
1 Gbps Ethernet TCP/IP and UDP/IP Header Compression in FPGA

Milan Štohanzl, Zbyněk Fedra

Department of Radio Electronics

Faculty of Electrical Engineering and Communication

Brno University of Technology

Brno, Czech Republic

e-mail: stohanzl@phd.feec.vutbr.cz,

fedraz@feec.vutbr.cz

Marek Bobula

Research and Development Department

Racom Ltd.

Nové město na Moravě, Czech Republic

marek.bobula@racom.eu

Abstract — This paper presents a study about the hardware

implementation of the TCP/IP and UDP/IP headers

compression for the point-to-point communication. The

implementation is focused on the achievement of minimum

latency and high compression ratio. The applied compression

technique is a dictionary-based method. For the TCP/IP, the

fixed length of the compressed header was implemented. On

the contrary, the variable length of the compressed header was

implemented for the UDP/IP. The dictionaries are filled from

the original data on both sides. No additional transmissions are

used for retaining the continuity of the dictionary content.

Keywords-Field Programable Gate Array (FPGA); Ethernet;

header; compression; connection; IP; TCP; UDP.

I. INTRODUCTION

In order to reduce the amount of transmitted data over
physical layer of the IP network, lossless data compression
can be implemented. This can be useful for the one hop of
the point-to-point radio or optical Ethernet link especially for
solution integrated with a modem. The lossless data
compression is used for reducing the data redundancy at the
transmitter side (in a compressor). This redundancy is
renewable at the receiver side (in a decompressor). In
general, the random character of the Ethernet data traffic
must be considered [2]. For this reason, any lossless data
compression method may fail as the statistical-based and
dictionary-based lossless data compression methods are
based on the data redundancy (with specific sequence and/or
time dependency). Statistical-based compression methods
are unsuitable more than dictionary based methods because
they need more time for preprocessing (creation of data
statistics) [1]. However, the character of data in the headers
of data link layer, network layer and transport layer is well
known and/or predictable [6] [7] [8].

The data cannot be transferred trough IP networks
without headers [9]. The second, the third and the fourth
layers add the headers to the data. These headers are used for
routing and transferring data through network. A single TCP
connection or UDP data flow is usually hundreds or
thousands of packets transmitted from source to destination.
There are a lot of data that do not change during the
connection in headers TCP/IP connection or UDP/IP flow.
Repeated transfers of headers add the redundancy
(unchanging data in headers) or the redundancy in long

numbers transmitting which are changed only minimally
packet by packet. Such items can be transferred in the form
of differences. The main idea of the header compression is in
the replacement of long raw headers by headers without
redundancy. The original headers are identically restored at
the receiver side [1] [2] [4].

The length of original headers is strictly defined, or is
defined in some extent [6] [8]. On the contrary, the length of
transmitted payload is entirely random. The headers may
take up to 50 % of the volume of the transmitted data at the
physical layer (when a very short payload is transmitted).
When the frames over the MTU (Maximum Transmission
Unit) (1500 B) are transmitted the headers take less than 5 %
of volume transported on physical layer.

There are two general ways of implementing
a compression algorithm. Software implementation is costs
effective for low speed connections. For real-time
applications with high speed connections, hardware
implementation is better. Nowadays, the compression
hardware exists in many forms, for example Lempel-Ziv
algorithms [2], X-Match Pro Algorithms [3] and many more.
The information about hardware implementation specialized
in the Ethernet headers compression was not found. The
software implementation of the TCP/IP headers compression
was designed and published in RFC 1144 [4] and RFC 2507
[5]. Therefore, this study deals with hardware
implementation of the Ethernet headers compression
(TCP/IP and UDP/IP).

This paper is divided into eight sections. The original
headers and compressed headers formats are introduced in
Section II. Section III describes the applied method. The
hardware arrangement is presented in Section IV. The
compressor is discussed in Section V and the differences
between compressor and decompressor are discussed in
Section VI. The results of this research are summarized in
Section VII. The conclusion of the present study can be
found in Section VIII.

II. ORIGINAL AND COMPRESSED HEADERS

 In this section, the original and compressed headers
content and its meaning is described.

The IP header format is shown in Figure 7. IP version is a
four-bit item. The IP length is a four-bit item and it
represents one quarter of the total IP length. The basic length

136Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

mailto:stohanzl@phd.feec.vutbr.cz
mailto:marek.bobula@racom.eu

of an IP header is 20 bytes. All the IP headers with different
lengths are not compressed. The item ToS (Type of Services)
contains the Differentiated Services Codepoint and the
Explicit Congestion Notification. One of the compression
conditions is the ToS equal to zero. The total IP length is the
length of the IP packet. It is a sum of the IP header length,
the higher layer protocol header length and the data
(payload) length. This item is transmitted in the compressed
header without any changes. IP Identification (IP ID) is the
number of IP packets sent by the station. The IP ID in the
TCP/IP stream is changed only minimally being sent packet
by packet and therefore it is transmitted in the compressed
header as an eight-bit difference. The field flags and the
fragment offset are set only when the IP packet is
fragmented. This field must be zero (compression condition).
Only the DF (Don’t Fragment) bit can be written to one. In
this case, the seventh bit in the compressed header is set to
one. The TTL (Time To Live) is a number that limits the
lifespan of the IP packets in the IP networks. This value is
constant for one TCP/IP stream at one line (when the IP
packets are routed by the same way trough the IP network).
The item protocol identifies higher layer protocol. For
example TCP is presented by number 6, UDP is presented by
number 17. The IP checksum is the checksum of all bytes in
the IP header. This value need not be transmitted in the
compressed header and can be evaluated during the
decompression process. As a result, however, the error
protection would be decreased. This value is transmitted in
the compressed header without any changes. The source and
destination IP addresses are the IP addresses of the end nodes
and they identify the TCP/IP data stream and/or the UDP/IP
data flow. [6]

The basic length of the TCP header is 20 bytes. The
source and destination ports together with the IP addresses
identify the TCP/IP data stream. The Sequence Number
(SEQ) and the Acknowledgement Number (ACK) are
changing (increasing) in TCP/IP stream packet by packet.
Therefore they are transmitted in compressed header as a 16-
bit difference. The data offset represents the length of the
TCP header. The implemented compression algorithm allows
the compression of the TCP headers with basic length. The
TCP flags field contains the TCP flags. Only the headers
with a set Acknowledgement flag can be compressed. If the
Push flag (PSH) is set, compression is allowed and the eighth
bit in the compressed header is set to one. Other flags
(Urgent, Reset, Syn, Fin) must not be set. The Window size
value is transmitted in the compressed header without any
changes. The TCP checksum is the checksum of all bytes in
the TCP header and the data payload. The evaluation of this
checksum during the decompression process would cause the
decrease of the error protection in a similar way as with the
IP checksum. Moreover, the whole TCP packet including the
payload would have to be buffered. This would
disproportionately increase the latency. Therefore, the TCP
checksum is transmitted in the compressed header without
any changes.The urgent pointer is only set if the urgent flag
is set to one. Therefore the urgent pointer is not transmitted
in the compressed header. The original TCP header format is
shown in Figure 8 [8].

connection number

win H

1

IP checksum L

IP len H

Δ IP ID

0 1 1 0 0 DF PSH

IP len L

IP checksum H

Δ SEQ H

Δ SEQ L

Δ ACK H

Δ ACK L

win L

TCP checksum H

TCP checksum L

1.B

5.B

10.B

15.B
Figure 1. Compressed header format (TCP/IP).

The UDP header consists of eight bytes. Four bytes are
port numbers. The item UDP length is the length of payload
and the UDP header. This item can be calculated by
subtracting the IP header length of the (20 B) from the IP
length. The UDP checksum is the checksum of all bytes in
the payload and the UDP header. This item is transmitted in
the compressed header. The original headers format is shown
in Figure 8. In Figure 2, the formats of the compressed
UDP/IP headers are shown. As can be seen, the length of the
header is variable. The item IP ID is not included in the
compressed header when the IP ID is zero in the original
data flow. The Δ IP ID is transmitted in when the difference
between the previous and the current value is less or equal to
the eight-byte-value. Otherwise, the IP ID is transmitted
without changes. The format of the compressed header is
indicated by the seventh and the eighth bit in the compressed
header. The compressed UDP/IP header formats are shown
in Figure 2 [7].

con. number

IP checksum L

IP len H

Δ IP ID

IP len L

IP checksum H

IP ID L

UDP chsum H

UDP chsum L

10 0

con. number

IP checksum L

IP len H

IP len L

IP checksum H

0

con. number

IP checksum L

IP len H

IP len L

IP checksum H

01

IP ID H

1010 00 1010 00 1010 00

UDP chsum H

UDP chsum HUDP chsum L

UDP chsum L

Figure 2. Compressed header formats (UDP/IP).

137Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

III. METHOD

The implemented header compression technique is a

dictionary method. The compressor and decompressor

dictionaries contain data from raw (original) headers that are

transmitted in the compressed headers as the difference or

are not transmitted in the compressed headers at all. The

dictionaries are divided into cells. Every cell contains data

for one TCP/IP or UDP/IP flow. The width of the words in a

cell is defined for each word separately. Each cell also

contains the “connection number” item and the “Counter of

Use” (CoU). The CoU is used to detect the flow inactivity

(see below).
At the beginning (after start-up), the compressor and

decompressor dictionaries are empty. With the arrival of the
first packet that meets the conditions of the compression, the
raw data from headers are stored in one dictionary cell. The
packet is sent without any changes. At the receiver side, the
decompressor identifies this compressible packet and stores
the raw data in one cell as does the compressor. After the
arrival of the next packet of this flow, the compressor finds a
match in the dictionary and compresses the headers. During
the compression process, the compressor actualizes data in
the cell from the raw headers (only changing data like IP ID,
ACK, SEQ that are transmitted like differences) and
increments the CoU. The decompressor detects the
compressed header and decompresses this header using the
data from dictionary in the same way the compressor
actualizes data in the dictionary and increments the CoU at
the decompressor side. Described procedure ensures that the
compressor and the decompressor have the same content of
dictionary at all times. This is the main condition of this
method.

When the compressor finds a match in the dictionary but

the raw headers are not compressible (a difference is greater

than one byte and/or the flags in raw headers do not allow

compression), the raw data are transmitted and the

compressor/decompressor actualizes the data in the

dictionary. There is a chance that the next packet of this

flow will be compressible.
When all the cells of the dictionary are full and the

compressor identifies compressible packet without a match
in the dictionary, a revision of the dictionary is made. All
cells with the CoU equal to zero (only one packet of the flow
which allowed the compression passed) are released. For
easier implementation, the packet is transmitted without any
changes and is not stored in the dictionary. The
decompressor does the same. It is also possible for the CoU
in all cells not to be equal zero. In this case, the “Counter of
Raw Data” (CoRD) is incremented. If the CoRD is equal to
the pre-set threshold every CoU is reset. Subsequently, the
packets from the stored flows may come. These packets are
compressed and the CoUs in the cells of the dictionary are
incremented. The first compressible packet which is not in
the dictionary causes the release of cells with the CoU equal
to zero. The method of zeroing CoU in case of full dictionary
and transmitting unstored flows guarantees the old data in
the dictionary are cleared and the dictionary is ready for the

current flows. The data in the dictionary will never grow so
old so as to render the storing of new data impossible.

IV. HW SOURCES

The data rate 1 Gbps (Ethernet IEEE 802.3z) corresponds
to modulation rate 1.25 GBaud on the physical layer. After
the deserializer, the data rate on GMII busses between
MAC/PHY (Media Access Control, Physical Layer) circuits
and the FPGA in Figure 3. is 125 Mbit/s. The main clock in
the FPGA is the same (125 MHz corresponds to 8 ns). The
hardware arrangement is presented in Figure 3. The GMII
bus contains eight wires for the data, one wire for clock
signal and one wire for validation signal.

The original signal from the Ethernet line is modified in
the MAC/PHY circuit and brought into the FPGA. The
modification (header compression) can be performed there.
Then the data flow is connected to the second PHY/MAC
circuit. This circuit must not monitor the CRC (Cyclic
Redundancy Check) of the Ethernet frame and the headers
content. The decompression must be implemented from the
second side. The TX/RX (Transmit, Receive) line is ideal
(without losses and interferences).

PHY

MAC

GMII

GMII

FPGA

PHY

MAC

GMII

GMII1
 G

b
p
s

T
X
/
R
X

E
th

e
rn

e
t

compressor

decompressor

Figure 3. HW arrangement.

V. THE COMPRESSOR

The compressor processes (as well as the decompressor
processes) are divided into three basic blocks. These blocks
are shown schematically in Figure 4. The first block
recognizes the header items of the TCP/IP and UDP/IP, in
the second block the data flow is delayed in order to allow
the third block to evaluate the header items before it starts to
process or compress them in the original data flow.

d
e
te

c
ti

o
n delay

d
e
/
c
o
m

p
re

s
s
.

+
 d

ic
ti

o
n
a
ry

m
a
n
a
g
e
m

e
n
t

header information

validation

data
GMII

GMII

Figure 4. Block diagram of the de/compressor.

A. Detection

The main task of the header detector is to identify the
header items from the TCP/IP and UDP/IP headers. This
header information is copied on parallel busses. After the

138Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

stabilization of the data in the busses, the single-bit
validation signal is set. The validation of the parallel data is
necessary because the data are set to the busses byte by byte
but the bus(ess) width corresponds to the word width of the
current information item. The example of parallel bus setting
is shown in Figure 9. The detection process is realized by the
combinational state machine which secures the content and
the order of the data in the Ethernet frame, shown in Figure
6. The byte order is determined by the internal counter of
bytes. This counter is activated or reset by the validation
signal of the GMII bus.

The example of the VHDL (Very High Speed Integrated
Hardware Description Language) code from detector
follows. There are four states from combinational state
machine shown when the source IP address is detected. One-
bit combinational variable the “Comb_ip_source” is set to
one in these states. In other states, it is set to zero.

When st_sniff_IP_12 =>
 Comb_ip_source <= ‘1’;
 Next_State_sniff <= st_sniff_IP_13;
When st_sniff_IP_13 =>
 Comb_ip_source <= ‘1’;
 Next_State_sniff <= st_sniff_IP_14;
When st_sniff_IP_14 =>
 Comb_ip_source <= ‘1’;
 Next_State_sniff <= st_sniff_IP_15;
When st_sniff_IP_15 =>
 Comb_ip_source <= ‘1’;
 Next_State_sniff <= st_sniff_IP_16;

The variable “Comb_ip_source” is tested in the
sequential part. The vectors “Loc_ip_src_N” and
“data_inner” are eight-bit vectors. The “data_inner” contains
the current data byte of the data flow.

If Comb_ip_source = ‘1’ then
 Loc_ip_src _0 <= data_inner;

Loc_ip_src _1 <= Loc_ip_src _0;
Loc_ip_src _2 <= Loc_ip_src _1;
Loc_ip_src _3 <= Loc_ip_src _2;

End if;

IP_SOURCE_OUT <= (Loc_ip_src_3 & Loc_ip_src_2
& Loc_ip_src_1 & Loc_ip_src_0);

The last line of the example is the combinational output.

“IP_SOURCE_OUT” is 32-bits output vector. An example
of the filling of this vector is presented in Figure 9. This
example was taken by the JTAG (Joint Test Action Group)
from the FPGA. Each vector is in hexadecimal format. The
first line of this example shows the vector-data
IP_SOURCE_OUT, the second line shows the
IP_DEST_OUT (destination IP address). The third line
shows the data_inner and the last line shows the states of the
state machine. As can be seen, the state “st_sniff_IP_12”
corresponds to 23h. The byte 93h (14710) is the highest byte
of the source IP address. This byte affects the value of the

output vector in the next clock cycle. Every byte of the
source IP address is gradually processed in the same way.
The vector “IP_SOURCE_OUT” is valid in the state 27h.
Then, the following data are processed in a similar way
(destination IP address,...). A validation signal is set at the
moment when all data at all parallel buses are valid.

B. Data delay

There are several ways of creating a delay in the data
stream in FPGA. A long shift register is easy to implement in
VHDL, but it is very demanding for hardware resource
consumption. A FIFO (First In First Out) memory allows
reading the data flow with the delay but this delay can not be
changed during the reading process. On the contrary, a RAM
(Random Access Memory) memory allows the reading from
any address. For this reason, the delay is implemented by the
RAM memory and it is driven by the special driver (written
in VHDL). The RAM memory is implemented as soft IP
core and uses memory blocks of the FPGA. It is the Simple
Dual-port RAM [10] with 128 word depth (every word is
one byte). Every incoming byte is written in the RAM and
the writing address (controlled by the RAM controller) is
incremented. The data reading from RAM starts when
writing address exceeds some threshold. The change of the
delay is initialized by the third block (compressor). It is
shown by the feedback from the third block to the delay
block in Figure 4. The connection between RAM and RAM
driver is shown in Figure 5. (WR means writing and RD
means reading).

RAM 128 x 8 b

RAM driver

data[7..0]

WR_addr[6..0]

WR_enable

RD_addr[6..0] out[7..0]

clk

data_out[7..0]

valid_out

WR_addr[6..0]

RD_addr[6..0]

data_to_RAM[7..0]clk

data_in[7..0]

valid_in

data_from_RAM[7..0]

WR_enabledelay_in[6..0]

Figure 5. Delay block interconnection.

There is a delay between the writing of reading address
and getting the data from the RAM output. This delay is

139Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

caused by the gating signals in RAM memory at inputs and
outputs (two clock periods) and the actual reading process
(one clock period). For this reason, the reading data from
RAM memory are connected to the RAM driver and they are
supplemented by the correct validation signal.

C. Compressor and dictionary management

The compressor block also performs the dictionary

management, as was described in Section III. The

compressor evaluates the original header data from the

parallel busses and decides whether they meet the

compression conditions, finds a match in the dictionary,

compress header and/or actualizes the dictionary. The

dictionary is also actualized when the match in the

dictionary is found while the original header did not meet

the compression conditions.
A function of the compressor is controlled by the

combinational state machine, the calculations are included in
the sequential part. While the compression is running, the
original headers (IP, TCP and UDP) are replaced by the
compressed header. The data (payload) immediately follow
the compressed header. The length of the compressed header
is shorter than the original headers. It means that the delay of
the data flow must be changed during the compression
process. In a design with the variable length of the
compressed header the change of the delay must be variable.
For this reason, the vector “delay_in” has the same length as
the reading address “RD_addr”. The value of delay change is
added to the reading address value. The example is in Figure
10. The reading address is in the first line, the second line
shows the validation signal, the third line shows the reading
data from RAM. The last line shows the “delay_in” vector.
This vector is set to zero and contains the value 19h (2510)
only in one clock tact. In the next clock tact, the reading
address is changed from 24h to 3Eh. The value of the reading
address is increased by one (in every clock pulse) plus extra
19h. As described above, the output data from the RAM are
delayed by three tacts following the reading address. The
bytes 47h, 45h and 54h in the data flow are ASCII symbols
‘G’, ‘E’ and ‘T’. It is the start sequence of payload in packet
(access to the web). The byte 00h in the data flow before this
sequence is caused by the change of the reading address.
Nevertheless, this error is of no importance as this byte as
well as the preceding bytes are replaced by the compressed
header.

The example of the header compression is shown in
Figure 11. In the first line internal byte counter is shown, the
“delay_in” is shown in the second line. The original data
flow at the input of the compressor is shown in the third line.
The sequence starts by the start of the IP header. The IP
length is 0024h, IP ID is 07B7h and TTL is 80h. The payload
immediately follows the TTL (the change of the delay is
reflected). The payload sequence means “Hello.” in ASCII.
In the last line of the example, the output data flow with the
UDP/IP compressed header is shown. The first byte is A1h, it
presents format with Δ IP ID (01h). Connection number is
63h.

VI. THE DECOMPRESSOR

The decompressor is divided into three blocks like the
compressor. These blocks are similar to the blocks at the
compressor side. The differences between the two are
described bellow.

A. Detection

The detector at the decompressor side allows the
detection of the compressed headers. The parallel busses
between the detector and the decompressor include wires for
items from the compressed headers.

B. Data delay

The delay of the data flow is realized in a similar way as
at the compressor side. The difference is only in the sign for
“delay_in” vector. During the decompression process, the
delay must increase because the length of the recovered
headers is larger than the length of the compressed header.

C. Decompressor and dictionary management

The dictionary management at the decompressor side is
the same as that at the compressor side. The decompressor
(like the compressor) searches matches in the dictionary and
performs the basic dictionary tasks (storing data, actualizing
data, releasing cells,...).

When the decompressor processes the data from the
compressed header, it seeks consensus by the connection
number in the dictionary. Then, the decompressor calculates
original header items from the dictionary data and the
received differences, actualizes the dictionary and stores the
recovered header items in the internal vectors. These data are
put in the output data flow in the correct order (controlled by
the internal byte counter in sequential part. The restored
header must be closely followed by the payload and
therefore the delay is changed during this process.

VII. RESULTS

The described header-compressor and decompressor
were implemented in FPGA Altera Cyclone III, namely the
EP3C40F484C7 with speed grade -8, 39,600 Logic Elements
(LE), more than 1 Mbits Random Access Memory, 126 M9K
(special memory) blocks, 126 multipliers (18 x 18), four
PLLs (Phase Locked Loop [11].

The TABLE I. contains the FPGA synthesis result. The
compressor and decompressor dictionaries have five cells for
the TCP/IP streams and five cells for the UDP/IP flows. The
decompressor detector is more demanding on hardware
resources than the compressor detector for its ability of
detection also of the compressed headers. The decompressor
calculates original header items and stores them in the
internal vectors in contrast with the compressor which put
the compressed header data directly into the output data
flow. Therefore, the decompressor implementation is more
hardware demanding. The difference between the data delay
blocks at the compressor and decompressor sides is very
simple (see in Section VI). Nevertheless, the consumption of
the LEs and LUTs is higher at the decompressor side.

140Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

TABLE I. REQUIRED HW SOURCES

 LEs M9Ks LUTs

Compressor

Detector 404 0 109

Data delay 74 1 24

Compressor 3661 0 1635

Decompressor

Detector 526 0 156

Data delay 82 1 32

Decompressor 4240 0 1760

The above described implementation allows the

compression of TCP/IP and UDP/IP headers with the
compression from 40 to 15 bytes for TCP/IP and from 28 to
8, 9 or 10 bytes for UDP/IP. This compression and
decompression processes were designed with respect to
minimum delay in the data flow, in contrast to the systems
that perform the compression of the headers after the
buffering the whole packet. The delay is variable for
Ethernet frames with compression while the delay is constant
for the frames without compression. In the worst case, the
flow delay is less than 50 clock periods at the compressor
side and less than 30 clock periods at the decompressor side.
It is less than 640 ns.

VIII. CONCLUSION

The paper presented the implementation of the header
compressor for one Gbps Ethernet in the FPGA. The
compression and decompression of the TCP/IP and UDP/IP
headers in presented form was implemented and tested.

The variable length format of the compressed header for
the TCP/IP and IPv6 header compression will also be
incorporated. The future work would also include
mechanisms for handshaking between the compressor and
the decompressor dictionaries and for the data protection.
These mechanisms would allow the use of the TX/RX real
line (with losses and interferences). However, these
mechanisms should be implemented on the lowest layer. It
would require implementation of the MAC/PHY into FPGA.

ACKNOWLEDGMENT

This paper was supported by the project Systems of
Wireless Internet Communication (SYWIC) LD11081 in
frame of COST IC 0906 action. The research published in
this submission was financially supported by the project
CZ.1.07/2.2.00/20.0007 WICOMT of the operational
program Education for competitiveness and by grant no.
FEKT-S-11-12 (MOBYS).

The described research was performed in laboratories
supported by the SIX project; the registration number
CZ.1.05/2.1.00/03.0072, the operational program Research
and Development for Innovation.

REFERENCES

[1] D. Salomon and G. Motta, Handbook of Data Compression,
Springer-Verlag, London, 2010.

[2] R. Mehboob, S. A. Khan, and Z. Ahmed, “High speed lossles
data compression architecture,” Multitopic Conference, 2006.
INMIC '06. IEEE, pp. 84-88, 23-24 Dec. 2006, doi:
10.1109/INMIC.2006.358141.

[3] J.L. Nunez-Yanez and V.A. Chouliaras, "Gigabyte per second
streaming lossless data compression hardware based on a
configurable variable-geometry CAM dictionary," Computers
and Digital Techniques, IEE Proceedings, vol. 153, no. 1, pp.
47-58, 10 Jan. 2006, doi: 10.1049/ip-cdt:20045130.

[4] V. Jacobson, B. Nordgren and S. Pink “Compressing TCP/IP
headers for low-speed serial links,” RFC 1144, Feb. 1990.

[5] M. Degermark, “IP header compression,” RFC 2507, Feb.
1999.

[6] “Internet protocol DARPA internet program protocol
specification,” RFC 791, Sep. 1981.

[7] J. Postel, “User Datagram protocol,” RFC 768, Aug. 1980.

[8] “Transmission Control Protocol,” RFC 793, Sep. 1981.

[9] “IEEE 802.3. Part 3: Carrier sense multiple access with
Collision Detection (CSMA/CD) Access Method and Physical
Layer Specifications,“ New York: IEEE Computer Society,
pp. 49 2008.

[10] www.altera.com, “Internal memory (RAM a ROM) User
Guide,” Jan. 2012

[11] www.altera.com, “Cyclone III Device Family Overview,” vol.
1. 2012.

preamble
destination

address

source

address
type

data
checksum

(payload)

8 Bytes 6 Bytes 6 Bytes 2 Bytes 46 - 1500 Bytes 4 Bytes

Figure 6. Ethernet frame (Ethernet II). [9]

IP
version

IP
length ToS total IP length

IP ID flags + fragment offset

TTL protocol IP checksum

source IP address

destination IP address

1B 2B 4B

Figure 7. IP header (IPv4). [6]

141Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

http://www.altera.com/
http://www.altera.com/

source port destination port

sequence number

acknowledgement number

data

TCP checksum

2B 4B

offset TCP flags window

urgent pointer

source port destination port

UDP length UDP checksum

4B2B

Figure 8. TCP header format (left), UDP header format (right). [7] [8]

00000093h 000093E5h 0093E591h 93E591CBh00000000h

000000D9h00000000h 0000D95Ch

93h E5h 91h CBh D9h 5Ch 07h

23h 24h 25h 26h 27h 28h 29h

Figure 9. The example of filling of the “IP_SOURCE_OUT” data vector.

21h 22h 23h 24h 3Eh 3Fh 40h 41h 42h 43h 44h

00h 80h 06h ABh 22h 93h E5h 00h 47h 45h 54h

19h00h 00h

Figure 10. The example of changing of the reading address.

45h 00h 00h 24h 07h B7h 80h00h 00h 48h 65h 6Ch 6Fh 2Eh

65h 6Ch 6Fh00h A1h 63h 00h 24h 01h E8h 46h 1Dh 71h 48h

016h 017h 018h 019h 01Ah 01Bh 01Eh01Ch 01Dh 01Fh 020h 022h 023h 024h021h

13h00h 00h

Figure 11. UDP header compression.

142Copyright (c) IARIA, 2012. ISBN: 978-1-61208-231-8

ICSNC 2012 : The Seventh International Conference on Systems and Networks Communications

