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Abstract—In the context of advances in software testing, this
paper is related to the generation of test suites and black box
testing. Test coverage is a popular technique to evaluate test
quality: a test suite that can exercise a large part of the paths
in a program will provide a high confidence that the program
will work as expected. One way to obtain test suites with high
path coverage is through model-based testing, and specifically
using a diagram, which represents the various states in the
program and their possible transitions. Using model-based
testing, it is possible to obtain a set of paths that achieves a
set of coverage criteria. Constraint programming approaches
can then be used to turn each path into a test case with its
program inputs and oracle, by solving the input and output
constraints collected along the path. In this paper, we present
a case study on this combination of techniques, by developing
a state diagram that represents a popular piece of software,
and using it to derive a set of test cases that achieve path
coverage through constraint programming. Specifically, two
tools have been used: GraphWalker (to obtain a set of paths
through the program) and MiniZinc (to obtain test inputs by
solving the constraints along the paths). We have obtained good
results on the cat GNU Coreutils utility, especially in terms
of ease of understanding the logic of the software through the
GraphWalker diagram and its visual execution, as well as the
agility in obtaining the restrictions to be solved to achieve path
coverage.

Index Terms—Keywords–Model-based Testing; Path Coverage;
Constraint Programming; GraphWalker; MiniZinc.

I. INTRODUCTION

Model-Based Testing (MBT) is one of the most frequently
used techniques in software testing, because it can represent
the program in a schematic and simplified way, abstracting
from the implementation details or the language used. As
defined in [15]: “Model-based testing is an efficient and
adaptable method of testing software by creating a model
describing the behavior of the system under test”. In addition,
it is easier to check the coverage criteria on the program model.
This technique is used at different levels of software testing,
especially in system testing, and with a broad range of levels
of automation with various tools [1] [10]. One of the tools
is GraphWalker (GW) [11], which provides graphical model
design and execution capabilities. On the other hand, in order
to test a software, it is useful to have a set of test cases that
meet some coverage criteria. To achieve this coverage, it is

usual during test case generation to establish some restrictions
on the inputs and expected outputs of the program. In order
to solve the constraints needed to follow a specific path and
identify the expected outputs, one option is to use Constraint
Programming (CP). In [8], CP is described as “The basic
idea in constraint programming is that the user states the
constraints and a general purpose constraint solver is used
to solve them. Constraints are just relations, and a Constraint
Satisfaction Problem (CSP) states which relations should hold
among the given decision variables”. Like MBT, CP has tools
to implement the constraint models: Kjellerstrand surveyed the
available tools in [9].

In this paper, MiniZinc (MZ) [6] will be used to implement
the constraint models of the paths obtained with GW. A com-
bination of both techniques has the advantage of automating
the testing process, simplifying the visual understanding of the
logic of the program to be tested, the execution of the model
itself, and the generation of a test suite that meets certain path
coverage criteria [12]. We propose an example of using both
techniques for the cat utility.

This paper is organized as follows: Section II introduces the
proposal and the concepts of the techniques used, Section III
develops the cat case study, explaining the tools used and the
process followed to obtain the model and the set of test cases.
Section IV summarizes related work and finally, Section V
presents conclusions and future work.

II. PROPOSAL

This section describes in a generic way the process followed
to generate test cases suites with path coverage, starting from
a model of the program under test, and then CP to implement
the constraints of the paths to cover. We have based this only
on the execution and specification of the program (without
accessing the source code). The starting point is to create
a model of the software’s behaviour, such as a Finite State
Machine (FSM). The FSM can transition from one state to
another in response to some inputs. In this paper, states are
represented by nodes (or vertices) and transitions by edges.
The proposed combination follows these steps:

1) Model-Based Testing: create a model of the program
behaviour as a finite state machine, by defining and
labeling states and transitions; add input and output
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constraints for each transition expressed by propositional
logic; run the model with a given path generator and
coverage criteria (e.g., full edge coverage and random
search), achieving a set of paths that fulfil that coverage
as output of this step.

2) Constraint Programming: from the paths generated
previously, collect the input constraints, mapping to
implement as CP models covering the paths; execute
the implemented models to obtain the test suite; run
the program to be tested with the test suite obtained
in the previous step, using the output constraints from
the relevant path as the test oracle.

A. Formalisation of input and output conditions as a CSP
This paper considers the example given as a CSP (Constraint

Satisfaction Problem) by declaring constraints on the problem
area (the space of possible solutions) and consequently finding
solutions that satisfy all the constraints. In order to formally
represent the input and output conditions included in the GW
model diagram, the notation of a CSP proposed by Barber
et al. in [7] will be followed. The focus in this paper is on
problems with finite domains, which consist of a finite set of
variables, a finite domain of values for each variable and a set
of constraints that limit the possible values that these variables
can take in their domain. The resolution of a CSP, as usual
with representation systems, consists of two phases:

1) Modelling the problem as a constraint satisfaction prob-
lem (CSP).

2) Processing the constraints by means of search algo-
rithms: this step in our approach is achieved by MiniZinc
and the solvers integrated in it.

Definition 1. A constraint satisfaction problem (CSP) is an
ordered triple (X,D,C) where:

• X is a set of n variables x1, ..., xn.
• D =〈D1,. . . ,Dn〉 is a vector of domains (Di is the

domain containing all the possible values that the variable
xi can take).

• C is a finite set of constraints. Each constraint is defined
on a set of k variables by means of a predicate that
restricts the values that the variables can take.

Definition 2. An assignment of variables, (x, a), is a
variable-value pair representing the assignment of the value
a to the variable x. An assignment of a set of variables is
a tuple of ordered pairs, ((x1, a1), ..., (xi, ai)), where each
ordered pair (xi, ai) assigns the value ai to the variable xi.

Definition 3. A solution to a CSP is an assignment of values
to all variables such that all constraints are satisfied. So, a
solution is a tuple containing all the variables of the problem.

Specifically for our example cat utility, X is represented
by the variable x, D represents all the possible values of the
variable x, according to the defined domain (strings), and C is
formed by all the propositions applicable to the variables and
which establish restrictions on their values (e.g.,: is word(x)
belongs to C; it is true when x is a string that contains alphabet
characters). Table I shows the notation to express our CSP
logic propositions in GW and their mappings to MZ.

III. CASE STUDY

To show our approach, the GNU Coreutils cat tool has
been selected [4]. Its manual page [5] shows that it takes
a number of optional flags, followed by zero or more file
paths, and it will be used as reference material to design a set
of black-box tests. Based on the options, inputs and outputs
when executing cat, we will draw the diagram of the program
model. The rest of this section will explain how the steps in
Section II will be applied to cat.

A. GraphWalker diagram

GW is an open-source MBT tool [11] available in three
versions: web-based, console-based, and Eclipse plugin.

From a model, GW will generate a walk through it.
A model has a start element, a generator that determines
how the next step in the path is chosen, and an asso-
ciated stop condition that tells GW when to finish its
execution. This is formulated through an expression such
as random(edge_coverage(100)), which represents a
random walk aiming for 100% edge coverage. GW models
can contain arbitrary JavaScript-based code for the actions and
guards of their transitions. A transition will only activate and
will execute its action if its guard evaluates to a true value. For
example, in cat, a guard would be, if the -b option overrides
the -n option, in order to execute the -n option, it must be
checked that the -b option has not been previously executed.
This is carried out by checking whether the output condition
of option -b is already in the condition list of the path.

1) Modeling cat in GW: Figure 1 shows the GW model
for cat. Three states have been considered: an initial state
(init), a state that includes the options (options) and an
exit status (exit). There is an empty (epsilon) transition from
init to options that represents the start of the inputs for
the test case, an end_of_args transition from options
to exit that marks the end of the list of arguments, and a
loop transition that returns to init, signalling the start of
the next test case. The loop transition is needed to allow
a single execution of GW to produce multiple tests that all
together meet the required coverage criteria: without it, only
one test case would be generated. There is a transition for each
of the cat input arguments (-b, -E,-n, -s, -T, -v,
input), that loop back to the same options state, allowing
multiple options and inputs to be accumulated. In addition to
these options, other options appear in the manual such as -A,

Fig. 1: GraphWalker diagram for the cat program.
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TABLE I: MAPPING INTERMEDIATE CODE TO MINIZINC CONSTRAINT.

Proposition MiniZinc constraint

input string(x) var x: string;
contains(x, s) str_contains(x, s);
is word(x) str_len(x) > 0; str_alphabet(x, \abcd...");
is nonprinting(x) var x: string of {"\n","\b"," "}; str_len(x) > 0; str_alphabet(x, "\n\b. . .");
x > 0 var x: int; x > 0;
output string(x) var x: string;

-e or -t, but they have been simplified for clarity and because
they are shorthand combinations of the previous ones.

2) Adding the input and output constraints of each tran-
sition in propositional logic language: For each of the cat
options, input and output restrictions were modelled through
transition guards and actions. These guards and actions were
defined so that valid combinations of options are tested, and
unnecessary repetitions of options are avoided to keep the
length of the list of arguments within a readable size. For
each option’s transition, a guard is used to ensure that it is
not already included in the path, and an action records the
additional constraints for the current path. Input and output
constraints in the GW model are expressed as conjunction of
propositions. For example, for the option -E, which displays $
character at end of each line, the action records the input con-
dition that is input string(s) ∧ contains(s, ”\n”), meaning
that must have at least two lines (with an end line character),
in order to observe its effect on lines in the output. The added
output condition is output string(o) ∧ contains(”$”, o).

3) Validating the GW model through execution: GW was
given the expression random(edge_coverage(100) &&
reached_vertex(exit)) to generate a walk over the
graph: a random walk that achieves full edge coverage and
reaches the exit state. The model was then run and visited
elements were colored: by the end of the execution, the entire
diagram had been colored. Furthermore, by running the model
in the GW CLI (GraphWalker Command-Line Interface), we
obtain a set of paths that will result in a set of test cases that
meets the coverage conditions.

B. Constraint programming with MiniZinc

MiniZinc is an open source constraint modeling language.
It can be used to model constraint satisfaction problems
and high-level, solver-independent optimization problems. The
default distribution of MiniZinc includes a graphical interface
for ease of use, as well as examples [6]. The data file is
separate from the model file. Both are translated to obtain
a FlatZinc model, which depends on the specific solver used.
A MiniZinc model consists of a set of variables and parameter
declarations, followed by a set of constraints. Given that cat
is a text-centric program, we used MiniZinc with the G-
Strings solver, a variant of the Gecode solver which can solve
constraints over strings [13] [14].

1) Implementing each path’s input constraints as CP mod-
els in MZ: A base template for all constraint models in cat
was created, containing the variables and generic constraints
that needed to be met for all paths. This was followed by a set

1%%% GENERIC INPUT VARIABLES (all options)
2var string of {”a”,”b”...”z”,”:”,”/”,”.”,”\n”,”\b”,” ”,”\t”}:

input string;
3%%% CONDITIONS − INPUT CONSTRAINTS
4constraint str len(input string) > 0; % must not be empty
5%%% −T option input constraint: must have TAB
6constraint str contains(input string, ”\t”);
7%%% −E option input constraint: must have linebreak
8constraint str contains(input string, ”\n”);
9
10solve satisfy;

Listing 1: Excerpt of MiniZinc model for running cat with
-T and -E.

of constraint model fragment for each option of cat achieved
from GW output and mapping to MZ language, as shown in
Table I. For instance, Listing 1 shows the model for the input
constraints when using both -T and -E as options.

2) Running the implemented model in MZ to obtain the
test cases of the defined set: The MZ models can then
be solved from the command line, using mzn-gstrings
modelName.mzn. The execution of the model in List-
ing 1 can be redirected to a file (e.g., a text file named
InputTEoptions.txt) as a test case of the previously
obtained suite with GW. It will generate a test case to check
the execution of cat with the options -TE. Therefore, it must
have at least one tab character and two lines (an end-of-line
character).

C. Test cat against the obtained test cases

The output file of the previous execution (InputTEop-
tions.txt) is the input to execute cat with the indicated op-
tions: cat -TE InputTEoptions.txt. The output con-
ditions specified in the GW diagram model (step 1) provide
an oracle to check whether the execution of cat with the
corresponding options and the file containing the input in-
formation generated by MZ is met. Continuing with the ex-
ample above, the output conditions were output string(x)∧
contains(”\t”, x)∧contains(”$”, x). It has been verified that
the inputs are indeed generated correctly by meeting the input
constraints for the combined options of each path. It is impor-
tant to note that our configuration of GW produces random
walks, and therefore each execution may produce a different
set of tests that achieves the same coverage criteria. The
following results are from a specific execution of GW, using
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the command-line version to execute the JSON file produced
by the web-based modeling tool (GW Studio). The execution
produced input and output conditions for 5 test cases, which
were then solved with MiniZinc to generate the specific inputs
to be used. Table II shows the characteristics of the test
cases. Four combined MZ models have been implemented to

TABLE II: RESULTS OF cat TEST SUITE EXECUTION,
INCLUDING LINE COVERAGE OVER ITS 281 LINES

Test suite Options Cumulative line coverage (%)

Tc1 -E ,-s 38.79
Tc2 (none) 38.79
Tc3 -s ,-b 43.71
Tc4 -E ,-T ,-n, -b, -s 46.62
Tc5 -E ,-T, -v ,-b ,-s 51.25

generate the inputs for each of these test cases (https://nube.
uca.es/index.php/s/Z3lHZFAueE6FV4G) (Tc2 represents when
no option has been applied). Afterwards, cat has been run
applying the options and inputs generated by the combined
MZ models, obtaining the expected results. The constraints
on the outputs have been checked manually. In addition, to
find out the percentage of executed code, we have also used
the source code coverage analysis and profiling tool, gcov
(https://gcc.gnu.org/onlinedocs/gcc/Gcov.html), which gener-
ates accurate counts of the number of times each statement
in a program is executed and annotates the source code to add
instrumentation. Over 281 executed lines of source code, every
test case has executed the cumulative percentage indicated in
the Table II. We can observe that when these test cases are
run consecutively, the tc1 covers 38.79% of the lines executed;
there is no difference in coverage between the tc1 and tc2,
since no options are included in the cat run. From the tc1
to the tc3, line coverage increases by 4.92 points, by simply
substituting option -E for option -b, reaching 43.71% of lines
covered. Nevertheless, between the tc3 and tc4 case, despite the
inclusion of two more options, the percentage of line coverage
only increases 2.91 points over the previous one. Finally, it
is interesting to note that between the tc4 and tc5 cases, the
coverage increases up to 4.63 points, having the same number
of options as the previous case, simply substituting option -n
by option -v, reaching a cumulative percentage, total for all
the test cases of 51.25.

IV. RELATED WORK

In [3], Sun et al. propose a constraint-based model-driven
testing approach for web services. They extend the Web
Services Description Language (WSDL) to include constraints
related to web services behavior and make an empirical study
with 3 real-life applications. Although it is a complete study,
it is specific to web services, unlike our proposal, which aims
to be more generic.

Vishal et al. [16] applied MBT using Spec Explorer to
the Image Detection Subsystem responsible for generation,
detection and translation of X-rays to images. They developed
their own tool that interfaces Spec Explorer with a constraint

solver to generate specific test data for the model. They used
a small constraint solver called ZogSolve, limited and without
recent updates compared to MiniZinc which contains a graph-
ical interface and supports numerous constraint solvers and is
updated frequently. Furthermore, Spec Explorer is proprietary
software, unlike GraphWalker which is open source.

RESTest [2] is a framework for automated black-box
testing of RESTful APIs (representational state transfer
application programming interface). Among its main features,
RESTest supports the specification and automated analysis
of dependencies between parameters, allowing the use of
constraint solvers for the automated generation of valid
test cases. Similar to our proposal, it is based on tests for
black box environments, where the code is not accessible.
In this case, open source software tools are used, such as
IDLReasoner. Given an the OpenAPI Specification (OAS) and
a set of IDL dependencies (e.g., using IDL4OAS), the tool
translates them into a CSP expressed in MiniZinc. Afterwards,
they analyze the result of CSP, to find out whether an API
call satisfies all dependencies between parameters. Therefore,
CSP is used for the same purpose as in [16] to manage the
dependencies between parameters. However, unlike the work
presented here, MBT is used as a technique to obtain the
system model, but visual representations such as those of
GW are not used.
Overall, unlike other approaches, our proposal has the
advantage of using two open source and frequently updated
tools. In addition, the proposal aims to be more general, both
in applications and in the domains in which it is applied.

Although a simple case study of the proposed technique
has been presented for didactic purposes, we believe that it
is possible to apply this technique to other more complex
systems, as long as they can be represented in GraphWalker
as a finite state transition machine and the input conditions
can be represented as a set of constraints for a constraint
solver system. For constraint implementation and execution,
we have chosen MiniZinc, because of the advantages discussed
in Section III, but it is possible to use other tools containing
constraint solvers. Moreover, there may be other model rep-
resentation software tools similar to GraphWalker that can be
used to represent the model. It should be ensured that they
are also capable of running such a model and that they are
configurable in terms of path coverage.

V. CONCLUSION

It has been proposed to use the combined MBT and CP
techniques to generate a test cases suite that meets the path
coverage criteria. The process has been developed through
a case study of a widely known utility, cat, using Graph-
Walker to represent the state model and execute it visually.
GraphWalker has produced a set of paths providing sets of
input constraints to be solved through CP using the MiniZinc
tool to generate the test cases covering the paths. Finally, the
results have been checked by running cat with the corre-
sponding options and the generated inputs, while measuring
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test coverage with gcov. Therefore, we conclude that the
combination of both techniques and the presented tools is a
promising approach to facilitate software testing, making the
process more readable by representing and running the model
in a visual way. As future work, we intend to test this process
with other larger programs and in other contexts, and introduce
more formalisation and automation on the constraints.
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