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Abstract — This paper presents a study about the hardware 

implementation of the TCP/IP and UDP/IP headers 

compression for the point-to-point communication. The 

implementation is focused on the achievement of minimum 

latency and high compression ratio. The applied compression 

technique is a dictionary-based method. For the TCP/IP, the 

fixed length of the compressed header was implemented. On 

the contrary, the variable length of the compressed header was 

implemented for the UDP/IP. The dictionaries are filled from 

the original data on both sides. No additional transmissions are 

used for retaining the continuity of the dictionary content.  

Keywords-Field Programable Gate Array (FPGA); Ethernet; 

header; compression;  connection; IP; TCP; UDP. 

I.  INTRODUCTION 

In order to reduce the amount of transmitted data over 
physical layer of the IP network, lossless data compression 
can be implemented. This can be useful for the one hop of 
the point-to-point radio or optical Ethernet link especially for 
solution integrated with a modem. The lossless data 
compression is used for reducing the data redundancy at the 
transmitter side (in a compressor). This redundancy is 
renewable at the receiver side (in a decompressor). In 
general, the random character of the Ethernet data traffic 
must be considered [2]. For this reason, any lossless data 
compression method may fail as the statistical-based and 
dictionary-based lossless data compression methods are 
based on the data redundancy (with specific sequence and/or 
time dependency). Statistical-based compression methods 
are unsuitable more than dictionary based methods because 
they need more time for preprocessing (creation of data 
statistics) [1]. However, the character of data in the headers 
of data link layer, network layer and transport layer is well 
known and/or predictable [6] [7] [8]. 

The data cannot be transferred trough IP networks 
without headers [9]. The second, the third and the fourth 
layers add the headers to the data. These headers are used for 
routing and transferring data through network. A single TCP 
connection or UDP data flow is usually hundreds or 
thousands of packets transmitted from source to destination. 
There are a lot of data that do not change during the 
connection in headers TCP/IP connection or UDP/IP flow. 
Repeated transfers of headers add the redundancy 
(unchanging data in headers) or the redundancy in long 

numbers transmitting which are changed only minimally 
packet by packet. Such items can be transferred in the form 
of differences. The main idea of the header compression is in 
the replacement of long raw headers by headers without 
redundancy. The original headers are identically restored at 
the receiver side [1] [2] [4]. 

The length of original headers is strictly defined, or is 
defined in some extent [6] [8]. On the contrary, the length of 
transmitted payload is entirely random. The headers may 
take up to 50 % of the volume of the transmitted data at the 
physical layer (when a very short payload is transmitted). 
When the frames over the MTU (Maximum Transmission 
Unit) (1500 B) are transmitted the headers take less than 5 % 
of volume transported on physical layer. 

There are two general ways of implementing 
a compression algorithm. Software implementation is costs 
effective for low speed connections. For real-time 
applications with high speed connections, hardware 
implementation is better. Nowadays, the compression 
hardware exists in many forms, for example Lempel-Ziv 
algorithms [2], X-Match Pro Algorithms [3] and many more. 
The information about hardware implementation specialized 
in the Ethernet headers compression was not found. The 
software implementation of the TCP/IP headers compression 
was designed and published in RFC 1144 [4] and RFC 2507 
[5]. Therefore, this study deals with hardware 
implementation of the Ethernet headers compression 
(TCP/IP and UDP/IP). 

This paper is divided into eight sections. The original 
headers and compressed headers formats are introduced in 
Section II. Section III describes the applied method. The 
hardware arrangement is presented in Section IV. The 
compressor is discussed in Section V and the differences 
between compressor and decompressor are discussed in 
Section VI. The results of this research are summarized in 
Section VII. The conclusion of the present study can be 
found in Section VIII. 

II. ORIGINAL AND COMPRESSED HEADERS 

 In this section, the original and compressed headers 
content and its meaning is described. 

The IP header format is shown in Figure 7. IP version is a 
four-bit item. The IP length is a four-bit item and it 
represents one quarter of the total IP length. The basic length 
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of an IP header is 20 bytes. All the IP headers with different 
lengths are not compressed. The item ToS (Type of Services) 
contains the Differentiated Services Codepoint and the 
Explicit Congestion Notification. One of the compression 
conditions is the ToS equal to zero. The total IP length is the 
length of the IP packet. It is a sum of the IP header length, 
the higher layer protocol header length and the data 
(payload) length. This item is transmitted in the compressed 
header without any changes. IP Identification (IP ID) is the 
number of IP packets sent by the station. The IP ID in the 
TCP/IP stream is changed only minimally being sent packet 
by packet and therefore it is transmitted in the compressed 
header as an eight-bit difference. The field flags and the 
fragment offset are set only when the IP packet is 
fragmented. This field must be zero (compression condition). 
Only the DF (Don’t Fragment) bit can be written to one. In 
this case, the seventh bit in the compressed header is set to 
one. The TTL (Time To Live) is a number that limits the 
lifespan of the IP packets in the IP networks. This value is 
constant for one TCP/IP stream at one line (when the IP 
packets are routed by the same way trough the IP network). 
The item protocol identifies higher layer protocol. For 
example TCP is presented by number 6, UDP is presented by 
number 17. The IP checksum is the checksum of all bytes in 
the IP header. This value need not be transmitted in the 
compressed header and can be evaluated during the 
decompression process. As a result, however, the error 
protection would be decreased. This value is transmitted in 
the compressed header without any changes. The source and 
destination IP addresses are the IP addresses of the end nodes 
and they identify the TCP/IP data stream and/or the UDP/IP 
data flow. [6] 

The basic length of the TCP header is 20 bytes. The 
source and destination ports together with the IP addresses 
identify the TCP/IP data stream. The Sequence Number 
(SEQ) and the Acknowledgement Number (ACK) are 
changing (increasing) in TCP/IP stream packet by packet. 
Therefore they are transmitted in compressed header as a 16-
bit difference. The data offset represents the length of the 
TCP header. The implemented compression algorithm allows 
the compression of the TCP headers with basic length. The 
TCP flags field contains the TCP flags. Only the headers 
with a set Acknowledgement flag can be compressed. If the 
Push flag (PSH) is set, compression is allowed and the eighth 
bit in the compressed header is set to one. Other flags 
(Urgent, Reset, Syn, Fin) must not be set. The Window size 
value is transmitted in the compressed header without any 
changes. The TCP checksum is the checksum of all bytes in 
the TCP header and the data payload. The evaluation of this 
checksum during the decompression process would cause the 
decrease of the error protection in a similar way as with the 
IP checksum. Moreover, the whole TCP packet including the 
payload would have to be buffered. This would 
disproportionately increase the latency. Therefore, the TCP 
checksum is transmitted in the compressed header without 
any changes.The urgent pointer is only set if the urgent flag 
is set to one. Therefore the urgent pointer is not transmitted 
in the compressed header. The original TCP header format is 
shown in Figure 8 [8]. 

connection number

win H

1

IP checksum L

IP len H

Δ IP ID

0 1 1 0 0 DF PSH

IP len L

IP checksum H

Δ SEQ H

Δ SEQ L

Δ ACK H

Δ ACK L

win L

TCP checksum H

TCP checksum L

1.B

5.B

10.B

15.B  
Figure 1.  Compressed header format  (TCP/IP). 

The UDP header consists of eight bytes. Four bytes are 
port numbers. The item UDP length is the length of payload 
and the UDP header. This item can be calculated by 
subtracting the IP header length of the (20 B) from the IP 
length. The UDP checksum is the checksum of all bytes in 
the payload and the UDP header. This item is transmitted in 
the compressed header. The original headers format is shown 
in Figure 8. In Figure 2, the formats of the compressed 
UDP/IP headers are shown. As can be seen, the length of the 
header is variable. The item IP ID is not included in the 
compressed header when the IP ID is zero in the original 
data flow. The Δ IP ID is transmitted in when the difference 
between the previous and the current value is less or equal to 
the eight-byte-value. Otherwise, the IP ID is transmitted 
without changes. The format of the compressed header is 
indicated by the seventh and the eighth bit in the compressed 
header.  The compressed UDP/IP header formats are shown 
in Figure 2 [7]. 
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IP checksum L

IP len H

Δ IP ID

IP len L

IP checksum H

IP ID L

UDP chsum H

UDP chsum L

10 0
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IP checksum L
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IP len L

IP checksum H

0
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IP checksum L
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IP len L

IP checksum H
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IP ID H
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UDP chsum HUDP chsum L

UDP chsum L
 

Figure 2.  Compressed header formats  (UDP/IP). 
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III. METHOD 

The implemented header compression technique is a 

dictionary method. The compressor and decompressor 

dictionaries contain data from raw (original) headers that are 

transmitted in the compressed headers as the difference or 

are not transmitted in the compressed headers at all. The 

dictionaries are divided into cells. Every cell contains data 

for one TCP/IP or UDP/IP flow. The width of the words in a 

cell is defined for each word separately. Each cell also 

contains the “connection number” item and the “Counter of 

Use” (CoU). The CoU is used to detect the flow inactivity 

(see below). 
At the beginning (after start-up), the compressor and 

decompressor dictionaries are empty. With the arrival of the 
first packet that meets the conditions of the compression, the 
raw data from headers are stored in one dictionary cell. The 
packet is sent without any changes. At the receiver side, the 
decompressor identifies this compressible packet and stores 
the raw data in one cell as does the compressor. After the 
arrival of the next packet of this flow, the compressor finds a 
match in the dictionary and compresses the headers. During 
the compression process, the compressor actualizes data in 
the cell from the raw headers (only changing data like IP ID, 
ACK, SEQ that are transmitted like differences) and 
increments the CoU. The decompressor detects the 
compressed header and decompresses this header using the 
data from dictionary in the same way the compressor 
actualizes data in the dictionary and increments the CoU at 
the decompressor side. Described procedure ensures that the 
compressor and the decompressor have the same content of 
dictionary at all times. This is the main condition of this 
method.  

When the compressor finds a match in the dictionary but 

the raw headers are not compressible (a difference is greater 

than one byte and/or the flags in raw headers do not allow 

compression), the raw data are transmitted and the 

compressor/decompressor actualizes the data in the 

dictionary. There is a chance that the next packet of this 

flow will be compressible. 
When all the cells of the dictionary are full and the 

compressor identifies compressible packet without a match 
in the dictionary, a revision of the dictionary is made. All 
cells with the CoU equal to zero (only one packet of the flow 
which allowed the compression passed) are released. For 
easier implementation, the packet is transmitted without any 
changes and is not stored in the dictionary. The 
decompressor does the same. It is also possible for the CoU 
in all cells not to be equal zero. In this case, the “Counter of 
Raw Data” (CoRD) is incremented. If the CoRD is equal to 
the pre-set threshold every CoU is reset. Subsequently, the 
packets from the stored flows may come. These packets are 
compressed and the CoUs in the cells of the dictionary are 
incremented. The first compressible packet which is not in 
the dictionary causes the release of cells with the CoU equal 
to zero. The method of zeroing CoU in case of full dictionary 
and transmitting unstored flows guarantees the old data in 
the dictionary are cleared and the dictionary is ready for the 

current flows. The data in the dictionary will never grow so 
old so as to render the storing of new data impossible. 

IV. HW SOURCES 

The data rate 1 Gbps (Ethernet IEEE 802.3z) corresponds 
to modulation rate 1.25 GBaud on the physical layer. After 
the deserializer, the data rate on GMII busses between 
MAC/PHY (Media Access Control, Physical Layer) circuits 
and the FPGA in Figure 3.  is 125 Mbit/s. The main clock in 
the FPGA is the same (125 MHz corresponds to 8 ns). The 
hardware arrangement is presented in Figure 3. The GMII 
bus contains eight wires for the data, one wire for clock 
signal and one wire for validation signal.  

The original signal from the Ethernet line is modified in 
the MAC/PHY circuit and brought into the FPGA. The 
modification (header compression) can be performed there. 
Then the data flow is connected to the second PHY/MAC 
circuit. This circuit must not monitor the CRC (Cyclic 
Redundancy Check) of the Ethernet frame and the headers 
content. The decompression must be implemented from the 
second side. The TX/RX (Transmit, Receive) line is ideal 
(without losses and interferences). 
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Figure 3.  HW arrangement. 

V. THE COMPRESSOR 

The compressor processes (as well as the decompressor 
processes) are divided into three basic blocks. These blocks 
are shown schematically in Figure 4.  The first block 
recognizes the header items of the TCP/IP and UDP/IP, in 
the second block the data flow is delayed in order to allow 
the third block to evaluate the header items before it starts to 
process or compress them in the original data flow. 
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Figure 4.  Block diagram of the de/compressor. 

A. Detection 

The main task of the header detector is to identify the 
header items from the TCP/IP and UDP/IP headers. This 
header information is copied on parallel busses. After the 
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stabilization of the data in the busses, the single-bit 
validation signal is set. The validation of the parallel data is 
necessary because the data are set to the busses byte by byte 
but the bus(ess) width corresponds to the word width of the 
current information item. The example of parallel bus setting 
is shown in Figure 9. The detection process is realized by the 
combinational state machine which secures the content and 
the order of the data in the Ethernet frame, shown in Figure 
6. The byte order is determined by the internal counter of 
bytes. This counter is activated or reset by the validation 
signal of the GMII bus. 

The example of the VHDL (Very High Speed Integrated 
Hardware Description Language) code from detector 
follows. There are four states from combinational state 
machine shown when the source IP address is detected. One-
bit combinational variable the “Comb_ip_source” is set to 
one in these states. In other states, it is set to zero. 

 

When st_sniff_IP_12 => 
 Comb_ip_source <= ‘1’; 
 Next_State_sniff <= st_sniff_IP_13; 
When st_sniff_IP_13 => 
 Comb_ip_source <= ‘1’; 
 Next_State_sniff <= st_sniff_IP_14; 
When st_sniff_IP_14 => 
 Comb_ip_source <= ‘1’; 
 Next_State_sniff <= st_sniff_IP_15; 
When st_sniff_IP_15 => 
 Comb_ip_source <= ‘1’; 
 Next_State_sniff <= st_sniff_IP_16; 
 

The variable “Comb_ip_source” is tested in the 
sequential part. The vectors “Loc_ip_src_N” and 
“data_inner” are eight-bit vectors. The “data_inner” contains 
the current data byte of the data flow. 

 
If Comb_ip_source = ‘1’ then 
 Loc_ip_src _0 <= data_inner; 

Loc_ip_src _1 <= Loc_ip_src _0; 
Loc_ip_src _2 <= Loc_ip_src _1; 
Loc_ip_src _3 <= Loc_ip_src _2; 

End if; 
 
IP_SOURCE_OUT <= (Loc_ip_src_3 & Loc_ip_src_2 
& Loc_ip_src_1 & Loc_ip_src_0); 

 
The last line of the example is the combinational output. 

“IP_SOURCE_OUT” is 32-bits output vector. An example 
of the filling of this vector is presented in Figure 9. This 
example was taken by the JTAG (Joint Test Action Group) 
from the FPGA. Each vector is in hexadecimal format. The 
first line of this example shows the vector-data 
IP_SOURCE_OUT, the second line shows the 
IP_DEST_OUT (destination IP address). The third line 
shows the data_inner and the last line shows the states of the 
state machine. As can be seen, the state “st_sniff_IP_12” 
corresponds to 23h. The byte 93h (14710) is the highest byte 
of the source IP address. This byte affects the value of the 

output vector in the next clock cycle. Every byte of the 
source IP address is gradually processed in the same way. 
The vector “IP_SOURCE_OUT” is valid in the state 27h. 
Then, the following data are processed in a similar way 
(destination IP address,...). A validation signal is set at the 
moment when all data at all parallel buses are valid.  

B. Data delay 

There are several ways of creating a delay in the data 
stream in FPGA. A long shift register is easy to implement in 
VHDL, but it is very demanding for hardware resource 
consumption. A FIFO (First In First Out) memory allows 
reading the data flow with the delay but this delay can not be 
changed during the reading process. On the contrary, a RAM 
(Random Access Memory) memory allows the reading from 
any address. For this reason, the delay is implemented by the 
RAM memory and it is driven by the special driver (written 
in VHDL). The RAM memory is implemented as soft IP 
core and uses memory blocks of the FPGA. It is the Simple 
Dual-port RAM [10] with 128 word depth (every word is 
one byte). Every incoming byte is written in the RAM and 
the writing address (controlled by the RAM controller) is 
incremented. The data reading from RAM starts when 
writing address exceeds some threshold. The change of the 
delay is initialized by the third block (compressor). It is 
shown by the feedback from the third block to the delay 
block in Figure 4. The connection between RAM and RAM 
driver is shown in Figure 5. (WR means writing and RD 
means reading).  

 

RAM 128 x 8 b

RAM driver

data[7..0]

WR_addr[6..0]

WR_enable

RD_addr[6..0] out[7..0]

clk

data_out[7..0]

valid_out

WR_addr[6..0]

RD_addr[6..0]

data_to_RAM[7..0]clk

data_in[7..0]

valid_in

data_from_RAM[7..0]

WR_enabledelay_in[6..0]

 
Figure 5.  Delay block interconnection. 

There is a delay between the writing of reading address 
and getting the data from the RAM output. This delay is 
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caused by the gating signals in RAM memory at inputs and 
outputs (two clock periods) and the actual reading process 
(one clock period). For this reason, the reading data from 
RAM memory are connected to the RAM driver and they are 
supplemented by the correct validation signal. 

C. Compressor and dictionary management 

The compressor block also performs the dictionary 

management, as was described in Section III. The 

compressor evaluates the original header data from the 

parallel busses and decides whether they meet the 

compression conditions, finds a match in the dictionary, 

compress header and/or actualizes the dictionary. The 

dictionary is also actualized when the match in the 

dictionary is found while the original header did not meet 

the compression conditions. 
A function of the compressor is controlled by the 

combinational state machine, the calculations are included in 
the sequential part. While the compression is running, the 
original headers (IP, TCP and UDP) are replaced by the 
compressed header. The data (payload) immediately follow 
the compressed header. The length of the compressed header 
is shorter than the original headers. It means that the delay of 
the data flow must be changed during the compression 
process. In a design with the variable length of the 
compressed header the change of the delay must be variable. 
For this reason, the vector “delay_in” has the same length as 
the reading address “RD_addr”. The value of delay change is 
added to the reading address value. The example is in Figure 
10.  The reading address is in the first line, the second line 
shows the validation signal, the third line shows the reading 
data from RAM. The last line shows the “delay_in” vector. 
This vector is set to zero and contains the value 19h (2510) 
only in one clock tact. In the next clock tact, the reading 
address is changed from 24h to 3Eh. The value of the reading 
address is increased by one (in every clock pulse) plus extra 
19h. As described above, the output data from the RAM are 
delayed by three tacts following the reading address. The 
bytes 47h, 45h and 54h in the data flow are ASCII symbols 
‘G’, ‘E’ and ‘T’. It is the start sequence of payload in packet 
(access to the web). The byte 00h in the data flow before this 
sequence is caused by the change of the reading address. 
Nevertheless, this error is of no importance as this byte as 
well as the preceding bytes are replaced by the compressed 
header.  

The example of the header compression is shown in 
Figure 11. In the first line internal byte counter is shown, the 
“delay_in” is shown in the second line. The original data 
flow at the input of the compressor is shown in the third line. 
The sequence starts by the start of the IP header. The IP 
length is 0024h, IP ID is 07B7h and TTL is 80h. The payload 
immediately follows the TTL (the change of the delay is 
reflected). The payload sequence means “Hello.” in ASCII. 
In the last line of the example, the output data flow with the 
UDP/IP compressed header is shown. The first byte is A1h, it 
presents format with Δ IP ID (01h). Connection number is 
63h.  

VI. THE DECOMPRESSOR 

The decompressor is divided into three blocks like the 
compressor. These blocks are similar to the blocks at the 
compressor side. The differences between the two are 
described bellow.    

A. Detection 

The detector at the decompressor side allows the 
detection of the compressed headers. The parallel busses 
between the detector and the decompressor include wires for 
items from the compressed headers. 

B. Data delay 

The delay of the data flow is realized in a similar way as 
at the compressor side. The difference is only in the sign for 
“delay_in” vector. During the decompression process, the 
delay must increase because the length of the recovered 
headers is larger than the length of the compressed header. 

C. Decompressor and dictionary management 

The dictionary management at the decompressor side is 
the same as that at the compressor side. The decompressor 
(like the compressor) searches matches in the dictionary and 
performs the basic dictionary tasks (storing data, actualizing 
data, releasing cells,...). 

When the decompressor processes the data from the 
compressed header, it seeks consensus by the connection 
number in the dictionary. Then, the decompressor calculates 
original header items from the dictionary data and the 
received differences, actualizes the dictionary and stores the 
recovered header items in the internal vectors. These data are 
put in the output data flow in the correct order (controlled by 
the internal byte counter in sequential part. The restored 
header must be closely followed by the payload and 
therefore the delay is changed during this process. 

VII. RESULTS 

The described header-compressor and decompressor 
were implemented in FPGA Altera Cyclone III, namely the 
EP3C40F484C7 with speed grade -8, 39,600 Logic Elements 
(LE), more than 1 Mbits Random Access Memory, 126 M9K 
(special memory) blocks, 126 multipliers (18 x 18), four 
PLLs (Phase Locked Loop [11]. 

The TABLE I. contains the FPGA synthesis result. The 
compressor and decompressor dictionaries have five cells for 
the TCP/IP streams and five cells for the UDP/IP flows. The 
decompressor detector is more demanding on hardware 
resources than the compressor detector for its ability of 
detection also of the compressed headers. The decompressor 
calculates original header items and stores them in the 
internal vectors in contrast with the compressor which put 
the compressed header data directly into the output data 
flow. Therefore, the decompressor implementation is more 
hardware demanding. The difference between the data delay 
blocks at the compressor and decompressor sides is very 
simple (see in Section VI). Nevertheless, the consumption of 
the LEs and LUTs is higher at the decompressor side. 
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TABLE I.  REQUIRED HW SOURCES 

 LEs M9Ks LUTs 

Compressor 

Detector 404 0 109 

Data delay 74 1 24 

Compressor 3661 0 1635 

Decompressor 

Detector 526 0 156 

Data delay 82 1 32 

Decompressor 4240 0 1760 

 
The above described implementation allows the 

compression of TCP/IP and UDP/IP headers with the 
compression from 40 to 15 bytes for TCP/IP and from 28 to 
8, 9 or 10 bytes for UDP/IP. This compression and 
decompression processes were designed with respect to 
minimum delay in the data flow, in contrast to the systems 
that perform the compression of the headers after the 
buffering the whole packet. The delay is variable for 
Ethernet frames with compression while the delay is constant 
for the frames without compression. In the worst case, the 
flow delay is less than 50 clock periods at the compressor 
side and less than 30 clock periods at the decompressor side. 
It is less than 640 ns. 

VIII. CONCLUSION 

The paper presented the implementation of the header 
compressor for one Gbps Ethernet in the FPGA. The 
compression and decompression of the TCP/IP and UDP/IP 
headers in presented form was implemented and tested.  

The variable length format of the compressed header for 
the TCP/IP and IPv6 header compression will also be 
incorporated. The future work would also include 
mechanisms for handshaking between the compressor and 
the decompressor dictionaries and for the data protection. 
These mechanisms would allow the use of the TX/RX real 
line (with losses and interferences). However, these 
mechanisms should be implemented on the lowest layer. It 
would require implementation of the MAC/PHY into FPGA. 
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Figure 6.  Ethernet frame (Ethernet II). [9] 
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Figure 7.  IP header (IPv4). [6]  
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Figure 8.  TCP header format (left), UDP header format (right). [7] [8] 

00000093h 000093E5h 0093E591h 93E591CBh00000000h

000000D9h00000000h 0000D95Ch

93h E5h 91h CBh D9h 5Ch 07h

23h 24h 25h 26h 27h 28h 29h
 

Figure 9.  The example of filling of the “IP_SOURCE_OUT” data vector. 

21h 22h 23h 24h 3Eh 3Fh 40h 41h 42h 43h 44h

00h 80h 06h ABh 22h 93h E5h 00h 47h 45h 54h

19h00h 00h
 

Figure 10.  The example of changing of the reading address. 

45h 00h 00h 24h 07h B7h 80h00h 00h 48h 65h 6Ch 6Fh 2Eh

65h 6Ch 6Fh00h A1h 63h 00h 24h 01h E8h 46h 1Dh 71h 48h

016h 017h 018h 019h 01Ah 01Bh 01Eh01Ch 01Dh 01Fh 020h 022h 023h 024h021h

13h00h 00h

 

Figure 11.  UDP header compression. 
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