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Abstract—Since the utilization of multiuser diversity in wireless
networks can increase the information theoretic capacity of the
overall system, much attention has been paid to schedulers
exploiting multiuser diversity. However, packet schedulers ex-
ploiting multiuser diversity have a disadvantage of consuming
the bandwidth for the feedback load. From a view of feedback
reduction, the opportunistic feedback fair scheduler is considered
as an attractive choice among schedulers exploiting multiuser
diversity. In this paper, considering the statistical time-access
fairness index (STAFI) as a measure of short term fairness,
we study the short term fairness provided by the opportunistic
feedback fair scheduler. Numerical results display that the
threshold value of the scheduler greatly affects the properties
of its short term fairness.

Keywords-Opportunistic feedback fair scheduler; Short term
fairness; Statistical time-access fairness index

I. INTRODUCTION

Multiuser diversity [1] is a diversity existing between the
channel states of different users in wireless networks. Since
packet schedulers exploiting multiuser diversity have an ad-
vantage of increasing the information theoretic capacity of
the overall system, much attention has been paid to such
schedulers (see, e.g., [2], [3], [4], [5], [6], [7], [8] and
references therein). However, packet schedulers exploiting
multiuser diversity also have a disadvantage of consuming
the bandwidth for the feedback load, defined as the amount
of channel information that needs to be fed back from MSs
(mobile stations) to BS (base station). In addition, it is known
that there exists a tradeoff between the information theoretic
capacity and fairness achieved by schedulers exploiting mul-
tiuser diversity [9]. Therefore, when we consider a scheduler
exploiting multiuser diversity, we should take its feedback load
and fairness as well as performance gain into account.

To reduce the feedback load while still having the perfor-
mance gain, several schedulers have been proposed and stud-
ied. The one-bit feedback fair scheduler [10], [11], [12], [13]
is an example of such schedulers. Under the one-bit feedback
fair scheduling, the normalized received SNR (Signal-to-Noise
Ratio) values of MSs (instead of the received SNR values)
are considered. Each MS feeds back one-bit information to
BS, only when its normalized received SNR is greater than
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or equal to a predetermined threshold. By doing so, the one-
bit feedback fair scheduler can reduce the feedback load from
MSs to BS and achieve the ideal long term fairness, while
having considerable performance gain. However, the one-bit
feedback fair scheduler still has a difficulty for the feedback
load. The difficulty is that the feedback load of the one-bit
feedback fair scheduler linearly increases with the number
of MSs, although the performance gain for the capacity also
grows as the number of MSs becomes large [14]. This may
degrade the scalability of the one-bit feedback fair scheduler.
One way to overcome the difficulty against the scalability is
to introduce a random access-based feedback scheme. As a
scheduler with random access-based feedback scheme, Tang
and Heath [7] proposed the opportunistic feedback scheduler.
Under the opportunistic feedback scheduling, the feedback
resources are random access minislots. MSs transmit feedback
information with some probability in each minislot only when
their SNR values are greater than or equal to a predetermined
threshold. Contrary to the one-bit feedback fair scheduler,
the feedback load of the opportunistic feedback scheduler is
independent of the number of MSs.

The fairness of scheduler is classified into short term
fairness and long term fairness [15], [16]. While long term
fairness governs the long run performances such as long run
average throughput of individual MSs, short term fairness
greatly affects the packet level performances such as delay
and loss probability of individual MSs. Since the packet level
performances of individual MSs are basic measures of QoS,
it is important to examine the short term fairness of scheduler
in terms of QoS guarantees.

As a measure of short term fairness, the proportional
fairness index is usually considered in wireline networks. The
proportional fairness index characterizes the service discrep-
ancy in bits between two flows over any time interval during
which the two flows are continuously backlogged. However,
for the following two reasons, the proportional fairness index
is not suitable for wireless networks. First, the proportional
fairness index considers the hard deterministic guarantee, and
it does not take randomness inherent in the wireless channel
conditions into account. Second, the proportional fairness
index considers fairness of users’ throughputs rather than
channel access times, although users can transmit at different
rates depending on their current channel quality in wireless
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networks. Liu et al. [17] then consider modifications to the
proportional fairness index for short term fairness index in
wireless networks. By considering the service in time (instead
of the service in bits) and a statistical fairness guarantee
(instead of the hard deterministic fairness guarantee), they pro-
pose a statistical time-access fairness index (STAFI) defined
as

P

(∣∣∣∣α(i)(t1, t2)

φ(i)
− α(j)(t1, t2)

φ(j)

∣∣∣∣ ≥ x

)
≤ f (i,j)(x), (1)

where α(i)(t1, t2) denotes the service in time that flow i
receives during [t1, t2), φi denotes the assigned weight for
flow i and f (i,j)(x) is a probability distribution which may
depend on i and j.

In this paper, we focus on the short term fairness of the
opportunistic feedback fair scheduler. We study the STAFI of
the scheduler to investigate its short term fairness properties. In
particular, we consider the STAFI where the assigned weights
φi in (1) are all equal to one. Since the normalized SNR
processes of MSs are considered and the normalized SNRs of
MSs are i.i.d. (independent and identically distributed) under
the opportunistic feedback fair scheduling, the opportunistic
feedback fair scheduler provides an ideal long term fairness
property [5]. However, as far as the author’s best knowledge,
there is no study on the short term fairness properties of the
opportunistic feedback fair scheduler, although the packet level
performances of individual MSs are strongly affected by the
short term fairness.

The remainder of this paper is organized as follows. In
Section II, we describe a system model considered in this
paper. We assume that the wireless channel process for each
user is modeled by a discrete-time two-state Markov chain. We
analyze the STAFI of the opportunistic feedback fair scheduler
in Section III. We also develop a numerical method to calculate
the exact value of the STAFI by using the inverse discrete
FFT method [18]. Section IV provides numerical results to
investigate the properties of the short term fairness provided
by the opportunistic feedback fair scheduler. Conclusion is
drawn in Section V.

II. SYSTEM MODEL

In this paper, we consider a wireless network consisting
of a BS and K MSs. We suppose that the BS employs the
opportunistic feedback fair scheduler for downlink transmis-
sion from the BS to the MSs [7]. In this paper, considering
the STAFI as a measure of short term fairness, we study the
properties of short term fairness provided by the opportunistic
feedback fair scheduler for the downlink transmission.

We assume that the downlink channel of MS i (i =
1, . . . ,K) is described by a Rayleigh fading channel model.
Time axis is divided into frames of equal size Tf (sec) and
time index is given by t = 0, 1, 2, · · ·. The frame duration Tf is
considered to be the unit time in our model. Then, the received
SNR process {z(i)(t)} (t = 0, 1, . . .) of MS i (i = 1, . . . ,K)
is described as a discrete-time stochastic process. We assume

Random Access Minislots

Data transmission

Fig. 1. Uplink frame structure

that the received SNR processes of the K MSs are independent
with each other.

Without loss of generality, we consider that MS 1 and MS
2 are tagged users and all the other MSs are background
users for the STAFI. More specifically, we assume that for
i = 3, . . . ,K, the received SNR process {z(i)(t)} is a
stationary process. But we do not assume the stationarity
of {z(i)(t)} for i = 1, 2. When the received SNR process
{z(i)(t)} is stationary, z(i)(t) at time t is according to the
following exponential distribution:

P{z(i)(t) ≤ x} = 1− exp(−x/z̄(i)), (2)

where z̄(i) denotes the average received SNR of MS i and is
defined by z̄(i) = E[z(i)(t)].

A. Opportunistic feedback fair scheduler

Under the opportunistic feedback fair scheduling, the nor-
malized SNR processes of MSs are considered, where the nor-
malized SNR process is defined by the process {z(i)(t)/z̄(i)}
(i = 1, . . . ,K). To reduce the feedback load, each MS
quantizes or partitions the entire normalized SNR range into
two grades with threshold denoted by γ1. We assume that the
threshold γ1 is a priori determined. If z(i)(t)/z̄(i) < γ1, we
say that the wireless channel state of MS i is in state 0 at
time t. If z(i)(t)/z̄(i) ≥ γ1, we say that the wireless channel
state of MS i is in state 1 at time t. We assume that perfect
channel estimation is possible at each MS and each MS knows
its average SNR z̄(i) (i = 1, . . . ,K). Then MS i can determine
the grade of its channel to the BS with the knowledge of its
normalized SNR.

We suppose that the opportunistic feedback fair scheduler
is employed in a frequency-division-duplex (FDD) system. In
the FDD system, at the beginning of the downlink frame,
the BS broadcasts a message containing the information for
opportunistic feedback to all the MSs. N minislots in an
uplink frame for random access feedback follow the downlink
message as illustrated in Figure 1. We assume that the number
of minislots N is fixed.

The opportunistic feedback fair scheduler then operates as
follows:

• At every time t, MS i estimates its received normalized
SNR z(i)(t)/z̄(i) and examines if z(i)(t)/z̄(i) is greater
than or equal to the threshold γ1.

• If the normalized SNR of MS i z(i)(t)/z̄(i) (i =
1, . . . ,K) is greater than or equal to the threshold γ1
(i.e., if the wireless channel state of MS i is in state 1),
MS i attempts to transmit feedback information to the
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MS with a probability u in every minislot. We hereafter
call the probability u the feedback probability.

• Otherwise (i.e., if the wireless channel state of MS i is
in state 0), MS i does not feedback any information to
the BS in the random access minislots.

• The feedback information can be fed back to the BS
if and only if one MS attempts to transmit feedback
information in the minislot. Otherwise, either a collision
happens or there is no MS to feed back.

• If multiple MSs successfully feedback during the random
access period consisting of N minislots, the BS randomly
selects one of the successful MSs.

• If there is no successful feedback in all N minislots, the
BS randomly selects one MS among all the K MSs.

• The scheduling is performed frame-by-frame.
We assume that the random access attempts are independent
among MSs and also independent among random access
minislots.

B. Wireless channel model

In this subsection, we consider a wireless channel state pro-
cess of MS i (i = 1, . . . ,K). Let {s(i)(t)} (t = 0, 1, . . . ; i =
1, . . . ,K) denote the wireless channel state process of MS
i, where s(i)(t) = 1 if z(i)(t)/z̄(i) ≥ γ1 and s(i)(t) = 0
otherwise. We assume that the channel state process {s(i)(t)}
(t = 0, 1, . . . ; i = 1, . . . ,K) of MS i is well described by
a discrete-time 2-state Markov chain [15], [19]. We further
assume that for i = 3, . . . ,K, the Markov chain {s(i)(t)}
is stationary from the assumption of the stationarity of the
received SNR process {z(i)(t)} for i = 3, . . . ,K. On the
other hand, for i = 1, 2, we do not assume the stationarity
of {s(i)(t)}.

Let P = (pi,j) (i, j = 0, 1) denote the transition probability
matrix of the 2-state Markov chain. The transition probability
matrix P is determined as follows (for the detailed derivation
of the transition probabilities, see [19]). We first consider the
level crossing rate χ(γ) of the received normalized SNR at γ
given by [20]

χ(γ) =
√
2πγfd exp(−γ), (3)

where fd denotes the mobility-induced Doppler spread of MSs
and we assume that for all the MSs, the mobility-induced
Doppler spreads are identical.

For MS i (i = 3, . . . ,K), we next consider the station-
ary probability vector s = (s0, s1) of the 2-state discrete-
time Markov chain {s(i)(t)}. Note here that for the MSs
(i = 3, . . . ,K), the channel state processes have the same
stationary probability vector due to the normalization of the
received SNRs. From (2), the stationary probability vector is
given by

s0 = 1− e−γ1 , s1 = e−γ1 . (4)

The state transition probabilities are then determined by

p0,1 =
χ(γ1)Tf
s0

, p1,0 =
χ(γ1)Tf
s1

, (5)

p0,0 = 1− p0,1, p1,1 = 1− p1,0, (6)

where si (i = 0, 1) and χ(γ1) are given by (4) and (3),
respectively. (5) and (6) determine the transition probability
matrix P of the 2-state Markov chain, whose stationary
probability vector is given by (4).

III. ANALYSIS

In this section, we analyze the STAFI between MS 1 and
and MS 2, which are tagged users.

Let c(i)(t) (i = 1, . . . ,K; t = 0, 1, . . .) denote a random
variable representing the amount of service of MS i at time t,
i.e., c(i)(t) = 1 when the opportunistic feedback fair scheduler
selects MS i for downlink transmission at time t, and c(i)(t) =
0 otherwise. The amount service α(i)(t0t0 + n) for MS i in
[t0, t0 + n) is then expressed as

α(i)(t0, t0 + n) =

t0+n−1∑
t=t0

c(i)(t).

In this paper, we hereafter consider only the cases where
t0 = 0, because we focus on the transient properties of the
short term fairness of the scheduler. Let β(i,j)(n) (i, j =
1, . . . ,K;n = 0, 1, . . .) denote the difference between the
amount service for MS i and that for MS j in [t0, t0 + n).
β(i,j)(n) is given by

β(i,j)(n) = |α(i)(0, n)− α(j)(0, n)|.

We are now ready to provide an expression of the STAFI
of the scheduler. Let Gn(x) (n = 1, 2, . . .) denote the STAFI.
Gn(x) is defined by

Gn(x) = P(β(1,2)(n) ≥ x)

= P(|α(1)(0, n)− α(2)(0, n)| ≥ x).

We further define the probability mass function gn(x) (n =
1, 2, . . .) by

gn(x) = P(β(1,2)(n) = x) = P(|α(1)(0, n)−α(2)(0, n)| = x).

In what follows, we analyze the STAFI Gn(x). For this
purpose, we define some matrices and vectors. We first define
a (K − 1)× (K − 1) matrix R by

[R]i,j =

min(i,j)∑
k=max(0,i+j−K+2)

(
i

k

)
pk1,1p

i−k
1,0

·
(
K − 2− i

j − k

)
pj−k
0,1 p

K−2−i−j+k
0,0 , (7)

where [R]i,j (i, j = 0, . . . ,K−2) denotes the (i, j)th element
of R. Note that R is a transition probability matrix of the
Markov chain {r(t)} (t = 0, 1, . . .), where r(t) is defined
by r(t) =

∑K
k=3 I(s

(k)(t) = 1). Thus, [R]i,j denotes the
conditional probability that j MSs among the (K − 2) MSs
excluding MS 1 and MS 2 are in state 1 at time t given that i
MSs among the (K−2) MSs was in state 1 at time t−1. Let
r denote the stationary probability vector of R. The stationary
probability vector r is given by

[r]j =

(
K − 2

j

)
sK−2−j
0 sj1, (8)
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where [r]j (j = 0, . . . ,K − 2) denotes the jth element of r,
and s0 and s1 are given by (4). Note here that since we assume
that {s(i)(t)} is stationary for i = 3, . . . ,K, the stationary
probability vector r is also the initial state probability vector
of the Markov chain {s(i)(t)} for i = 3, . . . ,K.

We next define a 4(K − 1)× 4(K − 1) matrix Q by

Q = P ⊗ P ⊗R, (9)

where ⊗ denotes the Kronecker product, P is determined by
(5) and (6), and R is defined by (7). Note that the matrix Q is
a transition probability matrix for the Markov chains {s(i)(t)}
for i = 1, . . . ,K.

Let ψ(k, n, x) denote the probability that given that k MSs
is in state 1, the number of minislots is equal to n and the
feedback probability is equal to x, the k MSs fail to feed back.
For k = 0, . . . ,K−2, n = 1, 2, . . . and 0 ≤ x ≤ 1, ψ(k, n, x)
is given by

ψ(k, n, x) = [1− k(1− x)k−1x]n.

We then define a 4(K − 1)× 4(K − 1) diagonal matrix D(z)
by

D(z) = diag(d0,0(z),d0,1(z),d1,0(z),d1,1(z)), (10)

where di,j(z) (i, j = 0, 1) is a 1× (K − 1) vector given by

[d0,0(z)]k = ψ(k,N, u)
z + z−1 +K − 2

K
+1− ψ(k,N, u),

[d0,1(z)]k = ψ(k + 1, N, u)
z + z−1 +K − 2

K

+(1− ψ(k + 1, N, u))
z−1 + k

k + 1
,

[d1,0(z)]k = ψ(k + 1, N, u)
z + z−1 +K − 2

K

+(1− ψ(k + 1, N, u))
z + k

k + 1
,

[d1,1(z)]k = ψ(k + 2, N, u)
z + z−1 +K − 2

K

+(1− ψ(k + 2, N, u))
z + z−1 + k

k + 2
,

for k = 0, . . . ,K− 2. We further define 4(K− 1)× 4(K− 1)
matrix C(z) by

C(z) = D(z)Q, (11)

where D(z) and Q are defined by (10) and (9), respectively.
Finally, we define ηn(z) (n = 1, 2, . . .) by

ηn(z) = (r(1) ⊗ r(2) ⊗ r)C(z)ne,

where r(i) denotes the initial state probability vector of the
Markov chain {s(i)(t)} for i = 1, 2, respectively, r denotes
the initial state probability vector of the Markov chain for
MS i (i = 3, . . . ,K), which is given by (8), e denotes a

4(K − 1)× 1 vector whose elements are all equal to one, and
C(z) is defined by (11).

We are now ready to present the analysis of the STAFI
Gn(x). Note that ηn(z) can also be expressed in the power
series of z as ηn(z) =

∑n
l=−n clz

l, where cl (l = −n, . . . , n)
is a (unknown) real constant satisfying 0 ≤ cl ≤ 1 and∑n

l=−n cl = 1. Then the probability mass function gn(x) is
expressed as gn(x) = cx + c−x. Thus, if we determine the
unknown real constants {cl}nl=−n, we obtain the probability
mass function gn(x). The STAFI Gn(x) is then given by
Gn(x) =

∑n
l=x gn(l) = 1−

∑x−1
l=0 gn(l).

There are several possible methods to determine the un-
known real constants {cl}nl=−n. In this paper, we use the
inverse discrete FFT method [18] to determine them. Since
gn(x) has a finite support, i.e., gn(x) = 0 for x > n, we can
calculate the exact value of gn(x) by using the inverse discrete
FFT method.

For comparison, we consider a random scheduler which
randomly selects a MS among K MSs irrespective of their
received SNRs. For the STAFI of the random scheduler, we
define η̃n(z) (n = 1, 2, . . .) by

η̃n(z) =

(
z + z−1 +K − 2

K

)n

,

which corresponds to ηn(z) of the opportunistic feedback fair
scheduler. Similar to the case of the opportunistic feedback
fair scheduler, from η̃n(z), we can calculate the exact value
the STAFI G̃n(x) and the probability mass function g̃n(x) for
the random scheduler.

IV. NUMERICAL RESULTS

In this section, we provide numerical results to investigate
the properties of the STAFI of the opportunistic feedback
fair scheduler. Throughout numerical results provided in this
subsection, we set the parameters as fd = 10 Hz and Tf = 1
msec where we decided these parameter values according to
[15], [19]. In the numerical results provided in this paper, we
also set the initial state probability vectors r(1) and r(2) of
MS 1 and MS 2 to the stationary probability vector s.

First, we observe the effect of the threshold γ1 on the
STAFI Gn(x). Figure 2 displays the STAFI G256(x) of the
opportunistic feedback fair scheduler as a function of x. In
Figure 2, we set the number of MSs K, the number of
minislots N and the feedback probability u to 30, 5 and 0.80,
respectively. For comparison, Figure 2 also shows the STAFI
G256(x) of the random scheduler. In the figures, “OFF(x
dB)” means the opportunistic feedback fair scheduler whose
threshold γ1 is equal to x, and “RS” means the random
scheduler.

In Figure 2, we observe the following. For whole range
of x, the STAFIs G256(x) of the opportunistic feedback fair
schedulers are greater than the STAFI G256(x) of the random
scheduler. In other words, the short term fairness provided by
the opportunistic feedback fair schedulers is worse than that
provided by the random scheduler. This is due to the positive
correlation of the normalized SNR process {z(i)(t)/z̄(i)} in
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Fig. 2. Effect of γ1 on STAFI G256(x) (u = 0.80)
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Fig. 3. STAFI Gn(hn) as a function of h (γ1 = 4.00 dB)

time. We also see that for whole range of x, the OFF (2.00
dB) yields better short term fairness than the OFF (4.00 dB)
and the OFF (6.00dB). Comparing the OFF (4.00 dB) and
the OFF (6.00dB), we observe that for small x of G256(x),
the OFF (6.00 dB) provides better fairness than the OFF
(4.00 dB) However, the situation is converse for large x of
G256(x). Thus, the OFF (6.00 dB) can keep the probability of
moderate unfairness lower, but it can cause serious unfairness
with higher probability, compared to the OFF (4.00 dB). A
similar non-monotonous property about the threshold value
has been observed for the one-bit feedback fair scheduler, too
[12].

We next examine how the STAFI of the opportunistic
feedback fair scheduler changes as the increase of observation
period n. Figures 3 and 4 exhibit the STAFI Gn(hn) as a
function of h for n = 64, 128, 256, 512. In the figures, we
set the number of MSs K, the number of minislots N and
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Fig. 4. STAFI Gn(hn) as a function of h (γ1 = 2.00 dB)
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Fig. 5. Effect of number of minislots N on STAFI G256(x)

the feedback probability u to 30, 5, 0.8, respectively. We set
the threshold γ1 to 4.00 dB in Figure 3 and to 2.00 dB in
Figure 4. In Figures 3 and 4, we observe that the STAFI
Gn(hn) of the opportunistic feedback fair scheduler rapidly
decreases with increase of the observation period n for every
h. In other words, the STAFI of the opportunistic feedback fair
scheduler rapidly approaches to the ideal long term fairness
as the progress of time.

Next, we observe the effect of the number of minislots N
on the STAFI Gn(x). Figure 5 displays the STAFI G256(x)
of the opportunistic feedback fair scheduler as a function of
x. In Figure 5, we set the number of MSs K, the threshold γ1
and the feedback probability u to 30, 4.00 dB and 0.80, re-
spectively. In the figures, “OFF(N=x)” means the opportunistic
feedback fair scheduler where the number of minislots N is
equal to x. In Figure 5, we observe that with the increase
in the number of minislots N , the short term fairness of the
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Fig. 6. Effect of feedback probability u on STAFI G256(x)

opportunistic feedback fair schedulers becomes worse.
Finally, we observe the effect of the feedback probability u

on the STAFI Gn(x). Figure 6 displays the STAFI G256(x) of
the opportunistic feedback fair scheduler as a function of x. In
Figure 6, we set the number of MSs K, the threshold γ1 and
the number of minislots N to 30, 4.00 dB and 10, respectively.
In the figure, “OFF(u=x)” means the opportunistic feedback
fair scheduler where the feedback probability is equal to x.
In Figure 6, we observe that among the four opportunistic
feedback fair schedulers for u = 0.2, 0.4, 0.6, 0.8, the sched-
uler for u = 0.4 yields the worst short term fairness. When
the feedback probability u is small, the short term fairness of
the opportunistic feedback fair scheduler becomes worse with
the increase in the feedback probability u. However, if the
feedback probability is greater than a certain value, the short
term fairness becomes better with the increase in the feedback
probability.

V. CONCLUSION

In this paper, considering the STAFI as a measure of short
term fairness, we studied the short term fairness provided
by the opportunistic feedback fair scheduler. We developed
a numerical method to to calculate the exact value of the
STAFI by using the inverse discrete FFT method. In the
numerical results, we observed that the threshold γ1 strongly
affects the properties of the short term fairness provided by
the opportunistic feedback fair scheduler. The opportunistic
feedback fair scheduler with larger threshold γ1 can keep the
probability of moderate unfairness lower, but is can cause
serious unfairness with higher probability, compared to the
opportunistic feedback fair scheduler with smaller threshold.
The impacts of the number of minislots N and the feedback
probability u on the properties of short term fairness do not
seem to be so strong, compared to the effect of the threshold
γ1. We also observed that the STAFI of the opportunistic
feedback fair scheduler approaches to the ideal fairness in

a relatively short time period. However, if rigorous fairness
is required even in a relatively short time period, we should
carefully determine the threshold value γ1 by considering the
short term fairness of the scheduler as well as its information
theoretic capacity.
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