
Middleware Architectures for RFID Systems: A Survey

Haitham S. Hamza, Mohamed Maher, Shourok Alaa,

Aya Khattab, Hadeal Ismail, Kamilia Hosny

ANSR Lab, Cairo University

Giza, Egypt

Email: {hhamza, mmaher, salaa, akhattab, hismail,

khosny}@ansr.cu.edu.eg

Abstract — Radio Frequency Identification (RFID) technology

has advanced considerably over the last decade, and has

become one of the dominate technologies to realize emerging

Internet of Things (IoT) applications. The increasing demand

for adopting RFID coupled with the diverse types of RFID

systems (e.g., readers and tags) gave rise to the challenging

problem of integration of heterogeneous RFID systems.

Accordingly, RFID middleware technologies have received an

increasing attention in both research and industry community.

This paper reviews existing main RFID middleware systems

and compares their main features. Observations regarding the

capability of existing middleware systems are also discussed.

Keywords-RFID; Middleware; Semantic middleware;

Interoperability, Internet of Things (IoT)

I. INTRODUCTION

Auto-identification technology has widely emerged
during the last few years due to the need for identifying
(people, things) in many applications. Radio Frequency
Identification (RFID) is a wireless identification system
based on electromagnetic field (Radio Waves) to transfer data
[1]. Recently, RFID technology has been widely used in
various domains and applications including: supply chain,
retail management, infrastructure and asset monitoring. The
wide-spread of RFID usage can be attributed to its several
advantages, such as: no line-of-sight needed, simultaneous
and bulk readings, ability withstand environmental
conditions, and possibility to read/write on tags. RFID
consists of two main components: Tags (transponders) and
Readers (transceivers) [2]. Figure 1 illustrates the typical
components of RFID systems.

In RFID systems, tags can be classified into three main
types; namely, passive (also known as pure passive,
reflective, or beam powered), Semi-passive/Active, and
Active.

Passive tags obtain their operating power from the reader
as the reader sends electromagnetic waves that induce current
in the tag’s antenna. The tag in turn reflects the RF signal
transmitted and adds information by modulating the reflected
signal.

 Semi-passive/Active tags are powered by internal
batteries that are used to run the microchip’s circuit and to
broadcast a signal to the reader; generally ensure a longer
read range than passive tags.

Active tags make use of a battery to maintain data in the
tag or power the electronics that enable the tag to modulate

the reflected signal and communicate in the same method, as
in the other passive tags, but has a wider range.

One variation among the various types of tags is in the
coverage area, which ranges from few feet in passive to
several meters in active. Another aspect that differentiates
among the various tags is their ability in terms of the
read/write of data. In Read only tags, the memory is factory
programmed and cannot be modified after manufacturing.
Clearly, this type is cheaper compared to the read/write tags.
In Read/Write tags, data can be written and read. Data on the
tag can be dynamically altered, and hence, it is more
expensive compared to the read-only chips. Write Once Read
Many (WORM) is another type of tags where the data can be
added once but never changed and can be read many times.

Despite the wide-spread of RFID technology, it still faces
several challenges that prevent their full exploitation in
emerging applications. Among these challenges is the
heterogeneity of reader types and standardization of
communication techniques. These challenges can greatly
limit the usages of heterogeneous data in various
applications. Accordingly, there was an increasing interest in
the RFID technology to develop middleware systems that
allow for communication across various RFID readers
without the need for changes or upgrades in the core of the
middleware.

The increasing challenges that resulted from the
increasing diversity in RFID technologies have led to
development of several RFID middleware systems.
Accordingly, in this paper we attempt to survey existing
RFID middleware systems developed in various research
projects and compare their features and capabilities. This
survey does not cover middleware systems that target the
integration of sensor devices, or those that handle only a
limited set of features for data or communications as Bitmap

Figure 1. Typical RFID Systems [15]

142Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

[5], REFill [6], and SMURF [5]. Also, we exclude hybrid
middleware systems that mainly focus on a single application
in a closed specialized domain.

The rest of this paper will be divided as follows. Section
II provides brief overview about the concept of middleware
in the context of RFID systems. Section III reviews existing
RFID middleware systems. Section IV presents a comparison
between the existing middlewares and the concluded gap.
Section V presents the conclusion.

II. RFID MIDDLEWARE OVERVIEW

The word “middleware” is typically defined differently by
different RFID vendors. For the purpose of this work, we use
the definition given in [3], where a middleware between two
layers is defined as the intermediate layer responsible for
facilitating communication between the two layers, and
preparing output from the first layer as input to the second
layer, and vice versa. Data is prepared through collection,
filtration, and aggregation. Mapping this basic definition to
the context of RFID, a middleware should address issues
related to:

Heterogeneity of tags and readers: In typical real-life
applications, installed readers are not all from the same
vendor, and hence, they deal with different types and formats
of tags (passive or active, readable or writable).

Tag/Reader collision: In typical operational
environments, it is possible that repeated readings of the same
tag or different tags are sent to the same reader causing
missing reads

The diversity of applications: Different applications use
different types and formats of data that are collected from
tags.

The huge amount of collected data: Large amount of
RFID data needs to be processed, stored or directed at once to
their destination.

Lack of context: The context of operation is important in
dealing with the collected data and their meanings.

Determining needed number of readers: It is important to
identify the best locations suitable to install readers in order
to ensure sufficient coverage suitable for the area under
consideration.
Based on the above, we can deduce that a typical middleware
may need to provide the following functionalities:

Hardware Abstraction: Dealing with different readers
despite their different types/interfaces.

Duplicate removal: Discarding redundant readings.
Data Filtering: Obtaining only needed data from the

incoming readings.
Data Aggregation: Collecting/Redirecting data to their

destination (time based, location based, etc.).
Report Generation: Generating reports depending on

some predefined actions.
Business Rules Compatibility: Storing needed data in the

desired formats for further usages/processing.
Application Connector: Giving the facility to different

applications to deal with RFID systems and get needed
information despite their different formats (connector for
each application type).

In terms of RFID Middleware and standardization
problems, it is worth pointing that the EPC [4] global
standards aims at supporting the use of RFID and
standardizing its way of communication. The EPC
framework is summarized in Figure 2. As shown in the
figure, the following are the main layers in the framework: (i)
The Reader Management (RM): responsible of monitoring
the health of RFID readers, (ii) Low Level Reader Protocol
(LLRP): overcoming the gap of not providing middleware
providers with access to enough Gen2 air protocol details as
much as needed, (iii) Reader Protocol (RP): abstracting
reader details and easier for application programmers to use,
(iv) Application Level Event (ALE): responsible of observing
and reporting events (no business context included), and (v)
EPC Information Sharing (EPCIS): supporting capture and
query interfaces for business to business communications.

III. EXISITING RFID MIDDLEWARE

In this section, we present the main RFID middleware
systems and review their key features and capabilities.

Figure 2. The EPCglobal architecture framework [3].

143Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

A. Aspire

Middleware

The structure of the Advanced Sensors and lightweight
Programmable middleware for Innovative RFID Enterprise
applications (Aspire) middleware is shown in Figure 3 [7].
Aspire consists of various layers as follows. The Hardware
abstraction layer (HAL) unifying the way of interaction with
multiple readers dealing and interacting with multiple
protocols. Its implementation is divided into different
modules (for reader simulators and one for each reader
manufacturer). The Reader Core Proxy (RCP) layer is
located between the readers and the ALE, and it helps in the
communication between reader supporting protocol X and
corresponding Filtering and Collection reader protocol
interface (RP, LLRP). ALE layer converts data from its raw
form to reports by collecting relevant information and
creating reports that are being subscribed at by applications,
Business Event Generator (BEG), between the Filtering and
Collection and Information Sharing. ALE layer can be seen
as a specific instance of an EPC-IS capturing application that
parses EPC-ALE reports. It fuses these reports with business
context data using the assigned business event from the
company’s business metadata to serve as guide and
accordingly prepares EPC-IS compliant events. EPCIS is the
heart of the architecture carrying data to be shared, capturing

events, and making them available to be queried by different
applications. The last component is Connectors that abstract
the interface between the ASPIRE Information sharing
repository and the enterprise information systems.

B. FOSSTrak

Middleware

The structure of the Free and Open-Source Software for
Track and Trace (FOSSTrack) is shown in Figure 4 [8].
FOSSTrack consists of four separate modules: (i) EPCIS
Repository that enables users to exchange EPC-related data
with trading partners through the EPCglobal Network, (ii)
Tag Data Translation (TDT) Library that translates one
representation of EPC into another representation, (iii)
Filtering and Collection Middleware with ALE and LLRP
Support. It takes the EPC network role of data filtering and
aggregation. It also provides report generation and generating
events for the EPCIS repository, and (iv) LLRP Commander
that describes an interface between RFID readers and clients
that provide means to command an RFID Reader to inventory
tags (read the EPC codes carried on tags), read tags (read
other data on the tags a part from the EPCcode), write tags,
and execute other protocol-dependent access commands
(such as ‘kill’ and ‘lock’ from EPCglobal Class 1 Generation
2). However, the standard defines how to retrieve reader

Figure 3. Aspire Middleware [7]

Figure 4. FOSSTrak Middleware [8]

144Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

device capabilities and facilitate the addition of support for
new air protocols.

C. ACCADA

Middleware

ACCADA [9] consists of three separate modules. The
Reader module implements the EPCglobal Reader Protocol,
which includes collecting, filtering, time aggregates and
space aggregates and also supports write on tags. The Accada
reader implementation can be used in three different modes
the reader implementation which is deployed on a separate
server using the built-in HAL in simulation mode to facilitate
testing of RFID applications and scheduling detection. It can
also be deployed on an RFID reader itself to provide data
dissemination, filtering, and aggregation capabilities.

The Filtering and Collection Middleware module allows
applications to define a subscription and create a report that is
sent according to a pre-determined schedule to the subscribed
applications. The interface between the filtering and
collection middleware and a host application is based on the
EPCglobal ALE Specification.

The EPCIS is responsible for receiving data from the
filtering and collection middleware, translating them into
business events, and making them available. It consists of
three parts: EPCIS capture application that receives the
captured RFID data, an EPCIS repository that provides
persistence, and EPCIS query application that is responsible
for retrieving events from the repository. This module
provides sample capture and query applications that
implement the corresponding interfaces and EPCIS
repository that uses a relational database to store the EPCIS
events.

D. CUHK

Middleware

CUHK [10] is a flexible and cost-effective solution for
RFID network deployment and configuration which follows
EPCglobal and the ALE specifications. CUHK is designed as
J2EE application hosted in JBoss server and connected
database with JDBC. Users can access the RFID network
using ALE Interface extended to support two functions read
and write into the tag memory. Through Management console
user can configure, control, manage and monitor all readers
in RFID network. CUHK provides five basic functions: (i)
Data Acquisition, allows receiving EPCs from one data
source to another, (ii) Collecting data in time intervals, (iii)
Filtering, that eliminates duplicate data and filters the needed
EPCs, (iv) Manipulating data to reduce the volume of data,
and (v) Report Generation using ALE API which allows
users to specify in a high level what data is needed and in
which format, and generate ECReports for given Event cycle.

CUHK interacts with readers through ReaderAdaptors
that interface with different readers. ReaderAdaptors
performs tag reads and submits it to ReaderManager. They
also perform reader registration and make sure that EPCs sent
to the middleware are distinct by removing duplicated reads.
CUHK currently supports four service endpoints to

communicate with external users: ALEService,
TagDataService, ReaderManager, and Notifie. ALEService
and TagDataService, both are accessible as web-Service
using SOAP over HTTP. TagDataService implements the
CUHK‘s tag data read/write extensions to the middleware.
ReaderManager is an EJB service endpoint that allows reader
registration and aggregates tag reads for middleware through
interfacing with ReaderAdaptor. Notifier is responsible for
communicating with subscribers using HTTP or TCP. CUHK
handles multiple tags’ reads simultaneously without
performance impact by using two database instances in-
memory which used to store tag reads and the other in disk.

E. DEPCAS Middleware

The Data EPC Acquisition System (DEPCAS)
middleware is a general-purpose middleware inspired by the
modern SCADA software architecture [11]. It consists of four
main layers: (i) Middleware Device Manager (MDM) for
Data acquisition and initial data processing, (ii) Middleware
Logic Manager (MLM) for Data analysis and aggregation
handling the transformation of raw data into generated
information based on specific logic, (iii) Graphical user
Viewer (GUV) for human monitoring and controlling, and
(iv) EPCIS Repository for external business communication
providing long term storage for EPC events.

F. Biztalk

Biztalk [12] is a Microsoft developed middleware
consisting of the following main layers: (i) Device Service
Provider Interface (DSPI) through which all devices
communicate enabling device abstraction, (ii) Event
processing engine that provides a platform for RFID business
processes to execute and process tag-read events including
filtering capability, (iii) Object model (OM) and APIs that
provides APIs that helps to quickly design and deploy an end-
to-end RFID process. The OM covers items as Device
management, Process design and deployment, Event tracking,
Health monitoring, (iv) Designers, tools and adapters, and
(v) various enterprise applications.

G. LIT Middleware

Logistics Information Technology (LIT) [13] implements
the concepts of both ALE and EPCIS layers of the EPC-
Global standard. The ALE layer consists of four sub layers:

 Application Abstraction Layer (AAL),

 State-based Execution Layer,

 Continuous Query Layer, and

 Reader Abstraction Layer,
These sub-layers perform the base role of the ALE layer of
grouping, filtering data, duplicate removal and hardware
abstraction. The EPCIS layer, which represents the business
layer and is the connection to applications.

H. Sun Java System RFID Software

145Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

Sun Java System RFID Software [14] is one of the first
entrants into the market, designed by Sun Microsystems Inc.
It provides a Java-based Middleware platform. The design of
software conforms to the EPCglobal ALE software criterion
that provides a high level reliability and scalability and also
simplifying the task of integrating with multiple existing
back-end enterprise systems. It consists of four components:
(i) RFID Event Manager, which depends on Jini based
system that facilitates capturing and filtering. Its main goals
are to interface with readers, gather events, filter and feed
relevant events to the RFID information system, (ii) RFID
Management Console: is a browser based graphical interface
used to manage and monitor the RFID Event Manager. It
allows the user to control the readers, such as filters and
connectors, (iii) RFID Information Server: that is a J2EE
application that functions as an interface for capture and
query of EPC-related data and also maps EPCs from low
level observation into high level business function, and (iv)
the Software Development Kit (SDK): used specially for
clients to be able to extend the product rather than using the
components as they are shipped.

I. WinRFID

The main components of the WinRFID founded by
UCLA (RFID research at WINMEC: Wireless Internet for
Mobile Enterprise Consortium) are shown in Figure 5 [15]. It
is developed on Microsoft .NET framework composed of
five main layers each of different responsibilities: (i)

Physical layer that deals with the hardware/readers, tags and
other sensors, (ii) Protocol Layer that abstracts the reader-tag
protocols, (iii) Data processing layer that process the data
streams generated by the reader network and filtering them,
(iv) XML Framework that handles data and information
representation, and (v) Data presentation that presents data
based on the requirements of the end-users or different
enterprise applications.

J. SAVANT

SAVANT [16] is one of the early RFID models
developed by Auto-ID Center. It can be considered as a data
router that performs operations over the data received from
readers such as capturing, monitoring, aggregation, and
transmission. It consists of three main layers: (i) Event
Management System (EMS), (ii) Real-time in-memory data
structure (RIED), and (iii) Task Management System (TMS).

Event Management System (EMS) provides a Java-based
platform for different types of RFID readers. EMS is
implemented on Edge Savants (SE), which is connected to
readers to collect data from tags. EMS consists of some
components;

 Reader Interface,

 Reader Adapter,

 Event Loggers (or Consumer),

 Event Queues (or Forwarders), and

 Event Filters,

Figure 5. WinRFID Middleware [15]

146Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

 Real-time in-memory data structure (RIED) is an in-
memory database designed to store event information
generated by SE. Events sent by readers go into maintenance
and organization by SE, then filtering and logging into the
database using loggers. Events loggers in EMS need a
database that can handle many transactions in a second. RIED
does not really offer more transactions per second, but a
better performance. In addition, it is easily accessible via
applications like JDBC or even a Java interface. It also
supports SQL common command and a subset of the data
manipulation operations.
 Task Management System (TMS) that serves as an OS for
managing processes. It can perform different functions, send
or receive product information to another middleware,
schedule and remove tasks on other systems, and send
product information to remote supply-chain management
servers.

K. RF
2
ID

Middleware

RF
2
ID stands for Reliable Framework for Radio

Frequency Identification [17]. RF
2
ID is a middleware

designed to achieve scalability, reliability, load balancing and
high throughput through the proposed architecture. Its idea is
based on the concept of Virtual Readers (VR) and Name
Server and Path Server.

Virtual Readers (VRs) are responsible each for a group of
physical readers and virtual paths connecting VR, it performs
multiple tasks such as:

 Data management (filtering and time stamping),

 Path management (overload management), and

 Query management,
Name Server and Path Server are responsible of keeping
track of locations of physical readers and paths between them
at any point of time.

L. FlexRFID

FlexRFID [18] is a three-tier architecture with Back end
application layer, Middleware layer and Hardware layer.
The hardware layer can be decomposed into four main layers:
(i) Device Abstraction Layer (DAL): responsible for dealing
with different devices and data sources regardless of their
different characteristics. This is done through:

 Data Source Abstraction Module (DSAM) that
provides standard view of data regardless of the data
source protocol or air interface,

 Device Abstraction Module (DAM) that provides an
interface to access different devices with functions as
(open, close, read, write, etc.), and

 Device Management and Monitoring Module
(DMMM) that loads and unloads libraries or reader
adapters.

(ii) Business Event and Data Processing Layer (BEDPL): is
located between the DAL and the AAL, and is responsible for
duplicate removal, data writing, data filtering, data
aggregation, data transformation and data dissemination.
(iii) Business Rule Layer (BRL): is more like an authorization
layer that grants or denies access to data, resources and
services based on stored policies and rules

(iv) AAL: is responsible for facilitating communication
between hardware and applications.

M. DeftRFID

DeftRFID [19] is a middleware system that is close to the
FlexRFID middleware. It consists of three main layers: (i)
Application Interface Layer (AIL), which is responsible for
application communications with physical world of readers
and tags, (ii) Data Processing Layer (DPL), which is
responsible for data filtering, aggregation, transformation
(based on stored rules), storing and querying, and (iii) HAL
layer, which overcomes hardware diversity dealing with not
only RFID sensors, but also other sensors and other devices
(alarm, motor, etc.) supporting multiple interfaces. It also
provides reader management through orders such as: activate
reader, shutdown reader, read tags and write tags. In addition,
it is responsible for duplicate removals.

This middleware provides four main advantages: location
independency, dealing with different devices, maintenance
cost reduction and scalability.

N. SmartRF

SmartRF [20] is an open source RFID middleware.
It provides the applications to access and interact with
Hardware devices. The system is divided into three
subsystems: (i) HAL, (ii) Event and data management layer
(EDML), and (iii) AAL.

HAL is responsible to interact and access the RFID
Hardware not considering their various characteristics. One
of its main components is Device Management Module that
is responsible for loading only needed libraries to avoid the
extra weight of the unneeded libraries, also HAL provides
some functions as OpenDevice, ReadDevice and
WriteDevice.

Event and data management layer (EDML) is the
intermediate layer between HAL and AAL processing
commands and responses from AAL to HAL. Also it is
responsible for grouping and filtering received data from
readers.

 AAL, the application level layer, works as an interface for
RFID hardware through an API representing SmartRF
services.

IV. SYSTEMS COMPARISON AND GAPS

Comparison shown in Table I between the different
middleware systems is based on two main categories: EPC
standard compatibility, and the general features for different
systems.

The mentioned middleware systems attempt to confront
the typical RFID challenges using different implementations
for data filtering, data aggregation, and hardware layer
abstraction.

From the shown table, it can be deduced that some of the
middleware systems are concerned about following the EPC
standard. It can also be seen that the most common
middleware features found are duplicate removal, data
filtering and data aggregation. It is also noticed that business
rules compatibility and application connectors are lacking in
several of the systems, mostly due to their complexity.

147Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

EPCglobal Standards

Compatible

C
o

rp
o

ra
ti

o
n

O
p

en
 S

o
u
rc

e

L
an

g
u
ag

e

D
u
p

li
ca

te

R
em

o
v
al

F
il

te
ri

n
g

A
g
g

re
g

at
io

n

R
ep

o
rt

G

en
er

at
io

n

B
u

si
n

es
s

R
u

le
s

C
o

m
p

at
ib

il
it

y

H
ar

d
w

ar
e

A

b
st

ra
ct

io
n

A
p
p

li
ca

ti
o
n

C
o

n
n

ec
to

rs

D
at

ab
as

e

E
P

C
IS

A
L

E

L
L

R
P

R
P

R
M

ASPIRE [7] Y Y Y Y Y EU Funded
Project

Y Java Y Y Y Y Y Y Y Y

FOSSTRAK[
8]

Y Y Y Y Y ETH Zürich
Institute

Y Java Y Y Y Y N Y N/A Y

ACCADA
[9]

Y Y N Y Y ETH Zürich
Institute

Y Java Y Y Y Y Y Y N/A Y

CUHK [10] N Y N N Y The Chinese
University of
Hong Kong

Y Java Y Y Y Y N Y Y Y

DEPCAS
[11]

Y Y N N N ETS de
Ingenieros
Informáticos
Universidad
Politécnica de
Madrid

N N/A Y Y Y Y Y Y N/A Y

BizzTalk [12] Y N Y N N Microsoft N .Net Y Y Y Y Y Y N/A Y

LIT [13] Y Y N N N Research
Institute of
Logistics
Information
Technology

N Java Y Y Y Y N N N/A Y

Sun Java
System RFID
Software [14]

N Y N N N Sun
MicroSystem
inc.

N Java Y Y Y N/A N N Y Y

WinRFID
[15]

N N N N N University of
California

N .Net Y Y Y Y Y Y N/A Y

Savant [16] N N N N N Auto-ID Center N Java Y Y Y Y N/A Y N/A Y

RF2ID [17] N N N N N Georgia
Institute of
Technology,

N C Y Y Y N N Y N Y

FlexRFID
[18]

N N N N N Research Paper N .Net Y Y Y Y Y Y Y Y

DeftRFID
[19]

N N N N N Fujitsu R&D
Center Co.

N N/A Y Y Y Y Y Y Y Y

SmartRF [20] N N N N N Department of
Computer
Science and
Engineering -
Indian Institute
of Technology,
Kanpur

Y N/A Y Y Y Y N Y Y Y

TABLE I: SUMMARY OF MAIN RFID MIDDLEWARE SYSTEMS

148Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

The table also shows that there is a lack of
standardization between RFID systems, leading to reduced
system interoperability as the way/format data is stored can
affect massively on further data processing. We believe that
the concept of data unification through semantic annotation
and ontologies [21] can be applied on the collected data in
order to increase flexibility and interoperability.

V. CONCLUSION

This survey presented an overview about the various

RFID middleware systems. The EPCglobal standard

provides a holistic view of what needs to be provided by any

RFID middleware system. Based on this standard and on

the reference to the various middleware systems discussed

in this paper, it could be concluded that most common

features found in existing RFID middleware systems are

data filtering, duplicate removal, data aggregation, report

generation based on user’s requests, the use of a repository

for storing data and further processing, and abstracting the

hardware layer so that they can deal with any device.

It is clear that various middleware systems target

different applications, and hence, they have different

features. However, there is no universal middleware that fits

all potential needs of emerging RFID systems. The

considerable diversity of protocols, reader technologies,

tags, and data formats call for real vision on developing

more flexible middleware systems for future RFID

applications. We believe that the development of a suitable

middleware for future RFID requires the use of new

technologies, such as semantic; in order to provide the

needed flexibility and agility that fits the emerging needs of

RFID-based systems.

ACKNOWLEDGMENT

This research is supported by the EU-Egypt Innovation

Fund- Grant Scheme 2- EuropeAid/132-759/M/ACT/EG.

Grant No. RDI 2/S2/68.

REFERENCES

[1] C. Jechlitschek, “A survey paper on Radio Frequency Identification
(RFID) trends”, [online]
Available: http://www.cse.wustl.edu/~jain/cse574-
06/ftp/rfid/index.html. [Accessed 10 September 2015].

[2] S. A. Weis, “RFID (Radio Frequency Identification): Principles and
Applications”, MIT Interim report, MIT 2003.

[3] J. Burnell, “What is RFID middleware and where is it
needed?”, RFID Update (2006), [Online] Available:
http://www.vdcresearch.com/_documents/news/press-
attachment-1235.pdf. [Accessed 20 September 2015].

[4] D. L. Brock, “The electronic product code (EPC): A naming scheme
for objects”, Technical Report MIT-AUTOID-WH-002, MIT Auto ID
Center, 2001.

[5] Q. Sheng, X. Li and S. Zeadally, "Enabling Next-Generation RFID
Applications: Solutions and Challenges", IEEE Computer, vol. 41,
no. 9 (2008), pp. 21-28.

[6] A. P. Anagnostopoulos, J. K. Soldatos, and S. G. Michalakos,
"REFiLL: A lightweight programmable middleware platform for cost

effective RFID application development", Pervasive and Mobile
Computing, Vol.5, no 1, Feb. 2009, pp. 49-63.

[7] Aspire Wiki, [online] Available:
http://wiki.aspire.ow2.org/xwiki/bin/view/Main/WebHome.
[Accessed 11 September 2015].

[8] F. U. Bes, “Implementation of Fosstrak EPCIS RFID System”, Czech
Technical University, 2012.

[9] C. Floerkemeier, M. Lampe, and C. Roduner, “Facilitating RFID
Development with the Accada Prototyping Platform”, the Fifth
Annual IEEE International Conference on Pervasive Computing and
Communications, New York, 2007, pp. 495-500.

[10] “CUHK RFID Middleware—System Design Document”, Report No:
RFID-SDD, Ver 1, 2007. [Online] Available:
http://mobitec.ie.cuhk.edu.hk/rfid/middleware/doc/Middleware_SDD
_v1.0.pdf. [Accessed 20 September 2015].

[11] I. A. Cardiel, R. H. Gil, C. C. Somolinos, and J. C. Somolinos, “A
SCADA oriented middleware for RFID technology”, Expert Systems
with Applications 39, no. 12 (2012): 11115-11124.

[12] Microsoft, (2010), “BizTalk RFID Architecture”, Microsoft
Developer network, [Online]
Available: https://msdn.microsoft.com/en-us/library/dd352563.aspx.
[Accessed 11 September 2015].

[13] A. Kabir, B. Hong, W. Ryu, and S. Ahn, “LIT Middleware: Design
and Implementation of RFID Middleware Based on the EPC Network
Architecture”, in Dynamics in Logistics, First International
Conference, LDIC 2007, pp. 221-229.

[14] P. Chrobak, “Overview of RFID Middleware”, Advanced information
technologies for management, AITM 2010, pp. 73-86.

[15] B. S. Prabhu, X. Su, H. Ramamurthy, C. Chu, and R. Gadh,
“WinRFID - A Middleware for the enablement of Radio Frequency
Identification (RFID) based Applications”, Wireless Internet for the
Mobile Enterprise Consortium (WINMEC), Los Angeles, Dec. 2005.

[16] “The savant version 0.1 (alpha)”, Technical Manual MIT-AUTOID-
TM-003, MIT Auto ID Center, 2002.

[17] N. Ahmed, R. Kumar, R. S. French, and U. Ramachandran, “RF2ID:
A Reliable Middleware Framework for RFID Deployment”, Parallel
and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE
International, 2007, pp. 1-10.

[18] M. E. Ajana, H. Harroud, M. Boulmalf, and H. Hamam, “FlexRFID:
A Flexible Middleware for RFID Applications Development”,
Wireless and Optical Communications Networks, 2009. WOCN'09.
IFIP International Conference, 2009, pp. 1-5.

[19] Y. Lu, W. Zhang, Z. Qin, Y. Meng, and H. Yu, “DeftRFID: A
Lightweight and Distributed RFID Middleware”, Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP), Sixth
International Conference (2010) pp. 181-186

[20] A. Ghayal, Z. Khan, and R. Moona, “SmartRF: A Flexible and Light-
weight RFID Middleware”, e-Business Engineering, 2008. ICEBE'08.
IEEE International Conference, 2008, pp. 317-324.

[21] A. Maedche, “Ontology learning for the semantic web”, Springer
Science & Business Media, 2002.

149Copyright (c) IARIA, 2015. ISBN: 978-1-61208-439-8

ICSNC 2015 : The Tenth International Conference on Systems and Networks Communications

http://www.cse.wustl.edu/~jain/cse574-06/ftp/rfid/index.html
http://www.cse.wustl.edu/~jain/cse574-06/ftp/rfid/index.html
http://www.vdcresearch.com/_documents/news/press-attachment-1235.pdf
http://www.vdcresearch.com/_documents/news/press-attachment-1235.pdf
http://wiki.aspire.ow2.org/xwiki/bin/view/Main/WebHome
https://msdn.microsoft.com/en-us/library/dd352563.aspx

