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Abstract— The fourth industrial revolution consists of a new 

level of organization and control of the entire production 

process. The smart manufacturing ecosystem and especially 

Cyber Physical Systems are evolving rapidly. They constitute 

an environment with multiple heterogeneous sources that 

produce high volumes of data. This data needs to be stored in a 

storage system that can handle raw, unprocessed, relational, 

and non-relational data types, such as Data Lakes, in order to 

be processed when needed. This paper introduces a Data Lake-

based metadata framework, which utilizes the concept of 

blueprints to characterize the data sources and the data itself 

to facilitate process mining tasks. The applicability and 

effectiveness of the proposed framework is validated through a 

real-world smart manufacturing case-study, namely a poultry 

meat production factory, which offers operational support and 

business workflow analysis.  

Keywords: Smart Manufacturing; Data Lakes; 

Heterogeneous Data Sources; Metadata Mechanism; Data 

Blueprints; Process Mining. 

I.  INTRODUCTION 

Industry 4.0 is based on a number of new and innovative 
technological developments, such as Cyber Physical Systems 
(CPSs), Internet of Things (IoT), Cloud Computing, 
Cognitive Computing, robotics, Augmented Reality (AR) 
technology and intelligent tools [1], which contribute to the 
production of personalized products according to customer 
needs by digitization of the entire product production cycle 
[2].  

Factories of the future will consist of a CPS or a set of 
CPSs that will interact with each other. A CPS consists of 
mechanisms controlled or monitored by computer 
algorithms, integrated into the Internet and its users. CPSs 
change the way people interact with machines and workers 
will need to be skilled and will need to be aware of the 
functions of coordinated intelligent machines from a central 
control point and of the data they produce [3]. 

The main challenges of Industry 4.0 are the need for: (i) 
constant availability of all data and information in a smart 
factory in real-time; (ii) interoperability of all entities that 
contribute to production (customer, services, production 
systems, etc.); and (iii) extraction of the optimal value-added 
flow at any time from the data [5]. 

A smart factory is an environment that consists of Big 
Data sources, such as data warehouses, Data Lakes (DLs), 
and databases, whether on-premises or on the cloud, that can 
produce massive volumes of textual content (unstructured, 
semi-structured, and structured), multimedia content 
(images, video, and audio), utilizing a variety of platforms 
(enterprise, social media, and sensors) during the production 
cycle. Despite the great and drastic solutions proposed in 
recent years in the area of Big Data Processing and Systems 
of Deep Insight, treating Big Data produced by multiple 
heterogeneous data sources remains a challenging and 
unsolved problem [4].  

Nowadays, in the era of Big Data, with huge amounts of 
information produced and consumed, data is considered as 
the “power” of businesses only if is properly processed to 
offer mainly decision support. Most companies have a lot of 
unused data that can be used for process mining. This is a 
side-effect of the widespread digitization and automation of 
business processes, which leaves digital traces of real 
process executions as a byproduct. To the best of our 
knowledge, the integration of DL with process mining 
activities has not received much attention in research 
literature yet. As DLs appear to be a promising technique for 
temporal Big Data storing, the present work, apart from the 
goals described below, intends to cover this gap as well. 

This paper introduces a new approach to handle Big Data 
in terms of storing and retrieval, which intends to serve best 
process mining activities that use this data. More 
specifically, a novel metadata mechanism is proposed that 
provides the ability to characterize and describe data sources, 
data items and process related information which are stored 
in a DL by means of blueprinting. The proposed approach is 
an extension of prior work on the topic [14], which builds 
upon the notions of DL and blueprints [16] to add the 
following contribution: (a) a separate class of blueprints to 
account for the information related to process mining 
activities in a smart manufacturing environment (processes, 
events, machines); (b) the actions to store, retrieve and 
process data produced by various sources (e.g., sensors) and 
relate to workflows and mining activities (e.g., events, 
sequencing, dependencies, etc.); (c) an extension to the DL 
architecture where we introduce the notion of data puddles to 
be used for storing smaller portions of data according to 
some formatting criterion; and (d) the successful application 
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of the framework on a real-world industrial case study, 
which, on one hand it is quite rare in literature to report a real 
business customer to study, and on the other hand it yielded 
some very interesting findings.  

The remainder of the paper is structured as follows: 
Section II discusses related work and the technical 
background in the areas of Smart Manufacturing, DLs, and 
Business Process Mining (BPM). Section III presents the DL 
source description framework and discusses its main 
components that prepare the relevant data for process 
mining. This is followed by Section IV that presents an 
experimental validation of the proposed framework on a 
real-world case, namely that of poultry meat production. 
Finally, Section V concludes the paper and highlights future 
work directions. 

II. TECHNICAL BACKGROUND 

Nowadays, industries are being transformed with the rise 
of disrupting technologies and this transformation is called 
Industry 4.0 or Smart Manufacturing. Industry 4.0 aims to 
construct an open and smart manufacturing platform for 
industrial information applications based on a range of 
disrupting technologies. 

As previously mentioned, Smart Manufacturing consists 
of new scientific trends worldwide, such as IoT, Big Data 
analytics, cloud computing, Artificial Intelligence (AI), CPS 
and other new generation information disrupting 
technologies. All these technologies are related to the recent 
technological developments where Internet and its 
supporting technologies serve as a backbone to integrate 
human and machine agents, materials, products, production 
lines and processes, within and beyond organizational 
boundaries, to form a new kind of intelligent, connected, and 
agile value chain [6].  

The vision of smart manufacturing envisages the use of 
smart technologies, such as information technology, sensor 
networks, process analysis, and production management and 
control software, to improve efficiency on agility, asset 
utilization and sustainability [7].  

Industry 4.0 aims at digitizing engineering, production 
and manufacturing with the goal of:  

• A seamless integration device, sensors, machines, as 
well as software and IT systems 

• Increased flexibility thanks to pushing more 
intelligence from centralized planning systems to the 
edge  

• Increased efficiency due to automated data exchange 
and analysis within the value chain 

The most popular advantages of Smart Manufacturing are 
[8]:  

• Optimization  

• Customization  

• Cost reduction  

• Efficiency  

• Customer Experience  
The aforementioned information technologies, which are 

the backbone of smart manufacturing, generate a large 
volume of heterogeneous data, structured, semi-structured 
and unstructured. Big data analysis models and algorithms 

may be executed to organize, analyze and mine this raw data 
to obtain valuable knowledge. This manufacturing data is 
collected usually in real-time and sometimes automatically 
by IoT devices. Manufacturers aim to find a way to increase 
the efficiency, manage the storage of all this data and 
visualize it to improve and increase productivity and quality 
of products.  

Most of the work on Big Data integration has been 
focused on the problem of processing very large amounts of 
data, extracting information from multiple, possibly 
conflicting data sources, reconciling the values and providing 
unified access to data residing in multiple, autonomous data 
sources. 

Various studies addressed isolated aspects of data source 
management relying on schema mapping and semantic 
integration of different sources [9][10]. Those studies 
focused primarily on the construction of a global schema or a 
knowledge base to describe the domain of the data sources. 
Most of the proposed techniques examine user queries and 
return tables related to specific keywords presented in the 
query; however, keyword-based techniques fail to capture 
the semantics of natural language, i.e., the intentions of the 
users, and thus they can only go as far as giving relevant 
hints. 

DL is a storage repository that can store large amounts of 
structured, semi-structured, and unstructured data. With this 
Big Data storage architecture, data holders can store every 
type of data in its native format without the need to structure 
or clean them until it needed.  Every data element in a DL 
needs to be given a unique identifier and tagged with a set of 
metadata information [15]. 

Process mining is an emerging research discipline that 
helps organizations discover and analyze business processes 
based on raw event data. Basically, it sits between 
computational intelligence and data mining on one hand, and 
process modeling and analysis on the other [12]. Many 
researchers are developing new and more powerful process 
mining techniques and software vendors are incorporating 
these in their software and especially for  Big Data [13]. 
Generally, process mining techniques based on the business 
log files produced. In our paper we are trying to utilize also 
Big Data produced by a manufacturing environment as a 
goal to transform them by the metadata mechanism to 
participate also in the process mining. This is very important 
in a world in which data is produced by a vast number of 
heterogeneous data sources. 

There are three types of process mining activities, 
discovery, conformance checking, and enhancement. These 
activities use an existing process model produced based on 
event logs (see Figure 2). Companies and organizations tend 
to produce their log files according to their own data 
standards. Therefore, a standardization model is needed, to 
unify and formalize the description of all business entities in 
the enterprise under analysis, allowing to efficiently monitor 
and extract knowledge from event logs. In our case, this 
standardization is provided through the theory of Blueprint 
Models.  

The target here is to build a unified DL-based business 
information standardization model, which is tailored to the 
needs of manufacturing organizations and consists of a 
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Figure 1. The architectural structure of the proposed approach 
 

number of blueprint entities. These blueprints essentially 
describe an environment that produces large amounts of 
different types of data in a specific, disciplined form, 
including the data sources and their outputs, as well as the 
business processes. The entities in the business process 
related blueprints essentially describe and correlate the 
process information stored in the DL, offering also links to 
events interacting in chronological order and based on 
dependencies. These special blueprints codify, integrate, and 
contextualize business data and processes. They provide 
parameterized solution-aware patterns that represent 
operational processes and inter-relate a variety of data of 
diverse data types, critical functional, sensor, and 
performance factors in business production. These smart 
manufacturing intelligence blueprints are built using 
ontologies and utilizing a dedicated blueprint processing data 
mechanism along with event logs to facilitate efficient 
execution of process discovery, conformance checking, and 
model enhancement.  

III. METHODOLOGY 

As mentioned above, an extended, unified 
standardization framework for smart manufacturing and 
business process related data residing in a DL is introduced 
in this work, which utilizes a semantic metadata enrichment 
mechanism via Blueprints [14]. The latter utilizes the 5Vs 
Big Data characteristics and ontologies to assist data 
processing (storing and retrieval) in DLs with pond 
architecture, with emphasis on organizing and preparing data 
to facilitate process mining.  

According to the proposed pond architecture, a DL 
consists of a set of data ponds, and each pond hosts / refers to 
a specific data type: structured, semi-structured and 
unstructured. Each pond contains a specialized storage and 
data processing system depending on the data type [11].  

 

 
 

Figure 2. The three types of process mining activities 

 
Process mining is performed mainly by using 

timestamped data logs. In a DL, however, there are various 
types of unstructured and semi-structured data, such as 
images, video, and sounds that may lack time information. 
Furthermore, structured data as well may not be ready to 
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participate in process mining activities, mainly because it 
does not have timestamps. To achieve a uniform and 
constrained approach to the way related data is stored, we 
will adopt the data blueprint for DL approach created in our 
previous work (see Figure 1) and extend it by creating three 
new manufacturing blueprints that describe the data 
produced by machines and processes in a factory. This is 
performed by enriching the metadata manufacturing 
semantics of the DL framework that will prepare the data to 
be used by process mining tasks.  

As mentioned above, this paper builds upon an existing 
framework [14] which is based on a metadata semantic 
enrichment mechanism that uses the notion of blueprints [16] 
to produce and organize meta-information related to each 
source producing data to be hosted in a DL. In this context, 
each data source is described via two types of blueprints as 
shown in Figure 3, which essentially utilize the 5Vs Big Data 
characteristics Volume, Velocity, Variety, Veracity and 
Value. The first includes information that is stable over time, 
such as, the name of the source and its velocity of data 
production. The second involves descriptors that vary as data 
is produced by the source in the course of time, such as the 
volume and date/time of production. The combination of 
these blueprints creates the Data Source Blueprint (DSB). 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 3. Stable and Data Blueprint 

 
As shown in Figure 1, every time data sources or data is 

pushed in and out of the DL (for example, Source 1 and 
Source 2, which are accompanied by their DSBs), the stable 
and dynamic blueprints are updated thus keeping a sort of 
history of these transactions on the Data Lake Blueprint 
(DLB) metadata history, which include the Structured Data 
Blueprint (SB), the Semi-structured Data Blueprint (SEB), 
and the Unstructured Data Blueprint (UB) residing in the 
data ponds. 

Essentially, the description of the sources helps to treat 
and manage many, multiple, and different types of data 
sources and to contribute to the DLs’ metadata enrichment 
before and after these sources become its members. When a 
data source becomes part of the DL, the metadata schema is 
utilized, describing the whole DL ontology. The filtering and 
retrieval of data is based on this metadata mechanism which 

involves attributes from the 5Vs, such as last source updates 
and keywords. 

The purpose of this paper is to extend the proposed 
framework via creating in the ponds the so-called data 
puddles, which are smaller, pre-build datasets as shown in 
Figure 1, which store data that machines produce in the 
production line (Machine and Event Blueprints). 
Furthermore, the existing framework is extended to include a 
process-related blueprint which provides information about 
the participation of each machine in various processes during 
production, that is, which machine executes each event 
within a process cycle.  

To test that the proposed framework works properly and 
that it meets the needs of a real factory, we investigated its 
applicability to a major local industrial player, namely 
Paradisiotis Group (PARG) [17]. PARG is one of the most 
significant local companies and experts in the field of poultry 
farming and trading of poultry meat in Cyprus. It offers a 
wide selection of high-quality products that meet the needs 
of modern consumers for convenience in cooking and 
healthy eating. The business processes and the 
manufacturing data of the factory are, of course, confidential, 
and therefore, this paper reports only a part of the processes 
with not so many details, associated with a masked and 
downgraded version of the data. Nevertheless, the case-study 
is more than enough to demonstrate the basic principles of 
the proposed framework and prove its applicability and 
usefulness. 

Every process in the manufacturing cycle consists of 
events and each event is executed by a machine that 
participates in a specific blueprint. Figure 4 describes an 
example of a process followed during the production of 
chicken nuggets at the PARG factory. First, the ingredients 
are prepared consisting of 85% chicken breast meat and 15% 
chicken skin. These ingredients are pushed into a flaker 
machine that cools down the raw material to a uniform 
temperature ranging between -2°C and 0°C and then shapes 
it to blocks. Subsequently, the blocks are chopped in smaller 
pieces of 8mm size by a mincing machine. Then, these 
minced pieces are mixed with dry ingredients (such as 
spices) and water, for 3-5 minutes and the end-product 
created consists of chicken nuggets formed to have a net 
weight of 40g each. Finally, the chicken nuggets are deep 
fried and packaged with appropriate labeling. 

The process analyzed above is practically followed for all 
pre-fried products, such as drumsticks and meatballs, with 
the only difference being in the forming, with size and shape 
changing accordingly depending on the product. In addition, 
for fresh products, such as burgers, the forming event is 
omitted and another event is added before downcooling, 
namely the deboning of raw material which is executed by 
the Tappler machine (out of scope of the present study). In 
all these processes, the material is pushed from machine to 
machine via conveyors. 

If we analyze the process of producing chicken nuggets 
depicted in Figure 4, we may derive that the following seven 
events take place:  

• Downcooling (ID: 12) 

• Chopping 8m (ID: 4) 
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• Mixing (ID: 7) 

• Forming (ID: 5) 

• Frying (ID: 2) 

• Packaging (ID: 3) 

• Labeling (ID: 9) 
This process consists of events that are carried-out by 

machines which produce data during execution. To prepare 
this data for process mining, we use the process blueprint 
that provides information about production and is part of the 
manufacturing DL, as shown in Figure 1, as well as a 
machine blueprint and an event blueprint, which describe the 
data that machines produce during the production cycle. 

 

 
 

Figure 4. PARG chicken nuggets manufacturing process 

 
As we can see on the previously described process, 10 

machines (3 of which perform the same task) participate in 
the chicken nuggets production: 

• Flaker (ID, Type: FL2, Downcooling) 

• Mincer (ID, Type: MC1, Chopping) 

• Mixer (ID, Type: MX3, Mixing) 

• Former (ID, Type: FRM1, Forming) 

• Fryer (ID, Type: FR4, Frying) 

• Labeler (ID, Type: LBI, Labeling) 

• Packager (ID, Type: PC3, Labeling) 

• Conveyors (x3) (ID, Type: CV1, CV2, CV3 
Conveyor) 

These machines execute multiple events in a specific 
order during the production of nuggets. The type of machine 
that executes a specific event is stored in the Manufacturing 
Blueprint thus being able to check the availability of 
machines of this type.  

The Process Blueprint captures the Process ID, the 
Process name and Events participation. For example, the 
chicken nuggets process blueprint is described as follows: 

• Process ID: 100    

• Process Name: Nuggets production 

• Events execution: 12, 4, 7, 5, 2, 3, 9 
The Event Blueprint consists of Event ID, Event name, 

Start Τime, End Time, Expected execution time, Executed by 
(Machine Type) and Dependencies, the latter describing 
what other event has to be executed before the current event 
may start. For example, the Mixing event is described by the 
following Event Blueprint: 

• Event ID: 7 

• Event name: Mixing nuggets ingredients 

• Start time: Timestamp 

• End time: Timestamp 

• Expected execution time: 4 minutes 

• Executed by (ID, Type): MX 

• Dependencies: 12, 4 
Furthermore, the Event Blueprint captures the Expected 
execution time of the event to be able to check for 
abnormalities in case the execution of the event is delayed 
for some reason. This is performed through the analysis of 
the start and end times, the resources utilized, the roles etc., 
so as to trace the causes of this delay. 

The Machine Blueprint captures Machine ID, Machine 
Type, Machine name and the IDs of the machines that may 
execute the specific event.   

Essentially, the proposed information structure for the 
description of the data sources that exist in a smart factory 
efficiently supports the management of multiple data 
formats. It also allows data to be prepared for process mining 
through the metadata semantic enrichment that requires 
events to be timestamped and set in chronological order 
according to the process executed. Finally, sources that 
produce unstructured and semi-structured data that are stored 
in the relevant pond of the proposed approach may also be 
linked with the rest of the event information and provide 
added value to the analysis of a certain process. For example, 
data from a sensor installed on some machine in the 
production line (e.g., counting packages in the case of 
chicken nuggets) is coupled with photos captured of a certain 
spot (e.g., when packaging or labeling) to allow for assessing 
productivity or the level of defects, offering a complete root-
cause analysis. 

IV. EXPERIMENTATION 

To demonstrate the applicability and effectiveness of the 
proposed framework, we will use the chicken nuggets 
production process of the PARG factory described in the 
previous section. The target here is twofold: First, to 
demonstrate how the proposed approach was used in practice 
for the PARG case-study and highlight some interesting 
findings. Second, to make a short assessment of different DL 
structures, including the proposed one, according to specific 
metrics and present the results that show the superiority of 
this approach. 

 

 
Figure 5. Indicative data for PARG’s chicken nuggets production process 
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Figure 5 presents an excerpt of the data produced by the 
Flaken and Mincing machines at PARG factory during the 
manufacturing process presented in Figure 4. This data is 
stored in the structured data pond of Figure 1. More 
specifically, each dataset produced by the two different 
machines is stored using a different puddle within the data 
pond. During this process other formats of data is generated 
as well, such as video and images (omitted due to size 
limitations) and, since these constitute unstructured and 
XML-based data (semi-structured), data is stored in the 
respective pond and distinct puddles, respectively.  

As presented in the previous sections, according to the 
process blueprint describing process with ID100, the 
execution of events is in sequence 12, 4, 7, 5, 2, 3, and 9. In 
order to retrieve the data for this specific process, the 
following SPARQL query should be executed: 

 
 SELECT ? DLsources 

          WHERE { 
          ? process ID <has ID> 100  } 

 
Running this query on the DL blueprint triggers first the 

retrieval of information on event execution from the process 
blueprint. Using this information as the basis, all relevant 
data for this process is retrieved and mapped depending on 
the order in which events are executed by machines. As 
shown in Figure 1, the process blueprint is connected with 
the event blueprint, which provides the expected execution 
time of each event by a machine, as well as the type of 
machine that executes this event, while the machine 
blueprint describes the events that can be executed by each 
machine. This information was combined with the data 
retrieved from the appropriate puddles residing in the 
specific pond of the DL and were made ready for use in the 
process mining activities that followed, the latter yielding 
some interesting results. For confidentiality purposes, we 
report here two of them very abstractly. 

A few delays were encountered in some of the steps, 
which were revealed during this analysis by comparing the 
expected with the actual execution time. This led to further 
investigating these delays through the start and end times of 
the relevant events. It was noticed that optimization in the 
way the sequence of the execution of tasks (events) by the 
machines had ample room for improvement in terms of 
timing: There were delays in commencing operation from a 
machine after the previous task was finished. This was partly 
attributed to roles and resources within the production line, 
as various tasks were shared amongst employees and, in 
some cases, multitasking was an issue. All the above were 
communicated to the senior management of PARG who 
acknowledged their value for future actions. 

The analysis was also supported by unstructured data 
(images of the production line) which was acknowledged by 
all parties involved (analysts, managers, workers) to have 
played a crucial role in identifying bottlenecks. Therefore, as 
the proposed framework allows for utilizing both 
unstructured and semi-structured data for process mining, it 
was considered a significant benefit. 

The second experimental aim is to investigate in general 
the readiness of the manufacturing data residing in a DL to 

participate in process mining tasks, when the DL has the 
following structure: 

• without the proposed metadata enrichment 
mechanism 

• with the metadata mechanism without a pond 
architecture 

• with metadata mechanism and a pond architecture 

• with metadata mechanism, and with pond and puddle 
architecture (the proposal of this paper) 

The following characteristics/metrics are utilized for each 
DL structure: 

• Granularity  

• Ease of storing/retrieval  

• Process mining readiness 

• Expandability 
We define Granularity [14] as the ability to refine the 

type of information that needs to be retrieved for a specific 
factory process. This ability is expressed by the number of 
fine-grained levels the DL mechanism supports for defining 
the information sought. Ease of storing/retrieval refers to the 
ability of the DL structure to store or retrieve data in the DL 
in a simple and easy way. It is assumed here that the retrieval 
action is efficient enough to return the desired parts of the 
information sought. This characteristic is reflected on the 
number of steps that need to be executed for the process of 
storing and retrieving data items to be completed. Moreover, 
we define Expandability as the ability to expand the structure 
of the DL and the metadata mechanism with further 
functional characteristics or other supporting techniques and 
approaches, such as visual querying and blockchain. 
Obviously, the more open the mechanism for expansion, the 
better. Finally, Process mining readiness is reflected in the 
number of steps that need to be executed after the query is 
executed for the data to be fed to process mining activities. 
The aforementioned characteristics are evaluated using a 
Likert linguistic scale, including the values Low, Medium, 
and High. Table 1 provides a definition of Low, Medium and 
High for each characteristic introduced.  

 
TABLE 1. DEFINITION OF LOW, MEDIUM, AND HIGH OF EACH 

ASSESMENT CHARACTERISTIC 

 

Characteristic Low Medium High 

Granularity 1 level 2 levels 
3 or more 

levels 

Ease of storing 
/retrieval 

5 or more 
actions 

3-4 actions 
2 actions 
maximum 

Expandability 
No or 

limited 
Normal Unlimited 

Process mining 
readiness 

4 – 5 
actions 

2 – 3 
actions 

1 action 
maximum 
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As an example, let us now assume that the PARG 
factory’s DL owner wants to retrieve all data present in the 
DL relevant to the process of chicken nuggets production 
presented in the previous section so as to feed it to the 
process mining stages of discovery, conformance checking, 
and model enhancement. Note that the PARG factory 
consists of hundreds of production processes. In order to 
retrieve the data, the following SPARQL query should be 
formed and executed: 

 

 SELECT ? Dlsources 

        WHERE { process ID <has ID> 20 } 
 

TABLE 2. EVALUATION AND COMPARISON OF DL STRUCTURES 
 

Approach 
Granu-
larity 

Ease of 
storing 
/retriev. 

Process 
mining 
readin. 

Expanda-
bility 

Without 
metadata 

mechanism 
Low Low Low Low 

With metadata 
mechanism 

without pond 
architecture 

Medium Medium Low Unlimited 

With metadata 
mechanism 
with pond 

architecture 

High High Medium Unlimited 

With metadata 
mechanism 

with pond and 
puddle 

architecture 

High High High Unlimited 

 

The metadata mechanism with pond architecture (third 
from top in Table 2) may be considered as the benchmark of 
our comparison [14]. It presents High Granularity, High 
Ease of storing/retrieval using the stable and dynamic data 
source blueprint descriptions, with a Medium Process 
Mining Readiness, and High Expandability. These values are 
attributed as follows: High Granularity is achieved using 
keywords that essentially describe the sources and the 
blueprint values. This enables the user to define details at the 
level of the properties offered, enabling the retrieval of data 
based on fine-grained query-like information. The High Ease 
of storing/retrieval is achieved by the DL metadata history 
which stores the blueprint description of the DL as each time 
data sources are pushed into it. This helps the mechanism to 
place the sources to a specific pond according to the structure 
of the data involved (structured, semi-structured and 
unstructured). This source distribution in the DL also 
facilitates simple and Easy Storing and Retrieval of the 
information stored. In addition, the implementation of this 
DL architecture is based on the Hadoop ecosystem and hence 
this provides High Expandability. Finally, the metadata 
mechanism provides Medium Level of Process Mining 
Readiness due to the lack of defining dependencies and 
describing the process, events and machines in the 
production line.  

It is logical that, as we move to the upper structural forms 
of Table 2, the evaluation of the selected characteristics gets 

worse: Assuming that PARG’s DL has an architecture 
without metadata, a SPARQL query could not be executed at 
all. In addition, with this structure, all the data is pushed to 
the DL without any management policy and as a result the 
DL is highly likely to transform into a Data Swamp, while at 
the same time it would take quite a few actions (more than 
five) to retrieve data because all datasets will need to be 
visited and checked if they are related to the specific process. 
Process Mining Readiness is Low as no clear separation of 
events, type, dependencies etc., exists, let alone the fact that 
data needs to be timestamped. Finally, in the absence of a 
management mechanism, Expandability may be 
characterized as Low. Taking into consideration now that the 
PARG DL has a structure with the proposed metadata 
enrichment mechanism but without a pond architecture, the 
data is pushed to the DL following a metadata policy. As a 
result, this DL can be characterized with Medium 
Granularity due to the fact that the metadata mechanism 
provides 2 levels of Granularity, which are provided by the 
metadata mechanism and the pond the data is stored in, with 
Low to Medium Ease of storing/retrieval as the data is 
pushed to the DL with its metadata. Therefore, in order to 
retrieve it, one needs to access and process the metadata to 
check if a certain piece of information is related to the 
specific process examined. This DL structure could be 
characterized also with Low Process Mining Readiness 
because, after executing a query, the data is not separated 
according to its type and an additional task to separate and 
timestamp it should be performed, along with proper 
definition of any dependencies. Finally, it can be 
characterized with Unlimited Expandability as the metadata 
mechanism allows for practically any extension.   

The proposed metadata mechanism with pond and puddle 
architecture can be characterized similarly to the previous 
benchmark (3rd row in Table 2), but with High Process 
Mining Readiness. By extending the mechanism reported in 
[14] and introducing the process blueprint that captures the 
specific events triggered while a process is executed, the 
event blueprint that captures the type of machines that 
participate in a process and the machines blueprint that 
captures the events that specific machines can trigger, results 
in a data environment ready to perform process mining 
readiness. Furthermore, by extending data ponds with data 
puddles where each puddle stores data from each machine on 
PARG factory, enables a query to provide the requested data 
of a specific process to be separated according to its format 
types. 

Table 2 sums up all the information of the short 
comparison between the DL structures made in this section. 
It is evident that the proposed mechanism outperforms all 
alternatives in terms of the Process mining readiness 
characteristic as a result of the extensions made in the 
blueprints. 

V. CONCLUSIONS 

This paper proposed a novel smart manufacturing DL 
framework for process mining utilizing a semantic 
enrichment mechanism via metadata blueprints [14]. The 
framework utilizes the 5Vs Big Data characteristics and 
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blueprint ontologies to assist data processing (storing and 
retrieval) in DLs, the latter being organized with a pond 
architecture that hosts different types of data, structured, 
semi-structured and unstructured, enhanced by data puddles. 
The puddles consist of data produced by machines in the 
production line and essentially prepare the data in the ponds 
for process mining activities. 

The applicability of the framework was demonstrated and 
assessed through a real-world case-study on a local poultry 
meat production factory. The process of producing chicken 
nuggets was modeled with relevant data captured, stored and 
processed. Process mining revealed delays and bottlenecks in 
the sequencing of the execution of events by machines and 
personnel which may be avoided by optimizing task sharing 
amongst roles. The senior management of the factory greatly 
appreciated the support of the proposed approach for 
decision support with respect to production control. 

Furthermore, a short comparison with different DL 
structures was performed revealing the high potential of the 
proposed approach as it offers a more complete 
characterization of the data sources and covers a set of key 
features reported in literature. Especially, the inclusion of 
data paddles can greatly enhance the management of 
manufacturing data that can later participate in process 
mining activities, such as discovery, conformance checking, 
and model enhancement utilizing all available data types.  

Future research steps will include the full implementation 
of the proposed mechanism in cooperation with the industrial 
partner using the metadata model described in this work and 
extending its application in the context of structured, semi-
structured and unstructured data present in the processes of 
the factory. This will allow the evaluation of the proposed 
framework in more detail and performing further process 
mining steps utilizing real-world manufacturing data. As a 
result, investigation of how to improve privacy, security, and 
data governance in DLs will be made feasible, also by 
extending it to include blockchain technology characteristics 
and smart contracts. 
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