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Abstract—The Alamouti Code Assisted V-BLAST (ACAV)
is a promising hybrid MIMO transmission scheme that is
adopted by IEEE 802.11n-2009 (WiFi) recently. It combines
spatial multiplexing (SM) and Alamouti space-time block codes
(STBC) so that if the Alamouti symbols were detected first,
which are generally more reliable due to STBC, subsequent
interference cancelation (IC) stages will suffer less from error
propagation. The optimal IC detector for the ACAV can be
undesirably complex but we found a procedure to reduce
the complexity and processing time without compromising its
optimality. We further developed a simpler suboptimal detector
that is suitable for rapidly varying channels. Simulation results
show both ACAV detectors can outperform the detectors of
pure SM scheme of the same data rate.

Keywords-Hybrid transmission scheme; ACAV; STBC-
VBLAST; MIMO detector; MIMO detection scheme

I. INTRODUCTION

At the turn of the millennium, the multiple-input and
multiple-output (MIMO) system has emerged as a promising
technology for high data-rate broadband wireless communi-
cations. Traditional MIMO schemes either achieve diversity
gain to increase the link reliability against fading, e.g.,
Alamouti space-time block code (STBC) [1], [2], or achieve
spatial multiplexing (SM) gain to increase spectral efficiency
and data throughput, assuming there is sufficient signal scat-
tering and antenna spacing, e.g., Vertical Bell Labs Layered
Space-Time (V-BLAST) [3]. More recently, hybrid MIMO
transmission schemes (HMTS) [4] have been proposed to
achieve a finer trader off between pure diversity gain and
pure SM gain so that parts of the data are space-time coded
across some antennas and others are spatially multiplexed. A
number of the HMTS have been included in the recent WiFi
(IEEE 802.11n-2009 [5]) and WiMAX (IEEE 802.16-2009
[6]) standards.

Among the HMTS that are described in [4], this paper
addresses a special family of HMTS called the Alamouti-
Code-Assisted-VBLAST (ACAV) – a term coined by Zhang
et al [7]. Two of its Mt transmit antennas are assigned
to transmit 2 × 2 Alamouti STBC data streams while the
remaining Mt−2 antennas are used to transmit independent
V-BLAST SM data streams . The ACAV is equivalent to
HMTS G2+1 for 3 antenna and G2+1+1 for 4 antenna in

Table I
ANTENNA MAPPING FOR THE SPACE/TIME CODE-RATE 3 ACAV

USING FOUR TRANSMIT ANTENNAS [5]

Rate-3 (6 symbols in 2 symbol periods)
Time Slot Ant 1 Ant 2 Ant 3 Ant 4

1 a1(k) a2(k) a3(k) a4(k)
2 −a∗2(k) a∗1(k) a5(k) a6(k)

Table II
ANTENNA MAPPING FOR SPACE/TIME CODE-RATE 1, 2 AND 4

TRANSMIT SCHEMES OF IEEE 802.16E-2005 [8]

Rate-1
Time Slot Ant 1 Ant 2 Ant 3 Ant 4

1 a1(k) a2(k) - -
2 −a∗2(k) a∗1(k) - -
3 - - a3(k) a4(k)
4 - - −a∗4(k) a∗3(k)

Rate-2
1 a1(k) a2(k) a3(k) a4(k)
2 −a∗2(k) a∗1(k) −a∗4(k) a∗3(k)
3 a5(k) a6(k) a7(k) a8(k)
4 −a∗6(k) a∗5(k) −a∗8(k) a∗7(k)

Rate-4
1 a1(k) a2(k) a3(k) a4(k)

[4]. The 4 antenna ACAV delivers 3 spatial substreams [5]
since 6 data symbols are transmitted over 2 symbol periods
(see Table I). Alternatively, the ACAV is said to achieve a
space/time code-rate of 3 [8]. In fact the older IEEE 802.16e-
2005 standard [8] only outlined HMTS of rates-1, -2 and -4
for a 4×4 MIMO system (see Table II), so the rate-3 ACAV
bridges the gap in space/time code-rate.

The IEEE standards do not define the type of data
detectors to be used for each HMTS. In the literature,
two types of ACAV detectors have been reported and they
can be loosely categorized as single stage and dual stage
detectors. The single stage detector includes the likes of the
linear detector (Lin) and the ordered-successive-interference-
cancelation (OSIC)1 non-linear detector, e.g., [9]. These
detectors operate on an inflated channel matrix of dimension
2Mr× 2(Mt− 1), rather than the original Mr×Mt matrix,

1Even though the OSIC involves several sequential stages or iterations,
we still consider the procedure as a single stage.
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in order to effectively exploit the diversity gain of the STBC
which spans two symbol periods. This increased matrix
size imposes approximately exponential burden on detector
complexity for every extra matrix column. The inflated
channel matrix can be avoided to reduce complexity but
not without sacrificing the bit-error-rate (BER) performance.
This can be done through the use of a dual stage detector
which first detects the Alamouti symbols (henceforth called
A-symbols, and the V-BLAST symbols as V-symbols) using
a sort of MIMO spatial filter of dimension Mt ×Mr, and
then cancel its interference, before detecting the remaining
V-symbols in the second stage, for e.g., [4].

In Section II, the system model is outlined and the archi-
tecture of the ACAV briefly reviewed. Section III outlines
our proposed reduced complexity single-stage ACAV detec-
tor. Section IV describes another reduced complexity dual-
stage detector. Section V presents complexity and simulation
results. The paper is finally concluded in Section VI.

II. SYSTEM MODEL & THE ACAV ARCHITECTURE

In this paper, we consider the 3 × 3 and 4 × 4 MIMO
systems in accordance to IEEE 802.16e-2005 [8] and IEEE
802.11n-2009 [5]. The antenna mappings for a block of 6
ACAV symbols are given in Table I. The source symbols
are drawn independently from the same alphabet set and
grouped into “space-time blocks” of 2(Mt−1) symbols. The
first two symbols a1(k) and a2(k) are Alamouti encoded
and the rest are spatially multiplexed (V-BLAST). The
transmission patterns of rate-1, -2 and -4 schemes of IEEE
802.16e-2005 are provided in Table II for comparison.

At the channel output, the received vector is governed by
the following channel input-output relationship

r(k) = Ha(k) + n(k) (1)

where k denotes a space-time block sample occupying two
symbol periods, r(k) , [r1(k), r2(k)] ∈ CMr×2, H ,
[HA,HV] = [h1,h2, · · · ,hMt ] ∈ CMr×Mt is the Rayleigh
flat fading channel (N.B.: HA = [h1,h2] ∈ CMr×2

denotes the Alamouti subchannels, HV = [h3, · · · ,hMt ] ∈
CMr×(Mt−2) denotes the V-BLAST subchannels), a(k) ∈
CMt×2 denotes the source signals, whose energy is σ2

a,
in the manner shown in Table I and n(k) ∈ CMr×2 is
the additive white Gaussian noise (AWGN) matrix with a
complex variance of σ2

n. One way of data detection is to
process the received vector r(k) using a MIMO spatial filter
to extract the A-symbols because they are usually more re-
liable, and subsequently perform interference cancelation to
detect the remaining V-symbols [4]. We refer to this method
as the dual-stage detector which we pursue in Section IV.
To achieve better BER suppression, we should consider the
inflated channel matrix, H̃, defined below, which takes into
account all 2(Mt−1) symbols so that the transmit diversity
can be more effectively exploited [9], so that detection is

carried out in a single stage:

r̃(k) = H̃ã(k) + ñ(k) ⇒
[

r1(k)
r∗2(k)

]
=

[
HA HV 02

A(HA) 02 H∗
V

]
ã(k) +

[
n1(k)
n∗2(k)

]

(2)
where the “Alamouti” operator A([h1,h2]) , [h∗2,−h∗1],
02 is a zero matrix of dimension Mr × 2 and
ã(k) = [a1(k), a2(k), a3(k), a4(k), a∗5(k), a∗6(k)]T . The
special structure inherent in H̃ is the motivation behind the
design of the low-complexity pair-wise OSIC detector in the
following Section III.

III. REDUCED COMPLEXITY SINGLE STAGE DETECTOR:
PAIR-WISE OSIC (PWO)

In the following we propose a modified OSIC scheme
which decodes twice as fast, uses less computations, but
attains identical BER performance as the original OSIC for
ACAV [3].

A. Data Detection in Pairs

Let’s consider only the zero-forcing (ZF) detector (ex-
tension to the MMSE detector is straight forward). Let G̃
denote the Moore-Penrose pseudoinverse of H̃. Subject to
the condition that the matrix G̃ must have an even number
of rows, the pseudoinverse has this specific form:

G̃ = H̃† =




GA A(GA)
GV1 −G∗

V2

GV2 G∗
V1


 (3)

where GA,GV1,GV2 are all 2×Mr matrices. Expanding
(3), it can be shown that the row-norms of certain subchan-
nels G̃ are identical, since all elements of one row have
counterparts of same magnitude in one other row. They
are the 1st and 2nd row, 3rd and 5th row, and finally the
4th and 6th row. Since the row-norms are identical for the
two subchannels within the pair, that means both symbols
that belong to the equal-norm subchannels can be detected
simultaneously without any loss in optimality at all.

B. Optimal Sorting with Detection Speed Doubled

According to [3], the optimal sorting is based on selecting
first the subchannel which has the minimum norm. The
A-symbols are most robust to noise and therefore with
high probability, their corresponding subchannels in G̃
have minimum norms. This is because their correspond-
ing columns in H̃ (c.f. Eq. (2)) consist of only non-zero
elements, i.e., [HA A(HA)]T , while the columns of the
other V-subchannels are occupied half of the time by 0,
i.e., ([HV 02]T and [02 H∗

V]T ). The robustness of the A-
symbols is a consequence of STBC of a1(k) and a2(k).
However, optimality is not guaranteed if the A-symbols were
detected and canceled first because one of the V-subchannels
may have a higher SNR than the A-subchannel for a
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Table III
PAIR-WISE ORDERED SEQUENTIAL DETECTION

Let the j-th row of G̃ be denoted as (G̃)j .
Let ki(1)

and ki(2)
denote the indices of the 1st and 2nd symbols,

respectively, of the symbol-pair with equal SNR, at the i-th iteration/
OSIC stage.
Q(·) is the nearest neighbour hard quantization operator.
H̃(i) is the deflated channel matrix of H̃ at the i-th iteration.

Initialization:
i = 1
r̃1(k) = r̃(k)

G̃1 = (H̃)†

Recursion:

wzf
i =

[
(G̃i)ki(1)

(G̃i)ki(2)

]

[
z̃ki(1)

(k)
z̃ki(2)

(k)

]
= wzf

i r̃i(k)

[
âki(1)

(k)
âki(2)

(k)

]
=

[
Q

(
z̃ki(1)

(k)
)

Q
(
z̃ki(2)

(k)
)

]

r̃i+1(k) = r̃i(k)−
[
hki(1)

,hki(2)

] [
âki(1)

(k)
âki(2)(k)

]

G̃i+1 = (H̃(i))†
i = i + 1

particular channel realization. Thus, to retain optimality, all
the row norms of G̃ are still calculated just in case the A-
subchannel is not the strongest. Subsequently the symbols,
be it A- or V-, are detected and canceled according to the
OSIC algorithm of [3]. This interference cancelation (IC)
process is performed on the symbol-pair simultaneously so
the number of sequential IC stages is halved. Table III
summarizes this pair-wise OSIC (PWO) algorithm.

IV. REDUCED COMPLEXITY DUAL STAGE DETECTOR:
GROUP-LINEAR (GL) AND GROUP-OSIC (GO)

Both the PWO algorithm in Section III and the OSIC
of [9] deal with an inflated channel matrix H̃. Trading off
BER performance slightly to enjoy lower pre-processing
burden (e.g., the pseudo-inverse operation), a dual stage
detector may be employed to detect the ACAV symbols by
using only the Mr ×Mt channel matrix. In the first stage,
the A-symbols are detected using a group receiver [10],
followed by interference cancelation (IC) and the detection
of the V-symbols using a linear or OSIC detector. Thus we
name our dual-stage detectors as the Group-Linear (GL)
and the Group-OSIC (GO) detectors. They are especially
beneficial in rapidly time-varying channels when the pre-
processing cost is significant as compared to the cost of
payload processing (i.e., computation required to process
every symbol of frame).

A. Stage-1: Zero-forcing (ZF) Group Receiver

The ZF group receiver partitions the original channel
matrix into four quadrants as follows [11]:

H ,
[

A B
C D

]
(4)

where A ∈ C2×2, B ∈ C2×(Mt−2), C ∈ C(Mr−2)×2, and
D ∈ C(Mr−2)×(Mt−2). A always carries the top left entries
of H of dimension 2× 2, i.e.,

A ,
[

h11 h12

h21 h22

]
, (5)

where hij is the element in the i-th row and j-th column
of H. Subsequently, ZF group equalization is performed on
r(k). The ZF group equalizer takes the following form:

Wzf =
[

B−1 −D−1

A−1 −C−1

]
(6)

so that the combined channel-group-equalizer response,

WzfH =
[

B−1A−D−1C 02r

0c2 A−1B−C−1D

]
(7)

is a diagonal matrix that isolates the two A-substreams
from the V-substreams. 02r and 0c2 are zero matrices of
dimensions 2× (Mt−2) and (Mt−2)×2, respectively. As
a result, the virtual channel of the A-substreams due to the
ZF group receiver is

H̃A , B−1A−D−1C (8)

where H̃A ∈ C(Mt−2)×2. The received signal after the group
receiver can be expressed as

s(k) ,
[

sA(k)
sV(k)

]
= Wzfr(k) = WzfHa(k)+ñ(k), (9)

where sA(k) ∈ C2×2, sV(k) ∈ C(Mt−2)×2 and ñ(k) ∈
CMt×2 is the filtered noise matrix. We have deliberately
divided s(k) into two matrices because we only want to
retrieve sA(k) that corresponds to the Alamouti stream, i.e.,

sA(k) = [B−1,−D−1]r(k). (10)

Using sA(k) from (10), the optimal maximum likelihood
soft decisions of the A-symbols are obtained as follows

[
z̃1(k)
z̃∗2(k)

]
=

[
‖H̃A‖2F

]−1

(H̃A2)H s̃(k) (11)

where ‖ · ‖F denotes the Frobenius norm, (·)H denotes the
Hermitian operation (complex conjugate transpose),

H̃A2 ,
[

H̃A

A(H̃A)

]
(12)

where A(x) , A
([

a b
c d

])
=

[
b∗ −a∗

d∗ −c∗

]
, and

s̃(k) , [s11(k), s∗12(k)]T if Mt = Mr = 3 where sA(k) =
[s11(k), s12(k)], or s̃(k) , [s11(k), s21(k), s∗12(k), s∗22(k)]T
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if Mt = Mr = 4 where sA(k) ≡
[

s11(k) s12(k)
s21(k) s22(k)

]
.

Subsequently, a nearest neighbour quantizer Q(·) is
used to estimate the A-symbols: [â1(k), â2(k)]T =
[Q(z̃1(k)),Q(z̃2(k))]T .

After the A-symbols have been detected, they will be
canceled from the received signals, r(k), as follows:

t(k) , [t1(k) t2(k)] = r(k)−[h1 h2]
[

â1(k) −â∗2(k)
â2(k) â∗1(k)

]
.

(13)
t1(k) ∈ CMt×1 and t2(k) ∈ CMt×1 are the column vectors
that correspond to the V-symbols of the first and second
time slot in block k, respectively. If the decisions â1(k) and
â2(k) are correct, then t(k) will enjoy a large diversity gain
since the the V-symbols are effectively being transmitted
from Mt− 2 antennas but are received by two more receive
antennas! Moreover, the signals from the first time slot of
space-time block k are now independent of those signals
from the second time slot, so the detection of V-symbols is
carried out with a much smaller deflated channel matrix one
time slot at a time.

B. Stage-2: Linear detection or OSIC

In stage 2, we can use either the linear or the OSIC
algorithm. The effective channel affecting the remaining V-
symbols is HV = [h3] for the 3×3 ACAV, or HV = [h3 h4]
for the 4×4 ACAV. Both the linear detection algorithm and
the first step of the OSIC algorithm [3] make use of either
the same ZF filter G(ZF)

V or the MMSE filter G(MMSE)
V .

These filters are the unbiased and biased pseudo-inverses of
HV, respectively. Since HV is a “tall” or “slim” matrix with
dimension Mr× (Mt−2), computing the ZF or the MMSE
filter is significantly simpler than it is with the ACAV chan-
nel matrix H̃ of dimension 2Mr×2(Mt−1) as described in
[9]. In the pursuit of computational simplicity, the Greville
algorithm [12] and the Sherman-Morrison algorithm [13] are
adopted to compute G(ZF)

V and G(MMSE)
V , respectively. In

this way, we can evaluate the exact computation required for
the GL and GO algorithms.

1) ZF Detectors for 3 × 3 ACAV: The V-symbols from
the first and the second time slots in block k, i.e., a3(k) and
a4(k), are detected as follows:

G(ZF)
V , g3 = h†3 = hH

3

‖h3‖2 (14)

â3(k) = Q(g3t1(k)), â∗4(k) = Q(g3t2(k)) (15)

where † denotes the Moore-Penrose pseudo-inverse operator.
2) ZF Detectors for 4 × 4 ACAV: The pseudo-inverse

of HV = [h3 h4] can be computed using the Greville
algorithm [12] as follows:

G(ZF)
V , H†

V =
[

g3

g4

]
=

[
h†3 − d(h4 − dh3)†

(h4 − dh3)†

]
(16)

where d = h†3h4 and d is a scalar. The linear detector
decodes the V-symbols as follows:

â3(k) = Q(g3t1(k)), â4(k) = Q(g4t1(k))
â∗5(k) = Q(g3t2(k)), â∗6(k) = Q(g4t2(k)). (17)

The OSIC detector extracts the V-symbols in sequential steps
as follows. Assuming ‖g3‖2 < ‖g4‖2, then

â3(k) = Q(g3t1(k)) (18)
u1(k) = t1(k)− â3(k)h3 (19)

â4(k) = Q(h†4u1(k)). (20)

If, on the other hand, the SNR is stronger at the 4th channel,
i.e., ‖g4‖2 < ‖g3‖2, then

â4(k) = Q(g4t1(k)) (21)
u1(k) = t1(k)− â4(k)h4 (22)

â3(k) = Q(h†3u1(k)). (23)

Independent of the first time slot, â∗5(k) and â∗6(k) of the
second time slot are obtained in the same fashion as (18)–
(23) above.

3) MMSE Detectors for 3 × 3 ACAV: The MMSE filter
of HV is

G(MMSE)
V , g3 =

hH
3

‖h3‖2 + α
(24)

where α is the “regularization” constant chosen as the ratio
of the noise variance to the signal power (of individual
transmit antenna) [13]. Subsequently, â3(k) and â∗4(k) are
detected in the same manner as (15).

4) MMSE Detectors for 4 × 4 ACAV: The Sherman-
Morrison recursion algorithm [13] is used to compute the
MMSE filter

G(MMSE)
V ,

[
g3

g4

]
= HH

V[HH
VHV + αI2×2]−1

= HH
VQ, (25)

where I2×2 is the 2×2 square identity matrix. The Sherman-
Morrison algorithm computes Q in a simple, recursive
manner. It starts from the zero-th iteration:

Q[0] = (1/α)I2×2 (26)

and then computes the recursion from n = 1 to n = Mr =
4:

Q[n] = Q[n−1] −
Q[n−1]HV,n(HV,n)HQ[n−1]

1 + (HV,n)HQ[n−1]HV,n

(27)

where HV,n is the n-th column of the “tall” matrix HV.
The V-symbols are detected in the same manner as (17) for
linear detection and (18)–(20) for OSIC with the exception
of the pseudo-inverses in (20) and (23) are replaced with the
MMSE filter computed in the same fashion as (24).
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Table IV
COMPLEXITY ANALYSIS FOR 4× 4 RATE-3 MIMO DETECTORS

ZF MMSE
/Frame (Pre- /6-Symbols /Frame (Pre- /6-Symbols

Detector processing) (Payload) processing) (Payload)
(N ×M ) (M,A) (M,A) (M,A) (M,A)
Lin(8× 6) (672, 593.5) (48, 42) (840, 606) (48, 42)

OSIC(8× 6) (792, 705.5) (48, 80) (955, 649) (229, 202)
PWO(8× 6) (716, 639) (48, 80) (859, 578) (229, 202)
GL(4× 4) (32, 17.5) (56, 46) (76, 55.5) (56, 46)
GO(4× 4) (36, 19) (56, 54) (80, 46.5) (56, 54)
V-L(4× 3) (72, 54.5) (24, 18) (90, 79.5) (24, 18)
V-O(4× 3) (98, 76) (24, 34) (106, 92.5) (58, 58)

V. RESULTS

We shall assume the Rayleigh fading channel is stationary
over Nfr space-time block samples, or equivalently, 2Nfr

symbol periods.

A. Complexity Analysis

All detectors under consideration achieve the same data
throughput, i.e., 3 spatial substreams, and they all have equal
number of received antennas, i.e., Mr = 4. The ACAV
detectors under consideration include the linear detector
(Lin), OSIC, pair-wise OSIC (PWO), Group-Linear (GL),
and Group-OSIC (GO). The detectors for pure V-BLAST
signals are the linear and OSIC detectors, denoted as V-L and
V-O, respectively. The dimensions of the channel matrices
that the detectors deal with are appended to the names
of the detectors, as shown in Table IV, where M and N
correspond to the number of effective transmit and received
symbols, respectively. We consider both ZF and MMSE
implementations of the detectors, and separated the pre-
processing (e.g., computing the pseudoinverse of the channel
matrix in (16) and (25)) from the payload processing (e.g.,
linear convolution of equalizer weights and received signal
vector in (18) and the subsequent nulling and canceling
operations in (19)). The effective channel matrices that need
to be pseudoinversed have dimensions 8 × 6, 4 × 2, and
4× 3 for the single-stage, dual-stage, and V-BLAST(4× 3)
detectors, respectively. After consulting with [12] and [13],
we arrived at the following number of pre-processing op-
erations required for the initialization, i.e., pseudoinverse
of channel matrix, and the recursion, i.e., pseudoinverses
of subsequent deflated channel matrices, and the number
of repetitive payload operations required for every space-
time block of N received symbols to compute the linear
convolution (e.g., (17), (18)) and the nulling operations (e.g.,
(19)). For a channel with M and N effective transmit and
received symbols, respectively,
1) the Greville-Inverse-Greville algorithm [12]

requires ( 5
2M2N − 1

2MN − 3N)M + ( 5
2M2N −

M2 − 3
2MN − 5

2N + 3
2 )A operations for the

“initialization”, while requiring ( 1
4M2N+ 1

4MN−
1
2N)M + ( 1

4M2N − 1
4M2 + 1

4MN − 1
4M −

10
0

10
1

10
2

10
3

10
4

ZF detectors

N
fr

T
ot

al
 F

LO
P

S

 

 

O(8x6)
Lin(8x6)
PWO(8x6)
GO(4x4)
GL(4x4)
V−O(4x3)
V−L(4x3)

Figure 1. Complexity profile of various detectors with varying Nfr. Total
FLOPS = FLOPS/frame + Nfr*FLOPS/6-symbols.

1
2N + 1

2 )A for the “recursion”. The computations
required for payload processing for a block of N
received samples is (MN)M + (MN −M)A for
the linear detector and (2MN −N)M+(2MN −
M −N)A for the OSIC detector.

2) the Sherman-Morrison algorithm [13]
requires (5

2M2N + 5
2MN)M+(2M2N− 1

2M2 +
MN)A operations for the “initialization”, and
( 2
3M3− 2

3M)M+( 1
2M3− 1

2M2+M+1)A for the
“recursion”. The computation required for every N
received data sample is (MN)M+(MN −M)A
for the linear detector and ( 1

2M2N + 1
2M2 −

1
2MN − 1

2M)M + ( 1
2M2N − 1

2MN −M + 1)A
for the OSIC detector.

The PWO requires less complexity than the original
OSIC(8×6). More significantly, the PWO detects 6 symbols
in 3 sequential IC stages instead of 6, thus the detection
speed is doubled. The GL and GO detectors require the least
pre-processing and are ideal for rapidly varying channels.

We now investigate the effect of increasing Nfr on the
complexity of the detector. Each complex multiplication M
requires 6 floating point operations (FLOPs); each complex
addition A requires 2 FLOPs. Although counting FLOPs is
not the ideal way to determine the complexity of a detector,
it does provide a certain degree of appreciation of the
complexity. We compute the total FLOPs by summing the
FLOPs per frame and the FLOPs per 6-symbols multiplied
by Nfr. For small frame sizes, the dual-stage detectors are
about 10 times simpler than the traditional ACAV detectors,
making them very attractive.

B. Simulation Results

The six detectors are put to test (NB: the performance of
OSIC(8× 6) and PWO(8× 6) are identical). For simplicity,
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Figure 2. Simulation results comparing the ZF ACAV detectors and V-
BLAST 4× 3 detectors.

all detectors employ the ZF approach. The modulation
scheme is 16-QAM and for each simulation point, 10 million
symbols over 100 different random Rayleigh faded channel
realizations were used. The result is plotted in Fig. 2.

It is clear that without STBC, the V-BLAST detectors
perform poorly against the ACAV detectors. Only the linear
ACAV detector performs about 0.5dB worse than the V-O.

As for ACAV detectors, PWO performs the best. The
second best is the GO detector with a 1dB gap with the
PWO. Following closely to the GO is the GL detector. Inter-
estingly, even the GL performs better than V-O, suggesting
the advantage of using the ACAV transmission scheme.

VI. CONCLUSION AND FUTURE WORK

The ACAV has been adopted by IEEE 802.11n-2009 as
viable candidates of its hybrid MIMO transmission schemes
[5]. Through our simulations we discovered the superiority
of ACAV over pure V-BLAST schemes of identical data
rate even though similar OSIC or linear detectors were
used. That means the ACAV outperforms the V-BLAST
as a transmission scheme, and not because of the detector
used. In the future, we intend to prove that the ACAV is
naturally more resilient to system errors than pure V-BLAST,
and perhaps double-space-time-transmit-diversity (D-STTD)
[14] too, when the same data rate is enforced. If this is true,
the ACAV could replace pure V-BLAST schemes in future
broadband modems (WiFi, WiMAX, LTE). Unfortunately
the ACAV detectors are relatively complex, so we developed
two simple detection schemes in this paper to address this
issue.
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