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Abstract—Model-driven software development is gaining atten-
tion due to the various benefits it promises. Typical approaches
start with the modeling of application domains and continue
with the specification of software to be developed. Model trans-
formations are applied to develop and refine artifacts. In a final
step, executable code is generated from models. Practice shows
that model-based code generators have to bridge a rather large
gap between the most refined software models and executable
code implementing these models. This makes the development of
code generators themselves an expensive task. In this article, we
discuss ways to break down the development of code generators
into smaller steps. Our discussion is guided on the one hand by
principles of compiler construction and on the other hand by an
application of model-driven development itself. Using a sample
modeling language, we demonstrate how code generation can be
organized to reduce development costs and increase reuse.

Keywords—software development; software engineering; sym-
bolic execution; top-down programming.

I. INTRODUCTION

Software construction requires methods and processes that
guide development from an initial problem statement through
all stages of the software lifecycle, culminating in the imple-
mentation, testing, roll-out, operations, and maintenance of the
software.

Model-Driven Software Engineering (MDSE) strives to sup-
port such development processes by making explicit

• the artifacts created in each stage and possibly interme-
diate results

• the decisions that lead to the development of each artifact.
Ideally, MDSE supports the entire software lifecycle from re-
quirements engineering and domain concepts through software
architecture, design, and programming to software operations.

Figure 1 outlines some typical artifacts of software en-
gineering processes. While many of them can be handled
in MDSE processes, executable code must be generated for
a particular target platform, such as a Programming Lan-
guage (PL), software libraries, a runtime environment, and
a target infrastructure. Later stages that depend on code, for
example, operations tasks, also must be considered in code
generation. This prepares code for activities like maintenance,
monitoring, etc.

The support provided by MDSE approaches has advantages
in many application areas. Models of sufficient formality can
be checked for completeness or correctness to a certain extent.
Traceability between artifacts allows to understand design de-
cisions and model transformation steps during software main-
tenance. A final step of automated generation of executable

code can save development costs during the implementation
phase. Fully automated generation allows incremental devel-
opment through model changes if the software is generated in
an evolution-friendly manner.

Therefore, code generation from software models allows to
take advantage of the potential benefits of modeling in MDSE.
However, experience shows that generator development tends
to be complex and costly. We see different reasons for this.

• The abstraction that models provide over programming
language expressions require code generators to deal with
a higher level of abstraction than compilers for PLs.

• Implementation details that are not reasonably part of
software models must be added in code during generation.

• Various non-functional requirements of professional soft-
ware development must be satisfied by generated code
in addition to the requirements explicitly reflected by the
software models. A code generator must add code for
these as cross-cutting concerns.

Furthermore, these aspects of code generation typically require
the development of project-specific generators.

Code generators are similar to compilers for high-level
PLs. From this point of view, a model-driven process can be
divided into a frontend and a backend part. In this logical
division, the frontend deals with the more abstract models
of the application domain and software design in model-
to-model transformations (M2MTs). These early phases are
covered by MDSE approaches. The backend activities of code
generation, optimization, and target platform considerations
are often hidden in implementations of comprehensive model-
to-text transformations (M2TTs).

In this paper, we propose a structure for decomposing code
generator development for easier development and a higher
level of reuse.

The remainder of this paper is organized as follows: In
Section II, we review model-driven software engineering with
a focus on the final step of code generation. A corresponding
approach to code generation is outlined in Section III. In
Section IV, we illustrate the model-driven code generation
approach with some sketches of code generation models. The
paper is concluded in Section V.

II. MODEL-DRIVEN SOFTWARE DEVELOPMENT

In this section, we revisit MDSE in general and code
generation in particular in order to lay the foundation for the
discussion of model-based code generation in the following
sections.
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Figure 1. Typical software engineering artifacts.

A. Software Modeling

Models of the early steps in the software lifecycle are
formulated from the perspective of the application domain.
We do not consider domain models in this paper.

B. Cases of Code Generation

We see two application scenarios for software construction
with MDSE:

1) approaches for systems of a given application class that
share fixed functionality at some level of abstraction

2) approaches for application-specific functionality
A typical case of an application class with fixed function-

ality is the case of information systems, that typically provide
only Create, Read, Update, Delete (CRUD) operations. Models
of information systems, therefore, mainly represent domain
entities and their relationships. Software generation is based
on fixed patterns for code that provides CRUD functionality
for the various entities.

Approaches that can be found in the class of generators
that produce code with fixed functionality work with meta-
programming [1], template-based approaches (see below), and
combinations of these two [2]. Since generators for a specific
target implementation can be built in a generic way, MDSE
can be employed comparatively easy in this scenario.

In the general case of software containing custom busi-
ness logic, software must be generated according to speci-
fied functionality. To automatically derive working software
from specifications, MDSE approaches for application-specific
business functionality must include formal models for precise
definitions.

Means for deriving software from formal models are often
built into editing tools for the respective formalisms. With
respect to running software, formal models are typically used

in one of two ways: Either code is generated from such models,
or hand-written code is embedded in formal models at specific
extension points.

For production-grade software systems, code generation is
the only option in order to satisfy nonfunctional requirements.

A practical software system consists of different compo-
nents, each of which is typically created by one generator
each. Therefore, multiple code generators need to work in
concert. To this end, different generator runs have to be
orchestrated [2], and information exchange (for example, for
identifiers used in different components) has to be man-
aged [1].

C. Code Generation Techniques
Code is generated in a final step of an MDSE process, often

based on M2TTs [3].
Special attention is paid to code generation, as this step can

be well formalized in an MDSE process. There are several
techniques for code generation, mainly generic code gen-
erators, meta-programming, and template-based techniques.
Generative AI could be an alternative.

This way, there is reuse of software generators that translate
formal specifications into code in a generic way. Typically,
there is little or no way to direct the code generation for
the case at hand [4]. Therefore, the generated code must be
wrapped in order to be integrated into a production-grade
software system, for example, to add error handling and
additional code for monitoring.

a) Generic Code Generators: Custom functionality gen-
erally needs to be formulated in a Turing-complete formalism.
Although the ability to verify such descriptions is limited, their
expressiveness is required. Formal specifications of software
functionality can be translated into working software by a code
generator, that works like a compiler for a PL.
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Code generators of modeling tools provide a well-tested
and generally applicable translation facility. Specifications
according to a given formalism are translated into a supported
target environment. Examples include parser generators that
generate code from grammars, software generators that take
finite state machines as input [5], and those that use Petri
Nets to execute code on firing transitions [6].

Generic code generators require significant development
effort. But they can be developed centrally in a generic way.
Therefore, there is a high degree of code reuse in the form of
generators. However, the models used as input are application-
specific, and they must be more elaborate than the input for
other forms of generators.

b) Meta-Programming: Programs that generate pro-
grams are an obvious means of generating software. Meta-
programming is possible with PLs, that allow the definition of
data structures that represent code and from which code can
be emitted. Since many widely used languages do not include
meta-programming facilities, this capability is added through
software libraries or at the level of development environments.

Meta-programming provides maximum freedom in generat-
ing custom code. Consequently, results can be tailored to the
application at hand, including specific business logic.

However, the development of such generators tends to be
costly, depending on the degree of individuality of code. This
is due to the fact that meta-programs are harder to maintain
and to debug due to their abstract nature. In addition, code
reuse is very low for custom code.

c) Templates: Code with recurring structures can be
formulated as templates with parameters for the variations of
this uniform code. Code is generated by applying the templates
with different parameter values.

A prominent example of a template-based approach is used
for the Model-Driven Architecture (MDA). The MOF Model to
Text Transformation Language [7] provides a means to define
code templates based on (UML) models.

Templates are easy to write, depending on the degree of
generics. They allow adaptation to the project at hand by
making changes to templates. The degree of reuse of templates
within a project can be high, depending of the structural
similarities between parts of the code. Cross-project reuse can
be expected to be quite low.

d) Generative AI: The currently emerging generative AI
approaches based on large language models provide another
way to generate code from descriptions. Based on a library
of examples, they allow the interactive generation of code
from less formal descriptions, especially natural language
expressions.

Generative AI can deal with complex requirements and
rules. It has the advantage of being able to generate code in
multiple PLs from (almost) the same descriptions.

There are indications that generative AI may be particularly
well suited to producing code on a small scale, for example,
individual modules [8]. Final quality assurance and assembly
currently remains a manual task.

Global Definitions Application-Specific Definitions

APM
Abstract Programming Model

ADM
Application Design Model

CPM
Concrete Programming Model

AIM
Application Implementation Model

Figure 2. Code models and their relationships.

Instead of generating the actual software solution, generative
AI can also be used to create code generators [3].

III. MODEL-BASED CODE GENERATION

In this paper, we discuss a way to construct code through
a series of model refinement steps and final code generation.
Thus, it follows the typical theme of M2MTs followed by an
M2TT. However, our goal is to make the code generation step
nearly trivial and fully automatic. To achieve this, we propose
certain code models that bridge the gap between domain or
solution models and executable code.

Our goal is to reduce the complexity of generators through
abstraction and to reduce costs through reuse of abstract code.

Figure 2 gives an overview of the kinds of code models.
Those in Global Definitions are provided centrally as a kind
of modeling framework. Those in Application-Specific Defini-
tions are models that are provided for each software project.

The four model boxes in the figure represent classes of
models. There will be several concrete models for each of
them.

We describe the models in the following subsections. Ex-
amples are given in the following main section.

The outline of the approach is as follows:
• Abstraction leads to a hierarchy of models.
• An Abstract Program Model (APM) provides a generic

model of code.
• An Application Design Model (ADM) defines the func-

tionality of a software system in terms of an APM.
• A Concrete Program Model (CPM) serves as a technol-

ogy model; it maps an APM to a concrete implementation
technology, such as a PL

• An Application Implementation Model (AIM) is used for
code generation; it provides a project-specific association
of the desired functionality and a technology model

With these models, some degree of reuse is achieved on the
level of

1) programming models / building blocks of abstract pro-
grams

2) idioms and design patterns for refactoring and optimiz-
ing abstract programs

3) code generation from abstract representations of the
constructs of a particular PL into code
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Figure 3. Typical software engineering artifacts.

A. Models of Programming

APMs serve as meta-models for abstract programs. Pro-
gramming paradigms constitute a possible starting point for
describing programming in general. Models of paradigms help
to capture the essence of a class of PLs.

Properties of hybrid languages can be captured by com-
bining models of programming paradigms. To this end, the
modeling language used should allow models to be combined,
and paradigm models must be set up to allow combinations.

There are differences between existing PLs that cannot
be captured within one central model of programming. For
example, object-oriented PLs have different ways of handling
multiple inheritance. Therefore, there may be coexisting pro-
gramming models, even for the same programming paradigm.

B. Assigning Functionality to Domain Models

In contrast to pure programming, program models in an
MDSE process refer to more abstract models, especially those
formulated from an application domain perspective. Program
models result from M2MTs, or they refer to source models.
Resulting model relationships are a basis for traceability [9].

Figure 3 illustrates a model relationship. A hypothetical
domain model contains a SalaryIncrease concept with a Raise
sub-concept . This specification is to be implemented using an
imperative programming language, so there is, for example,
a ConditionalStatement. The resulting model of the code for
the software is represented as an ASM with a procedure
CheckTargetSalary.

Application design models are essentially attributed syntax
trees. In a kind of “reverse programming”, we manually
construct syntax trees and generate code from them. This

is not the right level for manual development of software
generators. But program models can be derived from domain
models similar to template-based software generation. The
example in Figure 3 can be viewed this way. The advantage
of abstract models and model relations over code templates is
the independence from concrete programming languages. This
allows us to make an early connection between a domain and
a code model while still having the option of choosing the
implementation details, including the programming language
or other implementation technologies to be used.

C. Stepwise Refinement of Programming Models

Concrete models define which language constructs are avail-
able in a particular PL that is selected for implementation. For
code generation, the abstract application code (ASM) is com-
bined with a CPM containing models of typical programming
language constructs / idioms etc. in generalized form. M2MTs
are applied to the combined model to transform it into an AIM
that is suitable for code generation.

Model transformation consists of refining abstract program
models with respect to a concrete PL or other implementation
technology. There are several reasons why concrete models
differ from abstract programming models. For example, there
are different ways to implement abstract code in concrete
PLs, similar PLs may have different best practices, they may
have different constraints, and they may require different
optimizations.

The transformation from an abstract to a concrete program
need not be done in one step. For example, there is typically
a hierarchy of abstractions, from abstract programs at the pro-
gramming paradigm level, to classes of PLs and PL families, to
concrete PLs, PL implementations or dialects, or even project-
specific style guides.

D. Generating Code from Abstract Programs

An AIM is a model of a program that is suitable for code
generation. This means, that all parts of a model are assigned
a concrete PL expression and thus a syntactic form.

With this model property, code can be generated by assem-
bling pieces of code that each represent model entities.

IV. EXAMPLES OF MODEL DEFINITIONS FOR CODE

We outline some models in order to illustrate the approach
presented in the previous section. We use the Minimalistic
Meta Modeling Language (M³L) as our modeling notation.
This language is briefly introduced in order to discuss some
model sketches.

A. M³L Overview

The M³L is a (meta) modeling language that has been
reported about. Definitions are of the general form
A is a B { C is a D } |= E { F } |- G H .
Such a statement matches or creates a concept A. All parts of
such a statement except the concept name are optional.

The concept A is a refinement of the concept B. Using
the “is the” clause instead defines a concept as the only
specialization of its base concept.
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Type
Boolean is a Type
True is a Boolean False is a Boolean
Integer is a Type
Variable { Name Type }
Procedure { FormalParameter Statement }
Statement
ConditionalStatement is a Statement {

Condition is a Boolean
ThenStatement is a Statement
ElseStatement is a Statement }

Loop is a Statement { Body is a Statement}
HeadControlledLoop is a Loop {

Condition is a Boolean }
VariableDeclaration is a Statement {

Variable InitialValue is an Expression }
ProcedureCall is a Statement {

Procedure ActualParameter}
Expression is a Statement ...

Figure 4. Sample base model of procedural programming.

IfTrueStmt is a ConditionalStatement {
True is the Condition

} |= ThenStatement
IfFalseStmt is a ConditionalStatement {
False is the Condition

} |= ElseStatement

Figure 5. Semantics of conditional statements.

The concept C is defined in the context of A ; C is part of
the content of A. Each context defines a scope, and scopes
are hierarchical. Concepts like A are defined in an unnamed
top-level context.

There can be multiple statements about a concept with a
given name in a scope. All visible statements about a concept
are cumulated. This allows concepts to be defined differently
in different contexts.

Semantic rules can be defined on concepts, denoted by “|=”.
A semantic rule references another concept, that is returned
when a concept with a semantic rule is referenced.

Context, specializations, and semantic rules are employed
for concept evaluation. A concept evaluates to the result of its
syntactic rule, if defined, or to its narrowing. A concept B is
a narrowing of a concept A if

• A evaluates to B through specializations or semantic rules,
and

• the whole content of A narrows down to content of B.

Concepts can be marshalled/unmarshalled as text by syntac-
tic rules, denoted by “|-”. A syntactic rule names a sequence
of concepts whose representations are concatenated. A concept
without a syntactic rule is represented by its name. Syntactic
rules are used to represent a concept as a string as well as to
create a concept from a string.

Expression
Value is an Expression
ConditionalExpression is an Expression {
Condition is an Expression
TrueValue is an Expression
FalseValue is an Expression }

Function is a Value {
FormalParameter FunTerm }

FunCall is an Expression {
Function ActualParameterList }

PartialFunCall is a FunCall, a Value

Figure 6. Sample base model of functional programming.

MetaClass is an Object { Method }
Method { Parameter is an Object }
Classifier is a MetaClass
Interface is a Classifier
AbstractClass is a Classifier
ConcreteClass is a Classifier
ObjectClass is a ConcreteClass
Object is an ObjectClass

Figure 7. Sample base model of object-oriented programming.

B. Example Programming Models

Sticking with the example of starting the modeling of
programming with programming paradigms, there may be
models that describe typical constructs of PLs of a particular
paradigm. We give short outlines of PL base models for the
most important programming paradigms. Many details, such
as any type system, are omitted.

1) Procedural Programming: Descriptions of some typical
constructs of imperative PLs are shown in Figure 4. Typical
control flow constructs, such as conditional statements and
loops are given as M³L concepts.

For model checking or for model execution, the language
constructs must be given semantics. For example, the behavior
of the ConditionalStatement can be defined as shown in
Figure 5. When evaluated, such a conditional statement will
match (become a derived subconcept) of either IfTrueStmt or
IfFalseStmt, depending on which concept a given Condition
evaluates to. The semantic rule is inherited from the derived
base concept, making the statement evaluate to either the “then
branch” or the “else branch”.

This way of attaching semantics is typical for M³L models;
other modeling languages may have different ways of attach-
ing semantics. We will not go into this in detail. However, it
is an important part of the PL base models.

2) Functional Programming: Figure 6 outlines base def-
initions for functional PLs. Note that this model contains
definitions that may not apply to all functional PLs, so other
APMs exist.

3) Object-Oriented Programming: Only some base defi-
nitions for class hierarchies at the instance and class levels
are sketched in Figure 7. The complete model is much more
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Vi is a Variable {
i is the Name Integer is the Type }
VariDeclaration is a VariableDeclaration {
Vi is the Variable 0 is the InitialValue}
SomeLoop is a WhileLoop {
LessThanIntComparison is the Condition {
Vi is the Left 10 is the Right }

VariableAssignment is the Body {
Vi is the Variable
IntegerSum is the Expression {
Vi is a Summand 1 is a Summand }}}

Figure 8. A sample abstract program.

elaborate, and there are even more variants of PLs than in the
other paradigms.

C. Abstract Programs

ADMs can be formulated in the M³L as refinements of
APMs. Figure 8 shows an example of imperative code for
a loop that increments a variable i from 0 to 9.

D. Abstract Program Transformations

In our experimental setup with the M³L, model transfor-
mations can be expressed by relating concepts to each other:
one is a refinement or a redefinition of the other. In other
modeling languages, the respective model transformation or
model evolution facilities are used.

E. Code Generation

The final M2TTs to produce source code are performed on
models that combine an ADM with the abstract program for
the problem at hand and a CPM that declares concrete PL
constructs.

The CPM comes with predefined translation tables that
are used to generate code. Such translation tables can be
formulated by syntactic rules in the example of the M³L.

For example, rules for language-dependent code generation
for two different languages can be such as:
Java is a ProgrammingLanguage {
ConditionalStatement
|- if ( Condition )

ThenStatement
ElseStatement . }

Python is a ProgrammingLanguage {
ConditionalStatement
|- if Condition :

" " ThenStatement
else:
" " ElseStatement . }

By separating APMs and CPMs, it is possible to generate
different code from the same abstract program. In the M³L,
concepts can easily be redefined with different syntactic rules
in the context of a PL. When generating code in such a PL
context, the rules of all language constructs for that PL are
used. Variations for language dialects can be handled in sub-
contexts where some rules are redefined.

V. CONCLUSION AND FUTURE WORK

Model-Driven Software Engineering is receiving a lot of
attention for the benefits it brings to software engineering
processes. While model-to-model and model-to-text transfor-
mations are being researched, in practice the final step of code
generation from models is too costly to be applied in many
application scenarios.

In this paper, we propose an approach to define code
generators for the MDSE toolchain. Code generators consist of
executable models that are defined step by step, where each
step is characterized by a simple model. In addition, some
models are generic and can be shared. If the models that
define a code generator are formulated in the same modeling
framework as the models for earlier stages of the software
engineering process, then models of the application domain
and models of the software can be closely related.

The proposed approach allows us to achieve the goals
of reduced development costs for code generators and of
increased reuse. Using multiple levels of abstraction makes
each development step easier and less expensive. Since the
most abstract models are generically applicable, they can be
reused across applications.

Future work includes experiments with real-world code
models before pursuing new research directions. Since many
important PLs are hybrid in nature, remaining issues with
combined APMs need to be addressed, such as the mismatch
between imperative and declarative PLs.
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