and treatment) seem to us of great ease
and therefore very nice to teach. ADA95 has significantly
improved this baggage and allows deeper treatments (a little
less simple however to apply). In the same way, we point out
a didactic property of importance namely the possibility of
put in place, in the code, assertions.

130Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

F. Modular approach
This concept belongs to Object Oriented Design (OOD)

techniques well illustrated with ADA83. A priori, when we
stay at this stage of conception (and it is very often enough in
many developments) it is not necessary to the "true" object.
That is, it is often unnecessary to provide structures that to be
extended by derivation (thus to make the design by analogy).
However, if this is the case, ADA95 has an answer to make
classes and objects.

G. Classes and objects

To make classes and therefore objects just take the
concept of encapsulation, seen with the packages, and declare
the first data structure (root) with the name tagged. Clearly
any type 'tagged (or rather labeled) "is likely to be derived by
extension and this inheritance characterizes the class
structure. We can intelligently mix this design technique with
the use of the hierarchies of packages seen above allowing,
thus, even more flexibility and elegance in developments.
Note, however, that the legacy multiple is not expected,
indeed the designers of the language did not find useful to
add a specific construct for multiple inheritance because too
complex for a reduced use. On the other hand, conjunction
"derivation and genericity" makes it possible to solve the
cases of "mixing inheritance 'much less rare.

VI. STRENGHTS OF ADA
We are already talking about the software crisis and

today, the problem is recurrent and even more worrying:
development cost exceeded or difficult to predict, deadlines
not respected, delivery not according to specifications,
programs too greedy, unreliable, often impossible changes,
etc. Let us review, briefly, some criteria or properties that
must satisfy a consistent application and quality. We present
in what follows the strengths of ADA language meeting the
stated objectives.

a) Reusability: it is the ability of a software to be taken
over, partly or even entirely, to develop new applications. We
then talk about components software like the components that
are reused in electronics.

b) Extensibility: it is the ease of adaptation of a software
to the changes of specifications. Evolution of the data
structure or adding features are desirable. This involves quick
and reliable changes allowing a safe adaptive maintenance.

c) Portability: it is the possibility for a software product
not to depend on a hardware environment, neither a system
nor a particular compiler is particularly important for digital
applications. Portability makes easier transfer of a hardware
configuration and / or software system to another.

d) Testability: it is the implementation of aggressive
processes whose purpose is to find errors in software. This
phase of software development is important but often
neglected or sloppy. This step is prepared before the
implementation because we build test plans before coding
(during the design stages).

e) Maintainability: it is the ability of a software to be
modified elegantly, quickly, without fundamentally
questioning the structure already specified or the existing
applications.

f) Readability: it is the property of a code accessibility
and understanding by more developers. The verbosity of a
language sometimes decried can become a quality. As
anecdote we could show the traditional "Hello World" to non-
specialists, in different languages, The ADA version is the
most readable (even compared to Pascal).

g) The ease of certification and validation: it is the
ability of software to be able to be associated with properties
proving that it meets its specifications, that it ends correctly
or that it does not lock up in situations of load saturation or
lack of resources. The existence of standardized language and
verification possibilities helps to meet this goal.

VII. CONCLUSION
ADA is a design language as much as a programming

language. ADA is designed to be read by ADA programmers
and programmers not knowing ADA. From the point of view
of the software engineers, in addition to being a programming
language, ADA can be used as a communication language for
some aspects of the needs and for some aspects of the design.
With its embodiment of modern software engineering
principles ADA is an excellent teaching language for both
introductory and advanced computer science courses, and it
has been the subject of significant university research
especially in the area of real-time technologies. In our future
work, we will plan to consider a case study in ADA showing
an empirical study about advantages of ADA for software
engineering.

REFERENCES
[1] M. Ben-Ari, ADA for Software Engineers, Weizmann Institute of

Science, 2005.
[2] G. Booch and D. Bryan, Software Engineering with ADA, 3rd Edition,

Addison-Wesley Professional, 1993.
[3] A. Wearing, Software Engineering, ADA and metrics, LNCS volume

603, 2005.
[4] D. Feneuille , “Teaching ADA-Choose a language: between the

tendant and the reasonable”, Version 3,2, 2005.
[5] S. F. Zeigler , “Comapring Development Costs of C and ADA”,

Rational Software Corporation, 1995.

131Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

http://www.informit.com/authors/bio/e5ffefd4-a4c1-4ea7-bddd-4b715f8ca1dc
http://www.informit.com/authors/bio/26db5639-6caf-4a51-b0fb-d31685365e5b
http://www.awprofessional.com/

	I. Introduction
	II. What is ADA
	III. ADA for Software Engineering
	IV. Development of ADA
	V. Concepts of ADA
	A. Typing

	VI. Strenghts of ADA
	a) Reusability: it is the ability of a software to be taken over, partly or even entirely, to develop new applications. We then talk about components software like the components that are reused in electronics.
	b) Extensibility: it is the ease of adaptation of a software to the changes of specifications. Evolution of the data structure or adding features are desirable. This involves quick and reliable changes allowing a safe adaptive maintenance.
	c) Portability: it is the possibility for a software product not to depend on a hardware environment, neither a system nor a particular compiler is particularly important for digital applications. Portability makes easier transfer of a hardware config...
	d) Testability: it is the implementation of aggressive processes whose purpose is to find errors in software. This phase of software development is important but often neglected or sloppy. This step is prepared before the implementation because we bui...
	e) Maintainability: it is the ability of a software to be modified elegantly, quickly, without fundamentally questioning the structure already specified or the existing applications.
	f) Readability: it is the property of a code accessibility and understanding by more developers. The verbosity of a language sometimes decried can become a quality. As anecdote we could show the traditional "Hello World" to non-specialists, in differe...
	g) The ease of certification and validation: it is the ability of software to be able to be associated with properties proving that it meets its specifications, that it ends correctly or that it does not lock up in situations of load saturation or lac...

	VII. Conclusion
	References

