
Formal Characterization and Automatic Detection of Security Policies Conflicts

Hédi Hamdi

Manouba University, ESC

Campus Universitaire de la Manouba

2010 Manouba, Tunisia
Email: hamdi.h@gmail.com

Abstract—Policies, which are widely deployed in networking

services (e.g., management, QoS, mobility, etc.), are being a

promising solution for securing wide distributed systems and

one of the most actual directions of research in the information

security area. However, Policy-based security may involve

interactions between independent decision making components

which may lead naturally to inconsistencies, a problem that

has been recognized and termed as policy conflict. Work on

policy analysis has mainly focused on conflicts that can be

determined statically at compile time. Using formal methods,

with good tool support, to express the policies, can not only

support the detection, but also help all the involved actors in

understanding and resolving the conflicts. The main focus of

this paper is on giving a theory and automated techniques for
discovering common types of security policy conflicts.

Keywords-Policies; Distributed systems; Conflicts; Detection.

I. INTRODUCTION

Policies, which are extensively deployed in networking
services (e.g., management, QoS, mobility, etc.), are being
praised as promising solution for securing widely distributed
systems and could also be considered as one of the most
recent directions of research in the information security field.
However, several problems remain to be solved in this field.
One interesting problem of policy based security is how to
detect conflicts in a security policy specified for a network
behavior. In fact, deploying a conflicting policy within a
network is often the origin of unexpected damage. For this
reason and once policies are specified and before they are
enforced, it should be possible to determine that there are no
conflicts between components of the policy. Previous works
on issue of policy conflict detection have mainly focused on
conflicts that can be determined statically at compile-time
[12]. The detection process involved simple policy analysis.
Although we believe that static analysis is very useful for
detecting some conflicts before policies are deployed, it
cannot detect many conflicts in resource management
policies which occur as a result of the current state of the
resources. For example, policies which increment or
decrement allocation of resources may conflict with policies
related to setting upper and lower bounds for the resources.
These conflicts result from current state of the resource
allocation and bounds so can only be detected at run-time.
This paper focuses on the PPL (Policy Programming
Language) [5][6] a domain specific policy language with a

powerful dynamic semantic and with available Software
tools, based on which techniques for aiding policy analysis
and refinement can be developed.

The work presented in this paper addresses the
shortcomings in previous work in the field. It defines a
formal model to deal with a range of conflicts in security
policy, and an algorithmic solution to facilitate automation of
the analysis process.

This paper begins by stating the problem of conflict
detection in Section 2, followed by a presentation of our
policy model in Section 3. Section 4 introduces a formal
model for conflicts detection in security policy. Section 5
presents an algorithmic solutions to the automation of the
analysis process and Section 5 concludes the paper and
discusses future Works.

II. PROBLEM STATEMENT

In recent years, the trend in the software industry has
been directed towards the development of software that can
be customized by the user to meet their individual needs. In
this context, policies are a very useful way in which the
customization can be delivered. Policies also separate the
behavioral aspect of software and its main functions. This
allows either the main functionality of the software or
custom user’s behavior to be changed without affecting the
other [12]. In a given system, there may coexist multiple
policies, it is important to consider how one policy will
affect another. Policies that are triggered at the same time,
and they contradict each other, are said in conflict. The
process of checking policies to see if they conflict is called
policy analysis, and conflicts can be detected at specification
time. By Lupu and Sloman [12], two types of conflicts can
occur between policies: modality conflicts and semantic
conflicts (also called application specific). In their work, they
associated policies with a mode. According to their
definition, a modality conflict arises when two policies with
opposite modality refer to the same subject, actions, and
objects. This can happen in three ways:

• The subjects are both obligated-to and
obligated-not to perform actions on the objects.

• The subjects are both authorized and forbidden
to perform actions on the objects.

• The subjects are obligated but forbidden to
perform actions on the objects.

124Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

Application specific conflicts occur when two rules
contradict each other due to the context of the application.
We use for our policy model, the PPL (Policy Programing
Language) [5][6], our policy specification language (PSL)
that appears to be the most flexible. It offers both positive
and negative modifications of authorization and obligation
policies. Although we do not focus on policy entry in this
paper, we assume that all policies entered into the system are
done so in the form of PPL language.

III. OUR POLICY MODEL

A. PPL: The Policy Programming Language

We use a domain-specific, special-purpose language to
express security policies. The design of our language has
been guided by a thorough study of the domain of computer
security in general, and especially security based policies.
We examined various kinds of tools mainly including
specifications of known security policies, specification for
typical security policy (e.g., IPSec policy [13]) as well as
more dedicated ones (e.g., web services security Policy [10],
Security Policy for web semantic [8] and Security Policy for
Clinical Information Systems [1]), frameworks and tools for
security policy specification (e.g., Ponder [3], PDL [11]),
and various documentations and articles. Based on this
domain analysis, we have identified the following key
requirements for a language dedicated to this domain. The
language should be composed of five basic blocks: entities,
scopes, rules, actions and policies to describe the appropriate
operation performed for ensuring security of a given system;
it should include block-specific declarations to enable
dedicated verifications and analysis to be performed; it
should be modular to enable a security policy specification to
be decomposed into manageable components and also
policies can also be composed into more complex policies
until it forms a global and single policy; it should include an
interface language to enable disciplined re-use of existing
security actions libraries.

B. Core Concepts of PPL

A PPL program essentially defines a list of blocks.
Blocks declarations describe which subjects (e.g., users or
processes) may access which objects (e.g., files or peripheral
devices) and under which circumstances. A block can either
be a policy, a rule, an action or an entity, a scope. Scope
represents a list of entities involved in policy. Policies
correspond to a sequence rules to determine specific
configuration settings for some protection of system; they
can be either simple or compound. A simple policy refers to
a list of protection action implemented in some other
programming language. This facility enables existing actions
libraries to be re-used. A compound policy is defined as a
composition of simple policies. Rule consists of a set of
constraints on a set of actions; they can be either a single-
trigger where only one action is triggered for a given object
or a multi-trigger where multiple different actions may be
triggered for the same object. Action can be atomic or
compound in the following we present in details each of the

basic blocks comprising PPL and show how they are used in
writing PPL security policies.

PPLSpec ::= blocks
Blocks ::= block j block blocks
Block ::= rule | policy| action| scope| entity

Fig. 1. Syntax of a PPL specification

1) Entities

PPL entities are typed objects with an explicit interface by

which their properties can be queried. Entities can be an

object or a subject or a collection of them. They have

identification and can be a source and a destination of rules.

2) Scopes

Entities can be collected into Scopes. Scopes are essential in

any policy considering that they provide the necessary
abstraction to achieve compactness, generalization and

scalability. Without Scopes, each rule has to be repeated for

each entity to which the rule applies. Scopes have a name

and they are used in rules for simplified management of

large numbers of entities. PPL offers two types of scopes:

classes and domains. Classes are sets of entities that are

classified according to their properties e.g., all TCP packets,

and domains are sets defined by explicit insertion and

removal of their elements.

3) Policies

A PPL policy is a group of rules and scopes that govern

particular domain events. These rules are used to define the

right behavior of a system. PPL supports an extensible range
of policy types:

• Authorization policies are essentially security

policies related to access-control and they specify

whether a sequence of actions, a subject, is

permitted or forbidden to perform to a set of target

objects. They are designed to protect target objects,

so they are interpreted by access control system.

policy ::= type-pol policy ident ((params))?{

 policy-def }

type-pol ::= pauto | nauto policy-def ::= scope-def

 body-def (constraint-def)?

scope-def ::= scope: { scope}

body-def ::= body: rules

rules ::= rule;| rule; rules

constraint-def ::= while: expr

• Obligation policies specify what a sequence of

actions, a subject must perform to a set of target

objects, on response to particular events and define

the duties of subjects in scope of policy. Obligation

policies are normally triggered by events.

125Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

policy ::= type-pol policy ident ((params))?

 {policy-oblig-def}

type-pol ::= poblig | noblig

policy-oblig-def ::= event-def scope-oblig-def

 body-oblig-def (constraint-def)?

scope-deleg-def ::= subject: { scope}

 (object: { scope})?

body-deleg-def ::= body:actions

event-def ::= event:expr

actions ::= action;| action;actions

constraint-deleg-def ::= while: expr

• Delegation policies specify which actions and

rights subjects can delegate to others. A delegation

policy thus specifies an authorization to delegate.

policy ::= type-pol policy ident

 ((params))?{deleg-def}

type-pol ::= pdeleg j ndeleg

deleg-def ::= scope-delegbody-deleg

 (constraint-def)?

scope-deleg ::= (subject: { scope})?(object: { scope})?

 (recipient: { scope})?

body-deleg ::= body:(associated-authorization)?actions

associated-authorization ::= auto-policy:indent

actions ::= action;| action;actions

constraint-deleg-def ::= (while: expr)? (cnumber:type-int)?

• Compound policies are used to group a set of
related policy specifications within a syntactic

scope with shared declarations in order to simplify

the policy specification task for large distributed

systems.

4) Rules

A rule consists of a set action that subjects can perform on

target objects when a set of constraints are satisfied. In

single-trigger rule, only one action is triggered when

condition is satisfied. In a multi-trigger, multiple different

actions may be triggered for the same object when condition

is satisfied. For example, IPSec crypto-access rule is a

single-trigger. In fact, once traffic matches a certain
condition, its action is triggered and no further matching is

performed. This is in contrast to crypto-map rules where a

particular traffic may match multiple constraints causing

multiple actions to be triggered.

Rule ::= rule ident ((params))? { rule-def }

rule-def ::= {subjects-def subjects-def constraints-def}

subjects-def ::= subject:entities

objects-def ::= object:entities

constraints-def ::= constraint | constraint constraints-def

constraint ::= if (expr) then actions

actions ::= action;| action; actions

5) Actions

Actions represent the operations triggered when a constraint

match. Actions can be either atomic for example in IPSec

filtering policy, actions are protect, bypass, discard, or

composite such as a service implementation.

IV. FORMAL MODEL OF CONFLICTS DETECTION

There are two broad categories of policy conflicts namely
static and dynamic conflicts. As conflict detection can be
computationally intensive, time consuming and therefore
costly and would preferably be done statically, at compile
time. Identified static conflicts therefore require immediate
attention, as it will most certainly result in a conflict at some
time. Whereas the transformation of a potential, dynamic
conflict in a real conflict is quite unpredictable; that is, the
inconsistency may be exposed temporarily, or indeed not all.
The main purpose of conflict detection is:

• The identification of actual conflict that has
occurred and can be resolved statically, at compile-
time.

• The prediction of a conflict, that may, occur in the
future (and more specifically, exactly what
circumstances will expose that conflict)

It should be noted, however, that all the predicted
conflicts require notification or action. In some cases, for
example, conflict can be predicted to occur, but be far
enough into the future or uncertain enough that an alert has
no real importance and action would be inappropriate at
present. To be able to detect conflicts statically and at
runtime, one must know the temporal characteristics of
policies in the specification. To do that, we define startt/e(P)
that refers to time/event start attribute of the policy,
finisht/e(P) that refers to time/event finish attribute of the
policy, recurtt/e(P) that refers to time/event recur attribute of
the policy and constraint(P) which returns the constraint of
the policy.

A. Static conflicts detection

1) Authorization conflicts

a) Conflict between two policy rules

� (Subject(Rx) ∩ Subject(Ry) ≠φ) ∧ (Object(Rx) ∩

Object(Ry) ≠φ) ∧ (Action(Rx) = DENY) ∧

(Action(Ry) = PERMIT) → authoConflict(Rx;Ry)

Conflicts in a set of policy rules

Let R a set of security rules, |R| the cardinality of R

� 0≤ i ≤|R|; ∀ 0≤ j ≤|R|

∃Ri; Rj € R ∧ authoConflict(Ri;Rj) → RConflict(R)

b) Conflicts between two policies

We denote a PPL policy by P(S; B; C), where S designates

the scope of P policy, B indicates its Body and C the policy

constraint. The detection of authorization conflicts process

within the same policy, can generalized to detect conflicts in

a set of authorization policies. However, it is necessary to

126Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

ensure that these policies have equivalent constraints (if it is

defined, the specification of the constraint in an

authorization policy is optional in PPL), they must run in

the same period.

Let P1 (S1, B1, C1), P2(S2, B2, C2) two authorization policies.

P1 and P2 are in conflict:

� (startt(P2) < finisht(P1)) ∧ (startt(P1) < finisht(P2))

∧ (constraint(P1) ≡ constraint(P2)) ∧

RConflict(B1 ∩B2) → PConflict(P1,P2)

2) Obligation conflicts

� ∀ startt(P2); finisht(P2); recurt(P1);

startt(P2) < recurt(P1) < finisht(P2)

→ PConflict(P1;P2)

� ∀ startt(P2);recurt(P1); finishe(P2)

(startt(P2) < recurt(P1) < finishe(P2))

→PConflict(P1;P2)

B. Dynamic conflicts detection

� ∀ finisht(P2);Recurt(P1); starte(P2)

(starte(P2) < recurt(P1) < finisht(P2)) ∧

(trigger(starte(P2))) → PConflict(P1;P2)

� ∀ recurt(P1); starte(P2); finishe(P2)

(starte(P2) < recurt(P1) < finishe(P2)) ∧

(trigger(starte(P2))) → PConflict(P1;P2)

� ∀ startt(P2); finisht(P2); recure(P1)

(startt(P2) < Recure(P1) < finisht(P2)) ∧

(trigger(startt(P2))) → PConflict(P1;P2)

� ∀ startt(P2); finishe(P2);Recure(P1)

(startt(P2) < recure(P1) < finishe(P2)) ∧

(trigger(startt(P2))) → PConflict(P1;P2)

� ∀ finisht(P2); starte(P2);Recure(P1)

(starte(P2) < recure(P1) < finisht(P2)) ∧

(trigger(starte(P2))) → PConflict(P1;P2)

� ∀ starte(P2); finishe(P2); recure(P1) : eventj

starte(P2) < Recure(P1) < finishe(P2) ∧

(trigger(starte(P2))) → PConflict(P1;P2)

V. AUTOMATING THE POLICY ANALYSIS

A. Modality conflicts detection

The precondition for a modality conflict occurs is that

policy containing rules using the same subjects, similar

actions, the same objects, and the same constraints, take

effect at the same period. Therefore, it is necessary to know

the time on which a policy will be enforced (for checking

inter-policy), and so brought their overlap. The intra-

verification of policy seems simple enough. Indeed, the

analysis of a policy specification, allows enumerating all

tuples (subject, object, action) on which policy rules are
applied. If two or more rules that are applied to a single

tuple (subject, object, action), then there is a potential

conflict and policy must be checked to see if there is a real

conflict (e.g., a rule authorization and a prohibition rule

applied to the same tuple (subject, object, action)). A

modality conflict can be one of the following types:

1) Authorization Conflict

A modality conflict of authorization occurs when a positive

authorization rule and a negative authorization rule are

defined for the same subjects, objects. The following

algorithm is used to detect authorization conflicts between

two rules.

Algorithm 1: two rules Conflict

authConflictR(R1;R2) : Boolean

begin
 s1 := GetSubject(R1),s1 := GetSubject (R2)
 o1 := GetObject(R1),o1 := GetObject (R2)

 a1 := GetActiont(R1), a1 := GetAction (R2)

 if ((s1 = s2) and (o1=o2) and (a1 = DENY) and

 (a2 = PERMIT)) then

 TRUE

 else
 FALSE

end

The procedure for detecting conflicts between rules is used

in a generic procedure which determines all the rules in

conflicts in the specification of a policy. It returns an array

containing a structure of rules in conflict. Below, we present

this procedure.

Algorithm 2: Conflict in set of rules

begin
 RS:structure

 begin
 R1 : rule
 R2 : rule

 end
 Tab_RS: array of structure RS

 Tab_R: array of rules

 Tab_P: array of policies

 authConflict_P (P): Tab_RS

 tab1 : tabR

 tab2 : tabRS

 i, j, k, l: integer

 K =1

 tab1 ← get_R (P)

127Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

 for (i = 1; i < (tab1.lenght) - 1; i + +) do

 for (j = i + 1; j < (tab1.lenght); j + +) do

 if(authConflict_R(tab1[i];tab1[j])=

 TRUE) then

 tab2[k]:R1 = tab1[i]

 tab2[k]:R2 = tab1[j]
 K + +;

end

The authorization conflicts detection process within the

same policy can be generalized to detect conflicts between

different authorization policies. However, the prerequisite

for the occurrence of a modality conflict is that the policies

involved hold at the same time. Besides, it is essential to

take into account the constraints that control the

applicability of the policy. This greatly complicates the

conflict detection procedure. To overcome this problem, we

define the commence(P) function, which returns the time

from which the execution of P policy begins, the finish(P)

function, that returns the time of P policy execution ends,

and the constraint(P) which returns the P policy constraint.
Below we present the two policies conflicts detection

procedure.

Algorithm 3: two policies conflicts

authConflict_interP (P1; P2; tab3; k)

begin
 tab1; tab2 : tabR;

 j, i : integer;

 var c: Boolean

 K =1;

 tab1 ← rename(get_R (P1));

 tab2 ← rename (get_R (P2));
 if ((commence(P2) < finish(P1)) and (finish(P2)

 > commence(P1)) and (constraint(P1)

 =constraint(P2))) then

 for (i = 1; i < (tab1.lenght); i + +) do

 for (j = i+1; j < (tab1.lenght); j

 ++) do

 if (authConflict_R (tab1[i];

 tab2[j]) = true) then
 tab3[k]:R1 = tab1[i];

 tab3[k]:R2 = tab2[j] ;

 K + +;

 C= TRUE;

 else
 C= FALSE;

end

The generalization of this procedure can detect conflicts

between different authorization policies.

Algorithm 4: set of policies conflicts

authConflict_interP(tab: Tab_P);

begin
 tab1 : tabRS;

 k: integer;

 K =1;

 for (i = 1; i < ((tab.lenght) - 1); i + +) do

 for (j = i + 1; j < (tab.lenght); j + +) do

 authConflict_interP (tab[i]; tab[j]; tab1; k);

end

2) Obligation conflicts

This type of conflicts occurs if one policy specifies that a

subject is obliged to perform an action when another policy

requires that the subject refrain from performing that action.

This type of conflict is determined by the following
procedure

Algorithm 5: Obligation conflict

obligConflict(P1; P2): boolean

begin

 t1 ← getType_P(P1);

 t2 ← getType_P (P2);

 S1 ← getSubjet_P (P1);

 S2 ← getSubjet_P (P2);

 O1 ← getObjet_P (P1);

 O2 ← getObjet_P (P2);

 A1 ← getAction_P (P1);

 A2 ← getAction_P (P2);
 if ((commence(P2) < finish(P1)) and

 (finish(P2)>commence(P1)) and (constraint(P1)

 =constraint(P2)) and (t1 = POBLIG) and (t2 =

 NOBLIG) and (S1 =S2) and (O1 = O2) and

 (A1 = A2)) then
 TRUE

 else

 FALSE

end

a) Unauthorized Obligation Conflicts

This type of conflict occurs if a subject is obliged to perform

an operation; but, there is another policy that prohibits the

subject from performing the operation.

Algorithm 6: Unauthorized Obligation Conflicts Detection

unauthObligConflict(P1, P2): Boolean

begin
 tab: tab_R;

 i: integer;

 t1 ← getType_P(P1);

 t2 ← getType_P (P2);

 S1 ← getSubjet_P (P1);

 O1 ← getObjet_P (P1);

 Tab ← get_R(P2);

128Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

 if ((commence(P2) < finish(P1)) and (finish(P2)

 > commence(P1)) and (constraint(P1)

 =constraint(P2)) and (t1 = POBLIG) and (t2 =

 NAUTO)) then

 for (i = 1; i < (Tab:lenght); i + +) do

 if (((GetSubject(Tab[i]) = S1),
 (GetObject(Tab[i]) = O1) and

 GetActiont(Tab[i]) = DENY)) then

 TRUE

 else
 FALSE

end

VI. RELATED WORK

 Research in conflict analysis has been actively growing

over the years, but most of the work in this area addresses

general management policies. The authors in [12] focused

on identifying modality conflicts by simple analysis

between positive and negative authorization security

policies and the specification of policy precedence rules in

order to resolve conflicts. Jajodia [7] has proposed a
technique based on deductive reasoning to policy analysis.

This technique used on a logic-based specification of

security policy with a clear semantic that leads to the

analysis. This approach is not suitable for identifying causes

of conflicts. Among the many approaches to policy

specification and analysis, there are a number of proposals

for formal, logic based notations. In particular, based on

solid theoretical foundations [9], the authors in [2] proposed

the use of Event Calculus as specialized first-order logic for

formalizing policy specification.

 Event Calculus uses familiar notations to specify the
system behavior, which can be automatically translated into

the logic program representation. Adductive reasoning proof

procedures for Event Calculus [4] can be used to detect the

existence of potential conflicts in partial specifications and

generate explanations for the conditions under which such

conflicts may arise.

 Although this work offers a promising method to solve the

problem of conflict analysis in a generic way, it is not

sufficient to provide a complete solution to the problem

without meet the needs of an application-specific domain.

VII. CONCLUSION

 In this paper we have presented a formal

characterization of security policy analysis, together with

algorithmic solutions to policy analysis. To support

automation of conflict detection for security policy, we first

defined security conflicts in a formal way. Then, we

developed mechanisms to systematically detect conflicts.

Our work for policy analysis has been tested through the

development of a prototype implementation. Next step is to

extend our formalism to deal with policy refinement. This
area need further work as policies are considered to exist at

many different levels of abstraction and the transformation

process from high-level policy to low-level implementable

has remained a largely unresolved problem.

REFERENCES

[1] R. J. Anderson. A security policy model for clinical
information systems. In 1996 IEEE Symposium on

Security and Privacy, pages 30–42. IEEE Computer
Society Press,

[2] Bandara, E. Lupu, and A. Russo. Using event calculus to
formalise policy specification and analysis. In 4th IEEE

Workshop on Policies for Networks and Distributed
Systems (Policy 2003), pages 26, 2003.

[3] N. C. Damianou. Policy Framework for the Management
of Distributed Systems. PhD thesis, Imperial College.

London, U. K., February 2002.
[4] M. Denecker and A. Kakas. Abduction in logic

programming. Handbook of Logic in Artificial
Intelligence and Logic Programming, 5:235–324, 1998.

[5] H. Hamdi, M. Mosbah, and A. Bouhoula. A domain
specific language for securing distributed systems. In.

ICSNC '07 Proceedings of the Second International
Conference on Systems and Networks Communications

Page 76, 2007.
[6] H. Hamdi, M. Mosbah, and A. Bouhoula. A declarative

approach for easy specification and automated
enforcement of security policy. International Journal os

Computer Science and Networks, 8(2):60–71, Feb 2008.
[7] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical

language for expressing authorizations. In 18th IEEE
Computer Society Symposium on Research in Security

and Privacy, pages 31–42, 1997.
[8] L. Kagal, T. W. Finin, and A. Joshi. A policy based

approach to security for the semantic web. In International
Semantic Web Conference, pages 402–418, 2003.

[9] R. Kowalski and M. Sergot. logic-based calculus of
events. New Generation Computing, 4:67–95, 1986.

[10] Lalana Kagal, Massimo Paolucci, Naveen Srinivasan, Grit
Denker, Timothy W. Finin and Katia P. Sycara:

Authorization and Privacy for Semantic Web Services.
IEEE Intelligent Systems, pages 50-56, 2004.

[11] J. Lobo, R. Bhatia and S. Naqvi. A policy description
language. In Proc. AAAI '99/IAAI '99, Pages 291-298

July, 1999.
[12] E. C. Lupu and M. Sloman. Conflicts in policy-based

distributed systems management. IEEE Trans. Softw.
Eng., 25(6):852–869, 1999.

[13] G. Wolfien. Network ipsec specification. In Pan-European
Harmonisation of Vehicle Emergency call Service

Chain.Information Society Technologies (IST), 25.
October 2002.

129Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

