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Abstract—Wireless sensor networks are characterized by their
lack of physical resources, such as memory, battery power, and
communication bandwidth. For this reason, every protocol in the
network should be as efficient as possible. For scalability, and
given that many sensor networks are deployed to cover a large
area, the paradigm of geographical routing has been proposed
in the literature. In particular, the Voronoi diagram, where the
sensor locations act as generator points in the two-dimensional
plane, serve as the foundation of some of these routing protocols.
Existing protocols for creating the Voronoi diagram are either not
fault-tolerant or not fully distributed. In this paper, we present
the first protocol that is fully distributed and resilient to a wide
variety of faults. In particular, the protocol is stabilizing, i.e., it
will converge to a normal operating state regardless of the initial
value of its variables.

Keywords–Stabilizing systems; Voronoi diagram; Delaunay tri-
angulation; Sensor networks.

I. INTRODUCTION

Consider a wireless network consisting of a large number
of sensor nodes distributed over a geographical area. Each
sensor has limited resources, such as memory and battery
lifetime, and is capable of sensing its surroundings up to a
certain distance. Due to the limited resources, it is crucial that
each task performed by the sensor nodes consumes the least
possible amount of memory and energy [1].

Greedy routing protocols have been proposed as a scalable
solution for routing in large-scale wireless networks, such
as large deployments of sensor networks [2]–[5]. In greedy
routing, the routing state needed per node is independent
of network size. This makes greedy routing attractive for
the resource-starved sensor networks. Greedy routing is also
known as geographic routing because, for a packet with
destination d, a node u selects as the next hop to d a neighbor
that minimizes the physical distance from u to d.

For nearly a century, the Voronoi diagram, and its dual, the
Delaunay triangulation [6], have had a strong impact on vari-
ous fields of science and engineering. In the particular context
of network routing, Delaunay triangulations are well suited for
greedy routing [7]. In general, greedy routing on an arbitrary
graph may become trapped at a local minimum and not reach
the destination. However, on a Delaunay triangulation, greedy
routing is guaranteed to reach the destination.

In this paper, we develop a distributed protocol where
each node can compute its Voronoi region, and thus, is
able to support greedy routing. Given that the objective is
to support greedy routing, the protocol does not require an
additional routing mechanism that can be used to aid in node

communication. The only assumption is that each node can
communicate with other nodes within its wireless transmission
radius.

In addition to being distributed, our solution is stabilizing
[8]–[11], i.e., starting from any state, a subsequent state is
reached and maintained where the sensors become aware of
their Voronoi region. A system that is stabilizing is resilient
against transient faults, because the variables of the system
can be corrupted in any way (that is, the system can be
moved into an arbitrary configuration by a fault), and the
system will naturally recover and progress towards a normal
operating state. Thus, stabilizing systems are resilient against
node failures, node additions, undetected corrupted messages,
and improper initialization states.

Distributed protocols exist in the literature that allow each
node to obtain its Voronoi region. However, they do not exhibit
all our desired features. Algorithms such as those in [12]
are fully distributed, but they are not fault tolerant, and they
assume an underlying routing protocol exists. Works designed
for wireless greedy routing make no such assumption [13] [14],
but they have limited fault-tolerance, and in particular, are not
stabilizing. Solutions that are distributed and stabilizing exist
[15], but they also assume an underlying routing protocol, and
are thus not suitable for greedy routing.

The paper is organized as follows. Section II presents
a review of Voronoi diagrams and Delaunay triangulations.
Section III discusses our approach to find paths between
Voronoi neighbors. Section IV discusses the information that
must be exchanged between nodes in order to find paths
between Voronoi neighbors. Section V presents a more detailed
specification of the basic protocol. This protocol is not fault-
tolerant, and thus, Section VI presents enhancements to enforce
stabilization, and argues their correctness. Conclusions and
future work are presented in Section VII.

II. VORONOI DIAGRAMS AND NETWORK MODEL

In this section, we review Voronoi diagrams and Delaunay
triangulations. In addition, we present our network model and
its relationship to Delaunay triangulations.

A. Voronoi Diagrams and Delaunay Triangulations
As shown in Figure 1(i), consider two points, a and x, in

the two-dimensional Euclidean plane. The line segment from
a to x is shown with dots, and the solid line corresponds to
the perpendicular bisector of this line segment. Observe that
any point below the bisector is closer to a than to x. Similarly,
any point above the bisector will be closer to x than to a.
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Figure 1. Voronoi diagram.

A Voronoi diagram (VD) consists of a set of genera-
tor points P = p1, p2, . . . , pn and a set of regions R =
R1, R2, . . . , Rn. Each Ri consists of all points on the plane
that are closer to pi than to any other generator point in P . In
Figure 1(i), P = {a, x}, Ra are all points below the bisector,
and Rx are points above the bisector.

Figure 1(ii) shows the region Ra after a few more gen-
erator points are added. Region Ra becomes the convex hull
obtained from the intersection of all the bisectors with all other
generator points. Finally, Figure 1(iii) shows the regions of all
five generator points.

An equivalent structure to the VD is the Delanuay triangu-
lation (DT), shown in Figure 1(iv). Here, there is an edge be-
tween a pair of generator points pi and pj iff Ri and Rj share
a face. E.g., point x has three edges: (x, y), (x, a), (x,w),
because Rx shares a face with each of the regions Ra, Ry , and
Rw. Thus, both the VD and the DT have the same information,
but presented in different form.

B. Network Model and Connectivity
We consider a two-dimensional Euclidean space in which

a total of n sensor nodes have been placed. Each sensor is
assumed to have a transmission radius r. Thus, if the distance
between any pair of sensors is less than r, then the pair is able
to exchange data messages.

As discussed earlier, sensor nodes correspond to point gen-
erators, and each sensor node has the objective of identifying
each of its neighbors in the DT (equivalently, the VD). I.e.,
each sensor node must learn the location of all other sensor
nodes with whom it shares a DT edge. Throughout the paper,
we use DT and VD interchangeably.

Let T(u) be the set of nodes that are within transmission
range of u, i.e., distance(w, u) ≤ r iff w ∈ T(u). Let V(u) be
the set of neighbors of u in the DT. These are referred to as
the Voronoi neighbors of u. In Figure 1(iv), V(x) = {a,w, y}.
Some of the nodes in V(u) will be within transmission range
of u, and thus, also in T(u), while others will be farther away.
The nodes in V(u) ∩ T(u) are said to be the direct Voronoi
neighbors of u.

We assume that the sensor network is connected. I.e.,
for every pair of nodes u and v, there is a path of nodes
w1, w2, . . . , wk, such that w1 = u, wk = v, and for each i,
1 ≤ i < k, wi+1 ∈ T(wi).

Note that it is possible for w ∈ T(u) but w /∈ V(u). This
is because other nodes can be in between u and w, and thus,

the Voronoi region of u does not overlap that of w. I.e., the
fact that nodes can communicate directly does not imply that
they are Voronoi neighbors, and vice versa.

In order to learn its set of Voronoi neighbors, each node
must be able to communicate with each of them, often in-
directly via direct neighbors. For efficiency, we expect each
node u to keep as little information as possible, in particular,
in the order of |V(u)|, which is much smaller than the number
of nodes in the network. To do so, we restrict ourselves to
only communicate via direct Voronoi neighbors, that is, only
with nodes in V(u) ∩ T(u). Thus, between any pair of nodes
in the network, there must exist a path using only direct
Voronoi neighbors. Otherwise, the network becomes, in effect,
disconnected. We show below that such a path always exists.
Before doing so, we present some definitions.

Consider a pair of Voronoi neighbors (u, v). A Voronoi
path is a sequence of edges in the DT starting at u and ending
in v. A direct Voronoi path from u to v is a Voronoi path where
all the edges are direct edges. That is, there is a sequence of
nodes, w1, w2, . . . , wk, such that w1 = u, wk = v, and for
each i, 1 ≤ i < k, wi+1 ∈ V(wi) ∩ T(wi).

Theorem 1: (Connectivity) For every pair of nodes, u and
v, there exists a direct Voronoi path from u to v.

Proof:
The proof is by contradiction. We assume that no such path
exists. Therefore, as shown in Figure 2(i), there must exist a
cut of the VD such that every pair of Voronoi neighbors have
a distance greater than r between them.

From our network model, the sensor network is connected.
Thus, there must exit a node a on one side of the cut
and another node b on the other side of the cut such that
distance(a, b) ≤ r. From the definition of the cut, a and b are
not Voronoi neighbors. This pair of nodes is shown in Figure
2(ii). The vertical dashed line is the bisector between a and b.

Let t be the neighbor of a such that the face that Ra and
Rt share crosses the line segment between a and b. In order
for the face of Rt to prevent a and b from being Voronoi
neighbors, it must be that distance(a, t) < distance(a, b).

Consider then the cut of the VD. Recall that a and b are on
opposite sides. We have two cases to consider: the cut crosses
the line segment between a and t, or it crosses the line segment
between t and b.

The former case is not possible. This is because a and t
are Voronoi neighbors, and, being in opposite sides of the cut,
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Figure 2. Voronoi path connectivity.

it must be that distance(a, t) > r. However, this contradicts
what we have shown above, i.e., that

distance(a, t) < distance(a, b) ≤ r.

In the latter case, we have a pair of nodes, t and b, on opposite
sides of the cut, such that

distance(t, b) < distance(a, b) ≤ r.

If t and b are Voronoi neighbors, then this is also a contradic-
tion by the definition of the cut. If they are not, then we have
found a pair of nodes, t and b, on opposite sides of the cut,
such that their distance is smaller than the distance between a
and b. Thus, the same argument can be applied again for t and
b. I.e., either a contradiction is reached, or we obtain another
pair of nodes with lesser distance. Since the different distances
between nodes is finite, a contradiction must be reached.

III. ROUTING ALONG TRIANGULATION EDGES

Recall that our objective is for each node to be aware of
its Voronoi neighbors. However, some of those neighbors may
not be direct neighbors. For example, consider Figure 1(ii).
Assume that a has both x and w as direct neighbors. However,
although x and w are Voronoi neighbors, they are not direct
neighbors, due to their large distance between them. For x and
w to learn about each other, it must be done through a.

In general, if Voronoi neighbors are not direct neighbors,
they learn about each other via an intermediate node. As a
node learns about its neighbors, it is then in a position to be
an intermediate node and inform two of its neighbors about
each other, and the process continues until all nodes are aware
of all their Voronoi neighbors.

In this section, we show how to obtain a path between
any pair of Voronoi neighbors, where the path consists only
of direct edges in the DT. As shown earlier, such a path must
exist. We begin by assigning a label to each edge in the DT,
and use these labels to obtain the desired path.

A. Edge Labels and Neighbor Paths
Each edge in the DT can take part in at most two triangles.

For example, in Figure 3, edge (b, h) takes part in triangle
(i, b, h) and triangle (b, c, h). On the other hand, edge (i, g)
belongs only to triangle (i, h, g).

We define a Voronoi neighbor path of an edge (a, z),
denoted V NP (a, z), as follows. If a and z are direct neigh-
bors, then V NP (a, z) is just the edge itself. Assume instead
that they are not direct neighbors, and consider Figure 1(iv).
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Figure 3. Edge label example.

Edge (a, z) takes part in two triangles: (a, y, z) and (a,w, z).
Then, V NP (a, z) is the concatenation of V NP (a, y) with
V NP (y, z), or it is the concatenation of V NP (a,w) with
V NP (w, z), whichever of these two yields the least number
of direct edges.

Each edge is also considered to have a positive integer label
that corresponds to the length, in direct Voronoi edges, of the
Voronoi neighbor path. Labels can thus be defined recursively
to be the smallest value that satisfies the following.

• If u and v are direct neighbors, then label(u, v) = 1.
• If u and v are not direct neighbors, and edge (u, v)

takes part in triangles (u, x, v) and (u, y, v), then,

label(u, v) = min
{

label(u, x) + label(x, v)
label(u, y) + label(y, v) .

A simple induction proof can show that the label of each edge
is well defined, and that edges with label h+1 can be computed
once all edges with labels h or less have been computed.

Each non-direct edge is associated with a hinge node. The
hinge node is the neighbor that defines the Voronoi neighbor
path of the edge. In Figure 1(iv), the hinge node of (a, z) will
be either y or w, in particular, it will be y if V NP (a, y) :
V NP (y, z) is shorter than V NP (a,w) : V NP (w, z), where
’:’ denotes concatenation. In the event that both y and w
provide the same length, we break ties alphabetically.

Figure 3 provides an example of the labels assigned to the
DT of a group of nodes. Dashed edges indicate direct edges.
All direct edges have no hinge and a label equal to one. Edge
(c, a) has a label of two and its hinge is b, because b has a
direct edge to each of c and a. Similarly, edges (c, e) and (i, g)
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have labels equal to two. Edge (c, g) has a label of six with f
as the hinge, because the labels of its edges (f, c) and (f, g)
are five and one, respectively.

Finally, note that, in any triangle (u, v, w), there is one
and only one node that can be the hinge of some edge in the
triangle. For example, consider the triangle (f, c, g) in Figure
3. We have that f = hinge(g, c), but c 6= hinge(f, g) and
g 6= hinge(c, f). In general, we define the hinge of a triangle
to be the node that is the hinge of the edge consisting of the
other two nodes.

B. Finding Paths to Neighbors
We next address how to find a direct Voronoi path between

any pair of Voronoi neighbors u and v. This path can be
obtained recursively from the definition of edge labels as
follows.

path(u, v) =
{

(u, v) if label(u, v) = 1
path(u,w) : path(w, v) if w = hinge(u, v)

Consider again Figure 3, and finding a path from e to f .
From the definition of path(e, f), we have:

path(e, f)
= path(e, x) : path(x, f)
= (e, x) : path(x, f)
= (e, x) : path(x, y) : path(y, f)
= (e, x) : (x, y) : path(y, f)
= (e, x) : (x, y) : (y, f)

A node does not need to know the entire topology in order
to communicate with its neighbors. We show below that the
only required information is the list of neighbors forming its
Voronoi region, R(u), and the label of each. Note that R(u) is
the same as the neighbors of u in the DT. E.g., in Figure 3,
R(h) consists of nodes i, b, c, and g. R(f) consists of nodes
c, g, y, x and e, while R(a) consists of nodes b, c, and d.

Before discussing how neighboring nodes communicate,
we begin by dividing a node’s region into disjoint segments.

C. Segments of a Region
The set of direct neighbors of u will be denoted by core(u).

Node u can obtain this set from the convex-hull of nodes
within transmission range of u.

core(u) = convex-hull(T(u))

That is, it is the subset of T(u) obtained from the convex-hull
of the bisectors from u to each element in T(u). These nodes
form the foundation for R(u), as follows.

Lemma 1: (Core in region) For all u, core(u) ⊆ R(u).
Proof:
If v ∈ convex-hull(T(u)), it implies that no node within
transmission range can block the face of v in the convex-hull of
T(u). In order for v not to be in R(u), the face that it provides
to R(u) must be blocked by other neighbors whose distance to
u is closer than v’s. Hence, these nodes must also be in T(u).
However, since v is also in the convex hull of T(u), no node
in T(u) can block v. Hence, no node can block v from being
in R(u).

For terseness, we use the terms right and left instead of
clockwise and counter-clockwise, respectively. Additionally,

u w

y

x

u w

y

x

a) b)

2

11 ≤ h

h+1

≤ h

Figure 4. Segment structure induction.

we use dir to represent either right or left, and ¬dir to represent
the opposite direction of dir.

Let v be any Voronoi neighbor of u. Let next(u, v, dir) be
the next node along direction dir on region R(u). For example,
in Figure 3, next(h, i, right) = g, and next(h, g, left) = i. Also,
for any pair of neighbors v and w of u, let bet(u, v, w, dir)
denote the sequence of nodes found in R(u) along direction
dir starting from v and ending in w.

Let segment(u, v, dir) be the longest sequence of nodes,
w0, w1, . . . , wj , along the periphery of R(u), starting from
core node v, v ∈ core(u), such that:

• w0 = v,
• for each i, 0 ≤ i < j, wi+1 = next(u,wi, dir), and
• for each i, 0 ≤ i < j, hinge(u,wi+1) = wi.

As an example, consider node f in Figure 3. We have:

segment(e, x, left) = 〈x, f〉
segment(e, d, right) = 〈d, c〉

segment(f, y, left) = 〈y〉
segment(f, y, right) = 〈y, x, e, c〉

Note that all nodes in R(f) are contained in some segment of
f . Also, the segments that make up R(f) do not overlap with
each other, other than at their starting core node or their last
node. We argue below that this is true for all nodes.

From the definition of a segment, a few intuitive definitions
follow. Given a neighbor w of u, we define the root, root(u,w),
to be the core neighbor v of u such that w is contained
in segment(u, v, dir), for some dir ∈ {left, right}. We argue
below that all neighbors must have a root. In the figure,
root(e, f) = x, root(e, c) = d, and root(e, d) = d. Finally, let
last(u, v, dir) be the final element in segment(u, v, dir). Thus,
last(e, x, left) = f , and last(e, d, right) = c.

Theorem 2: (Segment structure): For every non-core node
w in R(u), there exists a core node v of u and a direction dir,
such that:

• w ∈ segment(u, v, dir).
• all nodes in segment(u, v, dir), other than v, are not

core nodes.
• Let p be the node previous to w in segment(u, v, dir),

i.e., p = next(u,w,¬dir). Then,
◦ hinge(u,w) = p.
◦ label(u,w) = label(u, p) + label(p, w).
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Proof:
The proof is by induction over the labels associated with the
edges between u and neighbors in R(u), that is, between u
and w in the statement of the theorem.

Consider an arbitrary Voronoi edge, (u,w), with
label(u,w) = 2, shown in Figure 4(a). There are only two
possible nodes (one on each side) that can be the hinge,
namely, x and y. Let x be the hinge node. Then, by the
definition of a label, label(u, x) = label(w, x) = 1. Thus,
x is a core node, and w belongs to the segment of x.

Assume now that the label of (u,w) is h+1, and all edges
(u, v) in R(u) with label at most h satisfy the theorem. Again,
there are only two possible nodes that can be the hinge of this
edge, as depicted in Figure 4(b). Without loss of generality, let
x be the hinge node. From the definition of edge labels, the
labels of (x, u) and (x,w) are both at most h.

From the induction hypothesis, there is a segment of u that
contains x. This segment cannot begin from the direction of
w and y, because all edges from any node in the segment to
node u must have a label no greater than h, and edge (w, u)
has label h + 1. Hence, the segment for x begins along the
direction of x, and extending this segment by edge (w, u) with
label h+ 1 satisfies the theorem.

IV. SEGMENT CONSTRUCTION

The objective of the protocol is for each node u to become
aware of its region R(u). A consequence of Theorem 2 is
that R(u) is divided into disjoint segments. Consider Figure
5(a). It shows R(u) and the different segments it comprises.
Bold dashed edges belong to core nodes of R(u), and thin
dashed edges separate one segment from another. For example,
segment(u, i, right) = 〈i, j, k〉, while segment(u,m, left) =
〈m, l〉. These two segments do not end at the same node; there
is an edge, (k, l), along the rim of R(u), that does not belong
to either segment. From the theorem, neither k nor l can be the
hinges of trianlge (k, u, l). Otherwise, the segments would both
end at either k or at l. Thus, it must be that hinge(u, k, l) = u.
Similarly, hinge(u, i, p) = u and hinge(u,m, n) = u.

Consider segment(u, i, right). From the theorem,
hinge(u, i, j) = i and hinge(u, j, k) = k. Because u is
not the hinge of any of these triangles, information about the
existence of these triangles is expected to be received from
the root of the segment, i.e., from core node i. Similarly,
information about the existence of triangle (u, l,m) is
expected to be received from core node m. Once u learns
of these segments, it makes the assumption that the hinge of
(k, u, l) is itself. It is thus its responsibility to inform both k
and l of the triangle (k, u, l). In this case, we say that u is
joining nodes k and l.

To do this join, u will communicate with k and l via their
root core nodes i and m, respectively. Node u must inform k
that it has a neighbor l, and in addition, what u believes is the
label of (k, l). This is represented by the following tuple:

〈k, l, label(k, l)〉.
Node u must ensure this tuple reaches k. Similary, u sends the
tuple

〈l, k, label(k, l)〉
to node l. In general, joining tuples are of the form

〈destination, neighbor, edge-label〉.

Tuple 〈k, l, label(k, l)〉 has to be routed towards k. To
do so, u forwards it to the root node, i. Recursively, node
i forwards it in the direction of k, in particular, first in the
direction of j. Each of edges (i, j) and (j, k) may correspond
to simply a direct edge (label one), or to a longer transmission
path requiring crossing multiple direct Voronoi edges.

Note, however, that l may also desire to join a pair of nodes
in its region R(l), such as σ and ρ in Figure 5(b), and this join
needs to be sent to σ. If u is in the segment of R(l) that contains
σ, then this join tuple created by l will eventually reach u. The
task of u is to forward this join towards k, which is the next
node along the segment of R(l) containing σ. Thus, u has to
forward two tuples to k (via core node i): a tuple created by u,
and a tuple created by l (that was received via core node m).
This argument can be extended further, because ρ may also
be joining two nodes, r and s in the figure, and the join tuple
may need to reach σ. Thus, the tuple is sent to l, who in turn
has to send it to u, who in turn has to send it to k (via core
node i).

In summary, u does not send an individual tuple to its
neighbor k (via core neighbor i), it sends a stack of tuples. In
this stack, the tuple generated by u is at the top. The remainder
of the stack consists of tuples that l wants to forward to k. This
in turn contains the tuple from l joining σ and ρ, plus the stack
of tuples that ρ wants to send to σ, etc..

Finally, by symmetry, u has to forward to l (via core
neighbor m) a stack of tuples that it received from k (via
core neighbor i).

V. HULL CONSTRUCTION PROTOCOL

Before presenting our method in more detail, we first give
a brief overview of the notation.

A. Protocol Notation
The notation used originates from [10] [11], and is typical

for specifying stabilizing systems. The behavior of each node
is specified by a set of inputs, a set of variables, a set of
parameters, and a set of actions.

The inputs declared in a node can be read, but not written,
by the actions of that node. The variables declared in a node
can be read and written by the actions of that node. For
simplicity, a shared memory model is used, i.e., each node
u is able to read the variables of nodes in T (u). To maintain
a low atomicity, and thus an easier transition to a message-
passing model (see Section VII), each action is able to read
the variables of a single neighbor.

Every action in a node u is of the form:

<guard> → <statement>.

The <guard> is a boolean expression over the inputs, vari-
ables, and parameters declared in the node, and also over the
variables declared in a single node in T (u). The <statement>
is a sequence of assignment, conditional, and iteration state-
ments that change some of the variables of the node.

The parameters declared in a node are used to write a set of
actions as one action, with one action for each possible value
of the parameters. For example, if the following parameter
definition is given,

par g : 1 .. 2
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Figure 5. Segment construction.

then the following action

x = g → x := x+ g

is a shorthand notation for the following two actions.

x = 1 → x := x+ 1

x = 2 → x := x+ 2

An execution step consists in evaluating the guards of
all the actions of all nodes, choosing an action whose guard
evaluates to true, and executing the statement of this action.
An execution consists of a sequence of execution steps, which
either never ends, or ends in a state where the guards of all
the actions evaluate to false. All executions are assumed to be
weakly fair, that is, an action whose guard is continuously true
must be eventually executed.

To distinguish between variables of different nodes, the
variable name is prefixed with the node name. For example,
variable x.v corresponds to variable v in node x. If no prefix
is given, then the variable corresponds to the node whose code
is being presented.

B. Method
We next present our protocol in more detail. In particular,

we present the specification of an arbitrary node u.
Node u is aware of nodes in T (u), and thus also of core(u),

because they are within transmission range. We thus assume
the core nodes are simply an input to node u.

We represent region R(u) by the two-dimensional array E.

E : array[core][left . . right] of sequence of ID

The first index corresponds to the core nodes. Each core
node can be the root of at most two segments: one in
each direction. Thus, the second index is the direction. The
element stored in E[i][dir] corresponds to the sequence
of nodes in segment(u, i, dir). For example, in Figure 5,
segment(u, i, right) = 〈i, j, k〉, while segment(u, i, left) = nil
because there is no segment counter-clockwise starting at i.
Note, however, that some core neighbors may be the root of
both a left and a right segment, such as core neighbor o.

The labels of each neighbor of u are stored in array L. This
is a one-dimensional array, with one element per neighbor.

As mentioned in Section IV, each node may have to send
a stack of tuples to each of its core neighbors. These stacks
are stored in array send.

send : array[core][left . . right] of stack of (ID, ID, integer)

The second dimension of the array is necessary because, as
mentioned above, a core node can be the root of a segment in
each direction. The complete algorithm is shown below.

node u
inp

core : set of ID {core neighbors}
var

E : array[core][left . . right]
of sequence of ID {region edges}

L : array[ID] of integer {edge labels}
send : array[core][left . . right] {forwarded edges}

of stack of (ID, ID, integer)
rcvd : stack of (ID, ID, integer)
k, l : ID

par
dir : left . . right
i : ID

begin

i ∈ core →
rcvd := i.send[u][dir];
build-segment(rcvd, i, dir);
m := next-core(i, dir);
if last(i, dir) 6= last(m,¬dir) then {join segments}

k := last(E[i][dir]);
l := last(E[m][¬dir]);
send[m][dir] := (l, k, L[l] + L[k]) : rcvd;

else
send[m][dir] := nil

end if
end

Node u consists of a parameterized action. Since the action
has two parameters, i and dir, it is a shorthand for many
actions: one action for every combination of a core neighbor
of u and a value from {left, right}. Node u reads the tuples that
a neighbor i is sending to u along direction dir. These tuples
are stored in a temporary array rcvd. Then, several steps are
taken to build the segment whose root is i. These steps are
captured in build-segment(rcvd, i, dir) as shown in Figure 6.

Consider Figure 5 as an example. The stack of tuples
expected to be received are, first, a tuple from i joining u and
j, followed by a tuple from j joining u and k. These tuples are
removed from rcvd one at a time and the appropriate edges
and labels are added to E and L (we denote concatenation via
’:’). The remaining tuples do not have u as the destination,
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build-segment(rcvd, i, dir)
E[i][dir] := nil; L[i] := 1;
(dst, neigh, label) := top(rcvd);
while (dst = u) do

E[i][dir] := E[i][dir] : neigh;
L[neigh] := label;
pop(rcvd);
(dst, neigh, label) := top(rcvd);

end while

next-core(v, dir) = w ⇔
〈∀x : (x ∈ bet(u, v, w, dir) ∧ x /∈ {v, w})⇒ x /∈ core(u)〉

Figure 6. Auxiliary definitions.

and these are not processed by build-segment(rcvd, i, dir).
The action continues by finding the next core neighbor

along direction dir. Let m be this node (potentially i itself).
The action checks if the segments of i and m need to be joined.
If so, it sets send[m][dir] to the single tuple (l, k, L[l]+L[k]).
This tuple will be propagated by m along the segment until it
reaches its destination l. In addition, the tuples remaining in
rcvd correspond to the tuples that k needs to forward to l via
u. These tuples (if any left) are forwarded via core neighbor
m. Thus, they are concatenated to the end of send[m][dir].

VI. STABILIZATION

We next describe the changes that are necessary to
strengthen our protocol and achieve stabilization. We begin
with a formal definition of stabilization.

A predicate P of a network is a boolean expression over
the variables in all nodes of the network. A network is called
P -stabilizing iff every computation has a suffix where P is
true at every state of the suffix [9] [11].

Stabilization is a strong form of fault-tolerance. Normal
behavior of the system is defined by predicate P . If a fault
causes the system to a reach an abnormal state, i.e., a state
where P is false, then the system will converge to a normal
state where P is true, and remain in the set of normal states
as long as the execution remains fault-free.

We will add stabilization in two steps. First, local sanity
checks ensure that the data currently available to a node meets
the criteria of predicate P . Data that does not meet the sanity
checks is simply discarded. Second, a method is introduced to
ensure that information being propagated from node to node
has a limit on the distance it can propagate from its source. In
this way, incorrect information has a limit on its propagation.
This, in combination with the sanity checks, ensures that the
system returns to its normal operating state defined by P .

The variables of the updated protocol remain as before.
The updated actions are given below. The specific predicate P
and a proof of stabilization is given in Section VI.

begin

{core sanity }
core 6= convex-hull(T ) →

core := convex-hull(T )

{region sanity}
¬region-sanity(E,L) →

for k ∈ core, d ∈ left .. right, do
E[k][d] := nil

{receive edges from neighbor}
i ∈ core →

rcvd := i.send[u][dir];
build-segment(rcvd, i, dir);
m := next-core(i, dir);
if last(i, dir) 6= last(m,¬dir) then

k := last(E[i][dir]);
l := last(E[m][¬dir]);
send[m][dir] :=

(l, k, L[l] + L[k], L[k]) : hops-1(rcvd);
send[m][dir] := filter(send[m][dir]);

else
send[m][dir] := nil

end if
end

A. New Actions
The first action is for sanity of the set of core nodes.

Because nodes may fail and new nodes may join the network,
the set of core neighbors of a node u becomes a variable, rather
than an input. In addition, node u is aware of T(u) because
it is in direct communication with these nodes. Thus, T(u)
becomes an input to u. The core sanity action simply ensures
the correct membership of the core set.

The second action is for sanity on the region formed by
the segments stored in u.E. Node u can perform local tests
on u.E to ensure its values are consistent. Once this action
is executed, and u.E is consistent, the remaining actions are
written so that if u.E is in a consistent state before the action,
it will remain in a consistent state after the action. Therefore,
u.E will be in an inconsistent state only immediately after a
fault.

Above, predicate region-sanity(E,L) is the conjunction of
the following four conditions.

1) Let E∗ be the union of all nodes contained in any segment
of u. Then,

convex-hull(T ∪ E∗) = E∗.

That is, the segments themselves form a convex hull
containing all the core nodes.

2) Segments have no nodes in common, except that adjacent
segments may have the same last node.
〈∀x, (c, d) 6= (c′, d′) :

x ∈ (E[c][d] ∩ E[c′][d′])⇒
(x = last(E[c][d]) ∧ (x = last(E[c′][d′])∧
next-core(c, d) = c′ ∧ d 6= d′)〉

3) Nodes within the same segment should be unique.
〈∀ c, d,m, n :

(m < n ∧ E[c][d](m) = E[c][d](n))⇒
E[c][d](n) = nil〉

Above, the mth element in the sequence E[c][d] is de-
noted by E[c][d](m).

4) Labels should be increasing from one node to the next.
〈∀ c, d, n > 0 : E[c][d](n) 6= nil→

L(E[c][d](n)) > L(E[c][d](n− 1))〉
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build-segment(rcvd, i, dir)
E[i][dir] := nil; L[i] := 1;
(dst, neigh, label, hops) := top(rcvd);
while (dst = u) do

E[i][dir] := E[i][dir] : neigh;
L[neigh] := label;
for each x, x ∈ E ∧ x /∈ convex-hull(E) do

E := E − x;
end for
if ¬region-sanity(E,L) then

E[i][dir] := E[i][dir]− neigh;
end if
pop(rcvd);
(dst, neigh, label, hops) := top(rcvd);

end while

Figure 7. Modified build-segment routine.

B. Strengthening Existing Actions
Although some of the information that a node u maintains

can be checked locally for consistency, u cannot determine
if the tuples that it forwards from one node to another are
consistent. To ensure that faulty information is not propagated
indefinitely, each tuple is assigned a hop count, that is decre-
mented each time the tuple is forwarded from one node to the
next, and it is discarded if it reaches zero. Because the label
of an edge (u, v) corresponds to the number of direct Voronoi
edges for u to reach v, this label can be used as an initial hop
count for tuples generated by u and destined for v.

Consider for example Figure 5. Node u creates a tuple that
is to be sent to neighbor k via core neighbor i. This tuple is
given a hop count of L[k]. Similarly, the tuple u creates for
l and sent via core neighbor m is given a hop count of L[l].
In addition, when u forwards tuples from l to i, it decrements
the hop count in each of them by one. The same is true for
tuples from k to m.

There are two main changes in the action that receives
edges from neighbors. The first consists of strengthening
routine build-segment, as shown in Figure 7. The segment is
constructed one node at a time, as before. However, there might
be some nodes in E that do not belong to the convex-hull,
i.e., they are covered by the new nodes being added. These
nodes are removed from E. Another change to build-segment
is that a node is not added to E if in doing so the region-sanity
predicate is violated. This ensures that once region-sanity holds
(by the earlier action), it will continue to hold.

The second change to the action is to check the stack in
send[m][dir] for sanity, before making it available to neighbor
m. This is done by the filter routine in Figure 8. This routine
ensures that the hops remaining in the tuples of the stack are in
non-increasing order towards the top of the stack. In addition,
the labels have to be in strictly decreasing order towards the
top of the stack. Finally, no label can be less than two.

C. Convergence
We show that regardless of the initial state of the system,

the following predicate will hold permanently for every u,

R(u) = E∗

filter(stack)
temp := stack;
stack := nil;
hops := 1;
label := 2;
while temp 6= nil

(d, n, l, h) := top(temp);
if h ≥ hops ∧ l ≥ label then

stack := stack : (d, n, l, h);
hops := max(hops, h);
label := max(label, l) + 1;

end if;
pop(temp);

end while

Figure 8. Ensuring sanity in send array.

where E∗ is the union of all nodes in any segment of u.
We define an execution round to be a subsequence of

an execution in which every action of every node has either
been executed or its guard is not enabled. A round captures
the notion of taking enough execution steps guaranteeing that
every node makes progress.

We begin with some observations. The core neighbors of
node u cannot change unless there is a fault. Thus, after one
round, the core sanity action ensures that core is correct. Note
that no other action affects this set, and hence, it continues to
have the correct values (unless a fault occurs).

After one execution round, the region sanity action en-
sures that predicate region-sanity holds. However, routine
build-segment affects array E, and thus it affects region-sanity.
The removal of a node from E does not affect the truth value
of region-sanity. Furthermore, when a node is added to E,
region-sanity is checked. Thus, region-sanity continues to hold.

Note that the action to receive edges is parameterized.
Thus, every segment in E is rebuilt at least once in each round.
Because of this, every stack in array send is also rebuilt. As
it is rebuilt, routine filter ensures that send has sanity values.

Finally, after an execution round, L[i] = 1 for every core
neighbor i, and due to sanity on the send array, L[v] ≥ 2 for
every node in E.

1) Eliminating Non-Existing Nodes: If a node u is aware
of all nodes in the network, simply taking the convex-hull of
these nodes will suffice to compute its Voronoi region. Our
objective is to have each node learn the least possible number
of other nodes and thus minimize communication. However,
due to faults, this communication may contain nodes that no
longer exist due to failures, or simply values that have been
corrupted due to communication errors. We next argue that
such non-existing nodes will disappear from arrays E and
send. We do so by induction on the label.

Basis: Within one round, any node v in a segment of E
with L[v] = 1 is a real node, and all tuples in the send array
with a label value of one also correspond to real nodes.

As argued above, L[v] ≥ 2 for any non-core node in E,
and furthermore, L[c] = 1 for all core nodes c, and from
the core-sanity, the core nodes are real-nodes (due to having
direct communication with them) and immutable. From sanity
of array send, no tuple has a label less than two.
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Figure 9. Stabilization induction step.

Induction Step: Assume now all nodes v in E with L[v] ≤
k are real nodes, and all tuples in array send with label ≤ k
are real nodes. We argue the same holds for k + 1.

Consider first array send, and consider tuples with label
k+1. In each round, build-segment completely rebuilds array
send. Any tuples created with label k+1 must be real because
the nodes being joined have labels at most k. Tuples added to
array send that are being forwarded from a neighbor have a
hop count decreased by one. Thus, the maximum hop count of
all tuples in the network that are not real nodes and have k+1
will decrease by one after each round. As this reaches zero,
the tuples are eliminated by the filter routine. Thus, eventually
all tuples with label k + 1 correspond to real nodes.

For array E, once all tuples with label k + 1 are real,
the next time a segment is rebuilt, the nodes and labels come
from the tuples of the send arrays. Hence, in one more round
all nodes v in E with L[v] = k + 1 are real nodes.

2) Constructing the Region: We next argue that within a
bounded number of rounds R(u) = E∗. We assume that we
have reached a state where all known nodes are real. We argue
by induction on the label of edges in R(u) that these edges
are added to and preserved in E. Since the convex-hull of a
set of nodes S does not change if we add to S nodes that are
not in the convex-hull, then by the region-sanity predicate we
will have that R(u) = E∗.

Recall that when a node processes the tuples from a
neighbor, some are used to build the corresponding segment,
and some are forwarded to the adjacent core node. The former
are said to be consumed by the node. Note also that when
forwarding tuples to a core neighbor, the first tuple is created
by the node, and the remaining tuples are simply forwarded.

We use Figure 9 as reference for the induction, consisting
of an arbitrary node u and neighboring core nodes i and m.
Dashed lines correspond to core edges. The induction is based
on the label of edges in R(u), as follows.

a) For any node u and any core neighbor i, the sequence of
nodes in E[i][dir] with label at most l corresponds to the
nodes in segment(u, i, dir) of R(u) with label at most l.

b) If u has an edge of label l with a neighbor w, and u sends
a tuple to core neighbor i of its segment containing w, and
the tuple has a label of at least l + 1, a hop count of at
least l, and w as the destination, then the tuple reaches w
and w consumes this tuple.

c) If u has an edge of label l with a neighbor v, and u sends
a tuple to core neighbor i of its segment containing v, and

the tuple has a label of at least l+1, a hop count of at least
l+1, and a destination not equal to v, then v forwards the
tuple to the core node of the adjacent segment to the one
received.

We begin the induction with l = 2. Consider Figure 4,
where x is the hinge of (u,w), and (u,w) has a label of two.
Part a) requires that this edge will be added to the segment
u.E[x]. Because u and w are core edges of x, from region-
sanity, x is aware of them, and there can be no other nodes
in x’s segments x.E[u] and x.E[w]. When x reads the tuples
from w, it creates the tuple (x, u, w, 2, 2) and sends it to u.
Since this is the top tuple, it passes the send-sanity test at u,
and u adds edge (u,w) to u.E[x]. Because (u,w) is in R(u),
no other node can block this edge, and the region sanity test
is satisfied, making the edge permanent in u.E[x].

For part b), assume u were to send a tuple to x with label
l > 2 and hop count h = 2 and destined to w. Due to the
label and hop count, the tuple passes the send sanity test at x.
Node x receives it, and not being the destination forwards it to
w. This tuple is below the tuple that x created to inform w of
u. Node w processes the first tuple (adding u to its segment),
and then processes the tuple from u.

Part c) is similar, except that the hop count is greater than
two, and the destination is not w. In this case, w forwards it
to the core neighbor opposite to x (not shown in the figure).

For the induction step, assume the statement holds for all
values of l, l ≤ k, and we show that it will also hold and
continue to hold for label l = k + 1.

Consider Figure 9, where label(u,w) = k + 1, and
hinge(u,w) = v. Let j and m be the roots of the segments of
v containing u and w, respectively. From Theorem 2, all labels
in these two segments of v are at most k. In addition, let i be
root of the segment of u containing edge (u, v). Again, from
Theorem 2, the labels in this segment are at most k. From the
induction hypothesis and the labels being at most k, arrays E
and L of nodes v and u permanently have the correct values
for these three segments.

For part a), when v reads the tuples from m, it creates a
tuple (u,w, k+1, L[u]) and sends it to k. From the induction
hypothesis, this tuple is received and consumed at u adding
the edge (u,w). Because this edge is in R(u), it passes the
region sanity test and no other node can displace this edge.

For part b), consider the case of u sending to i a tuple
destined to w with label greater than k+1 and hop count of k+
1. From part (b) of the induction hypothesis, and label(u, v) ≤
k, this tuple is received at v (via j) and forwarded to core node
m.

Note that, if the destination of this tuple were v rather
than w, then, by the induction hypothesis, this tuple would
have been consumed at v. This implies the tuple destined to
w is at the top of the stack that v forwards to m. In particular,
it is next to the top of the stack, which consists of the tuple
created by v and sent to m to join edge (u,w). By the induction
hypothesis, the tuple joining (u,w) is consumed at w. Recall
that our tuple of interest is immediately below this tuple on
the stack. Hence, since its destination is also w, this tuple will
also be consumed at w, as desired.

For part c), the argument is similar, except that the label and
hop count in the tuple that u sends to i are both greater than
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k + 1, and w is not the destination. Thus, when w processes
the tuple, it forwards it to the core node adjacent to the core
node from where the tuple is received, as desired.

VII. CONCLUSION AND FUTURE WORK

We have developed a distributed algorithm that allows
sensor nodes to learn their Voronoi region in a two-dimensional
field. The algorithm is shown to be stabilizing, and thus, it is
resilient to a wide variety of faults. It has the advantage of
not assuming that there is an underlying routing protocol, and
thus, there is no hidden communication cost. The low level
of atomicity consists of only reading the variables of a single
neighbor at a time. This is similar to receiving a message from
the neighbor containing a copy of the neighbor’s variables.
We will extend the algorithm to the message passing model in
future work.

Regarding communication overhead, each node receives a
stack of tuples from each core neighbor. Each stack is of size at
most O(N) due to the requirement that labels decrease towards
the top of the stack. Assuming that on average each node has
g neighbors, then the overhead is O(g · N). It is known that
if nodes are distributed in the plane according to a Poisson
process with constant intensity, then each node in the DT has
on average six surrounding triangles [16]. Thus, on average,
the overhead is O(N).

In general, a node u receives tuples from a source s to
destination d if s and d are Voronoi neighbors and their
VNP crosses u. If the area where the sensors are deployed is
regular, as opposed to a long linear shape, then we expect the
number of such pairs to be small, even of constant size. Thus,
the overhead in most networks will be small, even smaller
than O(N). We will investigate this in future work, along
with several variations of the problem such as obstacles that
interfere with communication and having nodes with different
transmission radius.
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