
FPGA Implementation of CRC with Error Correction

Wael M El-Medany

Computer Engineering Department,
College of Information Technology,

University Of Bahrain, 32038 Bahrain,
Email: welmedany@uob.edu.bh

Abstract - This paper presents a Cyclic Redundancy Check
(CRC) soft core design and its hardware implementation on
Field Programmable Gate Array (FPGA). The core design
includes both of the Encoder and Decoder systems to be used
for the serial data transmission and reception of the Wireless
Transceiver System. VHDL (VHSIC Hardware Description
Language) has been used for describing the hardware of the
Intellectual Property (IP) core chip. The core design has been
simulated using and tested using ISim (VHDL/Verilog).
Spartan 3A FPGA starter kit from Xilinx has been used for
downloading the design into Xilinx Spartan 3A FPGA chip.

Keywords-FPGA; CRC Code; IP Core; VLSI.

I. INTRODUCTION

In digital communication systems, the error detection is
performed by computing checksum on the message that
needs to be transmitted. The computed checksum is then
concatenated to the end of the message to generate the
codeword or the check sequence number to be transmitted.
At the receiving end, the received word is compared with
the transmitted codeword. If both are equal, then the
message received is treated as error free, otherwise there is
an error detected in the received word.

Cyclic Redundancy Check (CRC) Code has a wide range
of applications in data communications and storage devices
[1-6]. Cyclic Redundancy Check (CRC) is an error-checking
block code that has been used for error detection only in
which the received word has to be divided by a
predetermined number called the generator number. If the
reminder is zero, this means that there is no error detected,
for nonzero reminder, this means that there is an error
detected [7-10].

Cyclic Redundancy Check (CRCs) codes are so called
because the check (data verification) code is a redundancy
(it adds zero information) and the algorithm is based on
cyclic codes [11]. CRC has applications also in Integrated
Circuits Testing Design (ICTD), and Logical Fault
Detections (LFD) [12]. In [3], Albertengo et al. derived a
method for determining the logic equations for any
generator polynomial. Their formalization is based on z-
transform. To obtain logic equations, many polynomial
divisions are needed. Thus, it is not possible to write a
VHDL code that generates automatically the equations for
CRC.

Normally, the design of the error control decoder is more

complex than the encoder. CRC when first introduced was

for error detection only, it can detect single bit error; burst

error with length “w”, where “w” equal to the number of

bits for the Frame Check Sequence (FCS) number; and odd

number of errors based on the value for the generator umber

[14-15]. Further research has investigated theoretically a

CRC with error correction capabilities. Shukla and

Bergmann [1] failed to show their hardware implementation

for CRC with one bit error correction, and the simulation for

correcting the bit error.

The work presented in this paper describes the VHDL

implementation of a CRC Decoder that has the advantages

of correcting more than one bit error. Since we are

introducing the hardware implementation for error CRC

with error correction, our main concern is about the design

of the CRC decoder with error correcting capabilities. The

error correction in CRC decoder based on the error trapping

technique, which is a cyclic linear block code [16-19]. Error

trapping based on, cyclic shifting the received word on the

division circuit, until the error can be trapped on the parity

check bits. In that case the reminder will used as the error

pattern, by which we can locate and correct the detected

error.

The VHDL source code has been edited and synthesized

using Xilinx ISE 13.1, and then simulated and tested using

ISim (VHDL/Verilog). Spartan 3A FPGA starter kit from

Xilinx has been used for downloading the design into Xilinx

Spartan 3A FPGA chip. The design has been tested in a

hardware environment for different data inputs.

The materials in this article are organized as follows: in

Section II, a brief description of the State Machine (SM)

chart of CRC encoding process; the SM chart for decoding

algorithm is given in Section III; the modification in the

decoding algorithm for error correction will be concluded in

Section IV; in Section V, the circuit design for CRC decoder

will be described, as well as the top-level design the

decoder; the simulation results and discussion is given in

Section VI; at the end, a conclusion will be given in Section

VII.

II. SM CHART FOR CRC ENCODING PROCESS

The encoder generates an n-bit check sequence number from

the given input k-bit information. The encoding process

starts by calculation the Frame Check Sequence (FCS), by

dividing the information bits by the predefined generator

266Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

number. The encoder then concatenates the FSC number to

the k-bit information number to get the check sequence

number with n-bits length. Figure 1 shows the SM chart for

the encoding algorithm. Where m is k information bits, p is

the generator number, and c is the check sequence number.

In Figure 1, d and r are internal signals in VHDL

architecture, where d has to be divided by r in order the get

the reminder, which will be used as the FCS. The division

process used in the encoding algorithm is the parallel

division, which will be faster than the serial one. The serial

division requires a number of clock cycles equal to the

number of information bits in order to calculate the FCS;

however the parallel one requires only one clock cycle.

Figure 1. SM chart for CRC Encoding algorithm

III. SM CHART FOR CRC DECODING PROCESS

The CRC decoder is working similar to the encoder, where

both of them based on using a division circuit. The decoding

process starts by dividing the received check sequence

number by the generator number. If the remainder is zero,

assume there is no error detected. For nonzero remainder, it

means that the received check sequence number got an error

detected. The CRC decoder stop at the stage of detecting

whether there is an error detected or not. But for our

algorithm we are going to continue the division process until

we get the error trapped, or get a decision that there is no

error detected. As shown in Figure 2, the SM chart of the

CRC decoding algorithm is similar to the one in Figure 1.

However the decoder divide the received check sequence

number ‘c’ by the generator number ‘p’, and check the

reminder value whether it is zero or not, where zero

reminders mean that there is no error detected, and none

zero reminder means that there is an error detected.

Figure 2. SM chart for CRC Decoding algorithm

IV. MODIFIED CRC DECODING ALGORITHM FOR ERROR

CORRECTION

Cyclic Redundancy Check is a class of cyclic coding,

which is one of the most powerful linear block codes. The

modification for the CRC decoding algorithm based on the

well known Error Trapping Technique (ETT), in which the

C= code word 15 bits
p = 111010001 "
Divider"
M "Data as output " = 7
bits & d = c
r = p & 000000

Y

D = d xor r
Since the MSB is still 1
continue the division "
xor " with the same d "
data

Cnt=7?

Start

MSB=1?

Check remainder for error

detection

Shift d' to the left 1-bit.
d = d(13 downto 0) &0

Y

N

N

M= Data 7 bits
p = 111010001 "
Divider"
d = m & 00000000
r = p & 000000

Y

D = d xor r
Since the MSB is still 1
continue the division "
xor " with the same d "
data

Cnt=7?

Start

MSB=1?

Shift d' to the left 1-bit.
d = d(13 downto 0) &0

Y

N

N

C " The code word " =
original data + the FCS "
Remainder"
c = m & d(14 downto 7)

267Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

error has to be trapped in the parity bits. In CRC we will

continue the division process until we get the error trapped

in the FCS bits, or get a message that there is no error

detected. This process can be done by cyclic shifting the

generator number during the division process, and each time

we do the division, we compare the reminder with number

of errors that can be corrected using the linear block coding

techniques, by calculating the Hamming distance for the

code. Then use the following very famous equation:

t = (dmin – 1)/2

where t is the number of errors that can be corrected, and

dmin is the minimum Hamming distance. The SM chart of

the modified algorithm is shown in Figure 3, where the

process of cyclic shifting has been added to the previous one

shown in Figure 2, as well as checking the reminder after

each division and compare it to the value of ‘t’.

Figure 3. SM chart for a Modified CRC Decoding algorithm

If the number of non zero elements in the reminder is

equal to or less than the value of ‘t’, then the error has been

trapped, and the reminder becomes the error pattern, which

can be easily corrected. If this process would have been

repeated a number of times, and the process has been

entered in an infinite loop, then the process has to fished

with the decision of “no error detected”.

V. CRC DECODER CIRCUIT DESIGN

In this section, we are going to describe the hardware

design for the CRC decoder circuit with error correction

capability. The top-level design of the decoder circuit is

given in Figure 4, which shows that the decoder has [Rx], in

our example the received check sequence number [Rx] is

15-bit, which represent the code length, and the output of

the decoder has 7-bits, which represent the information bits.

In Figure 5, the second level of the top-down design is

shown, the second level shows that there are three main

units in the decoder circuit; the first unit is the Error

Detection (ED) unit; the second unit is Locating Error (LE)

unit; and the third one is the Error Correction (EC) unit. The

top level of ED unit is given in Figure 6, which shows the

inputs to this unit is [Rx], and the output is [sy] the

syndrome that represents the remainder of the division

process, and it is 8-bits, based on the values of the

syndrome, whether it is zero or non zero, that will give

indication whether there is an error detected or not.

Figure 4. Top-level design of the decoder circuit

Figure 5. Second-level design of the decoder circuit

The register transfer logic for ED unit is given in Figure

7, in which there are 13 subunits, some of these subunits, we

can see the gate level schematic, and some others are Xilinx

FPGA building blocks. The top level of LE unit is given in

Figure 8, which shows the inputs to this unit is [sy] coming

from ED unit, and the output is [e] that represents the

location of the bit in error. The register transfer logic for LE

unit is given in Figure 9, which got only one building block

C= code word 15 bits
p = 111010001
M "Data as output " = 7
bits & d = c
r = p & 000000

Y

d = d xor r

Cnt=50?

Start

MSB=1?

c’ = c xor d

Shift d' to the left 1-bit.
d = d(13 downto 0) &0

Y

N

N
#1=< t?

Y

No Error

N

268Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

unit, called Mrom_e1, it is a ROM memory unit of the

FPGA building blocks.

Figure 6. Top Level of the ED unit

Figure 7. Register Transfer Level of the ED unit

Figure 8. Top Level of the LE unit

The top level of EC unit is given in Figure 10, which

shows the inputs to this unit is [R and e], and the output is

[d] that represents the corrected data. The register transfer

logic for EC unit is given in Figure 11, which got 7 building

block units.

Figure 9. Register Transfer Level of LE unit

Figure 10. Top Level of the EC unit

Figure 11. Register Transfer Level of the EC unit

VI. SIMULATION RESULTS AND DISCUSSION

This section presents the results obtained through the
simulation and design implementation summary are
described. The presented CRC decoder can correct up to two
errors. The gate level design of the error detection unit is
given in Figure 12, and the gate level design of the error

269Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

correction unit is given in Figure 13. The test bench
waveform for CRC decoder is given in Figure 14, with
different inputs, and different errors. The simulation shown
in Figure 14 for the modified CRC decoder and it can
correct single bit error and double bit errors. For simplicity,
we are given errors two codewords all one’s codeword and
all zero’s codeword, “11111 11111 11111” and “00000
00000 00000”. The inverted bits represent the introduced
error, which is also represented by the signal [s2]. The
signal [dout] is 7-bit corrected information, the simulation
results for the presented CRC decoder proved the
correctness of the decoder circuit either for error detection
or error correction.

Figure 12. Gate Level Design of the ED unit

Figure 13. Gate Level Design of the EC unit

Figure 14. Test bench for CRC Decoder

270Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

VII. CONCLUSIONS

An FPGA design of a CRC decoder with error correction

capabilities have been simulated and implemented. The

system has been designed using VHDL, and implemented

on hardware using Xilinx Spartan 3AN FPGA Starter kit.

The CRC decoder for both error detection and error

correction have been tested for different data inputs either

for simulation purposes or in the hardware environment

using the available FPGA kit. The VHDL source code has

been edited and synthesized using Xilinx ISE 13.1, and then

simulated and tested using ISim (VHDL/Verilog).

REFERENCES

[1] Shukla S. and Bergmann N. W., “Single bit error
correction implementation in CRC-16 on FPGA”,

1n：I EEE International Conference on Field-

Programmable Technology. Brisbane, Australia,

2004.．
[2] W.W.Peterson and D.T.Brown, “Cyclic Codes for

Error Detection”, Proc. IRE, Jan. 1961.

[3] G. Albertengo and R. Sisto, “Parallel CRC

Generation”, IEEE Micro, Oct. 1990.

[4] R. Lee, “Cyclic Codes Redundancy,” Digital Design,

July 1977.

[5] A. Perez, “Byte-wise CRC Calculations”, IEEE

Micro, June 1983.

[6] A. K. Pandeya and T. J. Cassa, “Parallel CRC Lets

Many Lines Use One Circuit”, Computer Design,

Sept. 1975.

[7] A. S. Tanenbaum, “Computer Networks”, Prentice

Hall, 1981.

[8] T. V. Ramabadran and S. S. Gaitonde, “A tutorial on

CRC computations”, IEEE Micro, Aug. 1988.

[9] W. W. Peterson and D. T. Brown, “Cyclic Codes for

Error Detection”, Proc. IRE, Jan. 1961.

[10] M. Sprachmann, “Automatic generation of parallel

CRC circuits”, IEEE Des. Test Comput., vol. 18, no.

3, pp. 108–114, May/Jun. 2001.

[11] N.R.Sexana and E.J.McCluskey, “Analysis of

Checksums, Extended Precision Checksums and

Cyclic Redundancy Checks”, IEEE Transactions on

Computers, July 1990.

[12] J.McCluskey, “High Speed Calculation of Cyclic

Redundancy Codes,” in Proc. of the 1999

ACM/SIGDA seventh Int. Symp. on Field, 1999.

[13] K. V. GANESH, D. SRI HARI, and M. HEMA,

“Design and Synthesis of a Field Programmable CRC

Circuit Architecture”, International Journal of

Engineering Research and Applications, ISSN 2248-

9622, Volume 1, Issue 4, Nov-Dec 2011.

[14] William Stallins, “Data and Computer

Communications”, Eight edition, Prentice Hall, 2007.

[15] Behrouz A. Forouzan, “Data Communications and

Networking”, third edition, McGraw Hill, 2003.

[16] S. Lin and D. J. Cosetllo, “Error Control Coding:

Fundamentals and Applications”, Prentice Hall, NJ,

1983.

[17] R.E. Blahut, “Theory and Practice of Error Control

Codes”, Addison-Wesley, Menlo Park, California,

1983.

[18] G. Campobello, M. Russo, and G. Patanè, ”Parallel

CRC realization”, IEEE Trans. Comput., vol. 52, no.

10, pp. 1312–1319, Oct. 2003.

[19] Programmable Gate Arrays, p. 250, ACM Press New

York, NY, USA, 1999.

[20] G. Sharma‡, A. Dholakia∗, and A. Hassan,

“Simulation of Error Trapping Decoders on a Fading

Channel”, Proc. IEEE Vehicular Technology

Conference, Atlanta, GA, 28 Apr.-1 May 1996, vol. 2,

pp. 1361-1365

[21] M. J. S. Smith, “Application-Specific Integrated

Circuits”, Addison-Wesley Longman, Jan. 1998.

[22] P.C. Hershey and C. B. Silio, “Finite State Machines

for Information Collection and Assessment on High

Speed Data Networks”, Wireless and Optical

Communications Proceeding, 2002.

[23] C. Borrelli, “IEEE 802.3 Cyclic Redundancy Check”,

application note: Virtex Series and Virtex-II Family,

XAPP209 (v1.0), Xilinx, Inc, March 23, 2001.

[24] Efficient LDPC Decoder Implementation for DVB-S2

System, Apr 2010.

[25] D. Giot, P. Roche, G. Gasiot, and R. Harboe-

Sorensen, “Multiple-Bit Upset Analysis in 90 nm

SRAMs: Heavy Ions Testing and 3D Simulations”,

IEEE Trans. Nucl. Sci., Vol. 54, pp.904 – 911, Aug.

2007.

[26] Xilinx, “Spartan-3E Starter Kit Board User Guide”,

Xilinx, Tech. Rep. UG230, Mar 2006.

[27] Xilinx, “Virtex 5 Family Overview”, Xilinx, Tech.

Rep. DS100, Jun 2008.

271Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

