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Abstract—Most software engineering empirical studies are
based on the analysis of open-source code. The reason is that
open-source code is readily available, while usually software
development organizations do not give access to their code, not
even when the purpose is research and the code itself will not be
disclosed. As a consequence, the corpus of empirical knowledge
is related almost exclusively to open-source software. This poses
a quite important question: do the conclusions we draw from
the analysis of open-source code apply to close-source code as
well? In this paper, a comparison of open-source and closed-
source code is performed, to provide some preliminary answers
to the question. Specifically, the goal of the paper is to evaluate
whether static code measures from open-source code are similar to
those obtained from close-source code. To this end, an empirical
study was performed, involving closed-source code from two
organizations and open-source code from a few different projects.
The most popular static code measures were collected using a
commercial tool, and compared. The study shows that open-
source code measures appear similar to the measures obtained
from industrial closed-source code. However, we must note that
the study reported here involved just a few industrial projects’
measures. Therefore, replications of the work presented here
would be very useful.

Keywords-software code measures; static code measures; open-
source code; closed-source code.

I. INTRODUCTION

Software development organizations make their code avail-
able to researchers very rarely. This is due to their need
for preserving the competitive advantage deriving from code
ownership. As a consequence, the great majority of the
empirical studies involving source code analyze open-source
code, which is freely available. The conclusions reached by
these studies are expected to apply to all code, including
industrial closed-source code. However, the generalizability of
studies based on open-source software relies on the assumption
that closed-source software is “similar” to open-source software.
Specifically, it is expected that the measures of open-source
code are representative of closed-source software as well.

This paper describes an empirical study that aims at verifying
if and to what extent code measures of open- and closed-source
projects are similar. To this end, we measured a set of industrial
closed-source projects and a set of open-source projects and
compared the resulting measures.

Based on our results, there are no major differences among
the measures collected from industrial and open-source projects.
The study reported here has the merit to provide some
initial objective evidence that studying open-source projects as
representative of closed-source projects is sound.

In this study, the investigation is limited to static code
measures for Java projects. Static measures can be defined
at various levels of granularity (e.g., method, class, file, sub-
system, etc.): here we deal only with method-level measures.

The paper is structured as follows. Section II describes the
static code measures investigated in this study. Section III
describes the empirical study, whose results are given in
Section IV. Section V discusses the results obtained by the
study. Section VI discusses the threats to the validity of
the study. Section VII accounts for related work. Finally, in
Section VIII some conclusions are drawn, and future work is
outlined.

II. CODE MEASURES

Since the first high-level programming languages were
introduced, several measures were proposed, to represent the
possibly relevant characteristics of code [1]. For instance, the
size of a software module is usually measured in terms of
Lines Of Code (LOC), while McCabe Complexity (also known
as Cyclomatic Complexity) [2] was proposed to represent
the “complexity” of code, with the idea that high levels
of complexity characterize code that is difficult to test and
maintain. The object-oriented measures by Chidamber and
Kemerer [3] were proposed to recognize poor software design.
For instance, modules with high levels of coupling are supposed
to be associated with difficult maintenance.

We have considered some of the most popular method-
level measures used in the research literature and the software
industry: they are listed in Table I.

TABLE I. THE MEASURES COLLECTED VIA SOURCEMETER.

Metric name Abbreviation
Halstead Calculated Program Length HCPL
Halstead Volume HVOL
Maintainability Index (Original version) MI
McCabe’s Cyclomatic Complexity McCC
Lines of Code LOC

Halstead proposed several code metrics [4], based on the
total number of occurrences of operators N1, the total number
of occurrences of operands N2, the number of distinct operators
η1 and the number of distinct operands η2. Halstead Volume
(HVOL) is defined as HV OL = (N1 +N2) ∗ log2(η1 + η2);
Halstead Calculated Program Length (HCPL) is defined as
HCPL = η1 ∗ log2(η1)+ η2 ∗ log2(η2). McCabe’s complexity
(McCC) is used to indicate the complexity of a program, being
the number of linearly independent paths through a program’s
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source code [2]. The Maintainability Index (MI) [5] is defined
as MI = 171− 5.2 ∗ ln(HV OL)− 0.23 ∗ (McCC)− 16.2 ∗
ln(LLOC), where LLOC is the number of Logical LOC, i.e.,
the number of non-empty and non-comment code lines.

Interested readers can find additional information concerning
the definition and meaning of the selected metrics in the
documentation of SourceMeter [6], the tool we used to to
collect code measures.

III. THE EMPIRICAL STUDY

The empirical study involved closed-source and open-source
Java programs. This code was measured, and the collected data
were analyzed via well established statistical methods. The
dataset is described in Section III-A, while the measurement
and analysis methods are described in Section III-B. The results
we obtained are reported in Section IV.

A. The Dataset

As already mentioned, obtaining source code from software
industries is not easy. Therefore, the closed-source code
analyzed within the study is a convenience sample: it is the
code that we were able to obtain from industrial developers.
The open-source code analyzed within the study is the open-
source code used within or together with the analyzed industrial
projects. This guarantees a sort of “homogeneity” of code with
respect to the required quality.

The projects that supplied the code for the study are listed
in Table II, where some descriptive statistics are also given.
Because of confidentiality reasons, the names of the industrial
projects that supplied the code to be measured are not given:
these projects are named Industrial1, Industrial2, Industrial3
(abbreviated Ind1, Ind2 and Ind3 where necessary). Ind1 and
Ind2 are client and contract management systems from a large
service company, Ind3 is the back-end of a web application. All
of the industrial projects aimed to develop software supporting
the main business of the owner companies, i.e., none of the
considered projects delivered a product to be sold on the market.
Also, all projects were developed by external software houses
on behalf of the owner companies. Because of confidentiality
reasons, the code and the raw measures are not available.

TABLE II. DESCRIPTIVE STATISTICS OF THE DATASETS.

Number LOC LOC per file
of files total mean sd median range

Industrial1 1507 202299 134 268 91 [1–6851]
Industrial2 280 56419 201 286 93 [3–2336]
Industrial3 1323 250193 189 307 100 [6–3644]
Log4J 1067 126354 118 121 80 [20–1357]
JCaptcha 248 25292 102 99 75 [16–691]
Pdfbox 1215 252158 208 251 125 [21–2966]
JasperReports 3177 533008 168 285 89 [27–4398]
Hibernate 2392 236527 99 127 63 [9–2146]

Table II provides, for each analyzed project, the number
of files, the total number of LOC, and the mean, standard
deviation, median and range of the LOC per file.

B. The Method

The first phase of the study consisted in measuring the code.
We used SourceMeter [6] to obtain the measures.

The second step consisted in selecting the data for the study.
We excluded from the study all the methods having unitary
McCabe complexity, i.e., the methods that contain no decision
points, since those methods would bias the results. In fact,
these methods are quite numerous (since they include all the
setters and getters) and very small (the excluded methods have
mean and median LOC in the [3,6] range).

After removing the methods having unitary McCabe com-
plexity, we got the dataset whose descriptive statistics are given
in Table III.

TABLE III. DESCRIPTIVE STATISTICS OF THE DATASETS, AFTER REMOVING
METHODS WITH UNITARY MCCABE COMPLEXITY.

Num. LOC LOC per method
methods total mean sd median range

Industrial1 1342 32654 24 38 15 [3,626]
Industrial2 703 17099 24 25 16 [3,197]
Industrial3 3339 127170 38 61 21 [3,1272]
Log4J 1729 29948 17 17 12 [3,176]
JCaptcha 362 6386 18 15 13 [3,100]
Pdfbox 3738 92679 25 26 16 [3,380]
JasperReports 6815 180104 26 31 17 [3,453]
Hibernate 2746 46505 17 15 12 [3,221]

The third step consisted in comparing the collected measures.
To this end, we provide a visual representation of the data
via boxplots that describe the distributions, the mean and the
median of the measures collected from each project. We also
performed statistical analysis:

1) We performed a Kruskal-Wallis test for all the considered
metrics, since the conditions for performing ANOVA
tests did not hold. As a result, we obtained that, for
all metrics, projects are not all equivalent with respect to
the considered measure.

2) To explore in detail the differences among projects, we
performed Wilcoxon rank sum tests for all project pairs,
for all the considered metrics.

3) When a Wilcoxon rank sum test excluded that the measures
are equivalent, we evaluated the effect size via Hedge’s g.

In all the performed analysis, we considered the results
significant at the usual α = 0.05 level.

IV. RESULTS OF THE STUDY

This section reports the data collected via the empirical study,
grouped according to the type of property being measured.

A. Size measures

Boxplots of LOC measures are given in Figure 1. For the
sake of readability, Figure 2 provides the same data, excluding
outliers. The mean values are represented as blue diamonds.

The results of the Wilcoxon rank sum tests and Hedges’s g
evaluations are given in Table IV. Specifically, a cell includes
symbol ‘=’ if the Wilcoxon rank sum test could not exclude
that the considered measures are equivalent; otherwise, a cell
includes one of the symbols ‘n,’ ‘s,’ ‘m’ for negligible, small
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Figure 1. Boxplots of size (measured in LoC) distributions.

Figure 2. Boxplots of size (measured in LoC) distributions. Outliers omitted.

and medium effect size, respectively (in no case a large effect
size was found).

TABLE IV. WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR
LOC.

Ind1 Ind2 Ind3 Log4J JCaptcha Pdfbox JReports Hibernate
Ind1 – n s s n n n s
Ind2 n – s s s = n s
Ind3 s s – s s s s s
Log4J s s s – n s s n
JCaptcha n s s n – s s n
Pdfbox n = s s s – n s
JReports n n s s s n – s
Hibernate s s s n n s s –

B. Complexity

Boxplots of McCabe cyclomatic complexity measures are
given in Figure 3. For the sake of readability, Figure 4 provides
the same data, excluding outliers.

Figure 3. Boxplots of complexity (measured using McCabe cyclomatic
complexity) distributions.

Figure 4. Boxplots of size (measured using McCabe cyclomatic complexity)
distributions. Outliers omitted.

The results of the Wilcoxon rank sum tests and Hedges’s g
evaluations are given in Table V.

TABLE V. WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR
MCCABE COMPLEXITY.

Ind1 Ind2 Ind3 Log4J JCaptcha Pdfbox JReports Hibernate
Indl1 – n n s s n = s
Ind2 n – s s s = n s
Ind3 n s – s s s s s
Log4J s s s – n n n s
JCaptcha s s s n – s s n
Pdfbox n = s n s – n s
JReports = n s n s n – s
Hibernate s s s s n s s –

C. Maintainability

Maintainability is measured via the Maintainability Index
(MI) [5].
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Boxplots of MI measures are given in Figure 5. For the
sake of readability, Figure 6 provides the same data, excluding
outliers.

Figure 5. Boxplots of Maintainability Index MI distributions.

Figure 6. Boxplots of Maintainability Index MI distributions. Outliers omitted.

The results of the Wilcoxon rank sum tests and Hedges’s g
evaluations are given in Table VI.

TABLE VI. WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR
THE MAINTAINABILITY INDEX (MI).

Ind1 Ind2 Ind3 Log4J JCaptcha Pdfbox JReports Hibernate
Ind1 – s n m m s s m
Ind2 s – n s m n n m
Ind3 n n – m m s s m
Log4J m s m – n s s n
JCaptcha m m m n – s s =
Pdfbox s n s s s – n s
JasperReports s n s s s n – s
Hibernate m m m n = s s –

D. Halstead measures

Halstead identified measurable properties of software in
analogy with the measurable properties of matter [4]. Among
these properties is the volume, measured via the Halstead
Volume (HVOL). Boxplots of HVOL measures are given in
Figure 7. For the sake of readability, Figure 8 provides the
same data, excluding outliers. The results of the Wilcoxon rank
sum tests and Hedges’s g evaluations are given in Table VII.

Figure 7. Halstead volume distributions.

Figure 8. Halstead volume distributions. Outliers omitted.

Boxplots of Halstead Calculated Program Length (HCPL)
measures are given in Figure 9. For the sake of readability,
Figure 10 provides the same data, excluding outliers. The results
of the Wilcoxon rank sum tests and Hedges’s g evaluations
are given in Table VIII.

V. DISCUSSION

Figures 1 and 2 show that the set of chosen projects are
quite homogeneous with respect to size, all projects having
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TABLE VII. WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR
THE HALSTEAD VOLUME.

Ind1 Ind2 Ind3 Log4J JCaptcha Pdfbox JReports Hibernate
Ind1 – = n s s s s s
Ind2 = – s s s s s m
Ind3 n s – s s s s s
Log4J s s s – n n = s
JCaptcha s s s n – n n n
Pdfbox s s s n n – n s
JasperReports s s s = n n – s
Hibernate s m s s n s s –

Figure 9. Halstead computed program length distributions.

the great majority of methods no longer than 200 LOC. This
homogeneity is confirmed by the effect size evaluations given
in Table IV: only negligible and small effect sizes were found.

Similarly, the great majority of methods have McCabe
complexity not greater than 5 for all projects, with the only
exception of Industrial3. However, also in project Industrial3,
only outliers have alarmingly high McCabe complexity. As for
LOC, the effect size is at most small, indicating substantial

Figure 10. Halstead computed program length distributions. Outliers omitted.

TABLE VIII. WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR
THE HALSTEAD COMPUTED PROGRAM LENGTH.

Ind1 Ind2 Ind3 Log4J JCaptcha Pdfbox JReports Hibernate
Ind1 – = s s s s s m
Ind2 = – s s s s s m
Ind3 s s – s s s s m
Log4J s s s – n = n s
JCaptcha s s s n – n n n
Pdfbox s s s = n – n s
JasperReports s s s n n n – s
Hibernate m m m s n s s –

equivalence of the projects’ complexity measures.
Concerning the Maintainability Index, Figure 5 shows that

Industrial1 and Industrial3 are the only projects that include
methods with negative MI; specifically, Industrial3 has several
methods with negative MI, some with alarmingly low values.
So, even though the situation excluding outliers (Figure 6)
seems to indicate a rather homogeneous situation, industrial
projects appear to be less maintainable then open-source
projects in several cases: according to Table VI, in 8 out of
15 comparisons involving a closed-source and an open-source
project, the effect size was medium. Instead, comparisons
involving only open-source projects and comparisons involving
only closed-source projects revealed at most small effect size.

Finally, we can see that all projects are fairly homogeneous
with respect to Halstead volume (Figures 7 and 8 and Table VII).
Similar considerations apply for Halstead Computed Program
Length (HCPL), with medium effect size differentiating indus-
trial projects only with respect to Hibernate (Table VIII).

In conclusion, we can observe that the analyzed open-source
and closed-source code appear sufficiently similar.

VI. THREATS TO VALIDITY

Concerning the application of traditional measures, we used
a state-of-the-art tool (SourceMeter), which is widely used and
mature, therefore we do not see any threat on this side.

A risk with the type of work presented here is that the code
that companies are willing to provide to researchers might differ
from the code they will not provide. This is usually due to the
desire to “hide” low-quality code. In our case, it is not so: the
closed-source code being measured is the complete code being
used to build production applications and is representative of
the companies’ software in general.

Concerning the external validity of the study, as with most
Software Engineering empirical studies, we cannot claim that
the obtained results are generalizable. Specifically, the limited
number of considered projects calls for replications of this
study, involving more industrial closed-source code projects.

VII. RELATED WORK

Open-source projects have been compared with closed-
source ones multiple times, but usually with respect to external
perceivable qualities. In fact, many of the published papers
aimed at answering questions like “Should I use this open-
source software product or this closed-source one?” These
papers considered issues like reliability, speed and effectiveness
of defect removal, evolution, security, etc.
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Bachmann and Bernstein [7] surveyed five open source
projects and one closed source project to evaluate the quality
and characteristics of data from bug tracking databases and
version control system log files. Among other things, they
discovered a poor quality in the link rate between bugs and
commits.

The debate on the security of open-source software compared
to that of closed-source software have produced several studies.
This is due not only to the relevance of the problem, but also to
the fact that security issues concerning closed-source software
are publicly available, even when the source code is not.

Schryen and Kadura [8] analyzed and compared published
vulnerabilities of eight open-source software and nine closed-
source software packages. They provided an empirical analysis
of vulnerabilities in terms of mean time between vulnerability
disclosures, the development of disclosure over time, and the
severity of vulnerabilities.

Schryen [9] also investigated empirically the patching
behavior of software vendors/communities of widely deployed
open-source and closed-source software packages. He found
that it is not the particular software development style that
determines patching behavior, but rather the policy of the
particular software vendor.

Paulson et al. [10] compared open- and closed-source
projects to investigate the hypotheses that open-source software
grows more quickly, that creativity is more prevalent in open-
source software, that open-source projects succeed because of
their simplicity, that defects are found and fixed more rapidly
in open-source projects.

As opposed to the papers mentioned above, here a fairly sys-
tematic comparison of code measures is proposed. Previously,
MacCormack et al. compared the structure of an open-source
system (Linux) an a closed-source system (Mozilla) [11]. With
respect to our work, they evaluated just one code property
(modularity) for a single pair of products.

A comparison based on code metrics involving multiple
open-source and closed-source projects [12] was performed
from a different point of view and using different techniques:
the authors modified the Least Absolute Deviations technique
where, instead of comparing metrics data to an ideal distribution,
metrics from two programs are compared directly to each other
via a data binning technique.

VIII. CONCLUSIONS

Open-source projects provide the code used in many empir-
ical studies. The applicability of the results of these studies
to software projects in general, i.e., including closed-source
projects, is questionable, in that we are not sure that open-
source code is representative of closed-source code as well.

To address this issue, in this paper, a comparison of open-
source and closed-source code is performed. Specifically, static

code measures from five open-source projects were compared
to those obtained from three close-source projects. The study—
which addressed only Java code—shows that some of the most
well-known static code measures appear similar in open-source
and in industrial closed-source products.

However, we recall that the study reported here involved just
a few industrial projects’ measures, because getting access to
industrial code is not easy. Hence, the presented analysis should
be regarded as a preliminary results, which needs replications
before it can be considered valid in general.
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