
EE-AOC: Energy Efficient Always-On-Connectivity Architecture

Sameh Gobriel, Christian Maciocco, Tsung-Yuan Charlie Tai, and Alexander W. Min
Circuits and Systems Research Lab

Intel Labs, Intel Corporation
{sameh.gobriel, christian.maciocco, charlie.tai, alexander.w.min}@intel.com

Abstract—Mobile platforms, such as laptops, tablets or
Ultrabooks, must feature always-on network connectivity to
make mobile applications (e.g., email, instant messaging,etc.)
visible and accessible to/from the Internet. Always-on connec-
tivity for mobile platforms can be achieved conventionallyby
periodically exchanging keep-alive messages with their coun-
terparts (i.e., servers). However, frequent message exchange
wastes energy because it requires the platform to operate
in (or transition to) the active state (e.g., S0) instead of
remaining in a long, uninterrupted low-power standby mode.
To address this problem, we present a novel and secure,
yet simple, architecture, called Energy Efficient Always-On-
Connectivity(EE-AOC), that allows mobile devices/applications
to be continuously visible and reachable from the network.EE-
AOC offloads the keep-alive message exchange process to the
network device from the host, thus, it does not need to wake up
the whole platform. Our experimental results implementingthe
prototype show that EE-AOC achieves always-on connectivity
and application reachability at about 85% lower power (i.e.
6.67X gain) than that needed to provide the same functionalities
in today’s platforms.

Keywords-Always-on-always-connected; connected standby;
energy efficient communications; wireless networks; sleepmode.

I. I NTRODUCTION

With the skyrocketing use of mobile services and appli-
cations in everyday lives, mobile devices, such as tablets,
laptops or Ultrabooks, are expected to provide always-
on network connectivity anytime anywhere. Unfortunately,
always-on network connectivity may incur significant power
consumption on mobile platforms because it requires the
devices to stay in (or transition to) the active operating state
(e.g., S0) [1]—that would require orders of magnitude more
energy than low-power standby state (e.g., S3)—to receive
and process keep-alive messages, even when the platform is
idle. The transition between the standby and active states is
very power intensive, and it can drastically shorten battery
life, which cannot be tolerated given today’s power-hungry
mobile devices. Therefore, there is a clear and urgent need
for architecture that achieves always-on connectivity for
mobile platforms with high energy efficiency.

A typical example of an always-on application ispush
email [2] delivery, made popular by the RIM/Blackberry
service, and is now offered by several web-based email
services, including Google’s Gmail. Users automatically
receive email messages as soon as they arrive at the server

rather than explicitly having to periodically poll the server
to check for new messages. Mobile devices, in this example
smart phones, stay in active state (although the display may
be switched off) and connected to the network in order to
be able to received pushed emails.

While power management features that leverage low-
power platform states—i.e., wake up a platform from low-
power states only when necessary—have been studied ex-
tensively, existing solutions suffer from practical limitations
and may not be suitable for mobile platforms. For example,
Wake-on-LAN [3] and its wireless equivalent Wake-on-
WLAN (WoWLAN) [4] have been proposed as energy
efficient means to wake up a platform from the standby
S3 state to the active S0 state. However, they are not
widely deployed or suitable for mobile devices because
they can operate only on a local area network. Moreover,
they require modifications to the infrastructure (e.g., access
points) to enable wider, Internet-related usages, making them
insufficient to fully realize always-on connectivity for mobile
platforms.

In this paper, we present a novel architecture, called
Energy Efficient Always-On-Connectivity (EE-AOC), which
enables the low-power operation of always-on and always-
connected usage models for mobile platforms.EE-AOC
allows mobile platforms to enter a low-power sleep state,
e.g., S3, without the risk of losing network connectivity,
thereby making them continuously reachable to/from the
application servers on the Internet.EE-AOC offloads the
processing of the protocols required for preserving network
connectivity to the wireless network communication device
(W-NIC) instead of processing them in the host.EE-AOC
has the following salient features:

• W-NIC in EE-AOC handles protocols necessary for
maintaining network connectivity, including link layer
key refresh, address resolution protocol (ARP) [5], and
the presence protocols for various application servers,
in a highly energy efficient manner, consuming slightly
more energy than the S3 standby state energy con-
sumption. However,EE-AOCdoes not require the W-
NIC to have full network stack processing capabilities,
hence reducing device cost and ensuring continuous
availability.

• W-NIC in EE-AOC has the ability to wake-up the
platform to the active state upon reception of a generic

110Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

network packet from any Internet device. This extends
the capability of WoWLAN, which only supports wake
patterns based on a magic packets (e.g., a broadcast
frame containing a specific number of repetitions of
the target device 48-bit MAC address) transmitted on a
local area network [4].

• EE-AOCallows a platform in sleep state to be woken
up securely by targeted Internet services, being highly
robust against Denial-of-Service (DoS) attacks, such as
an energy drain attacks caused by constant malicious
wakes.

We would like to note that although we focus on TCP-
based [6] presence protocols,EE-AOC is not restricted to
TCP and can be applied to any network protocols.

The main contributions of this paper can be summarized
as follows:

• We design an energy efficient architecture for mobile
platforms, calledEE-AOC, that maintains device con-
nectivity and application presence to the Internet by
delegating the keep-alive message protocol processing
to the W-NIC, while the platform remains in a low-
power standby state.

• We prototypeEE-AOCby modifying the firmware of
an off-the-shelf Intel WiFi NIC, to demonstrate its effi-
ciency for AOAC usages, e.g., IMAP [7] based pushed
emails, and compute continuum [8] usage models. Our
in-depth evaluation results show thatEE-AOC saves
about 85% of the overall platform energy.

The rest of the paper is organized as follows. In the
next section, we present a literature review related work.
Section III highlights the platform energy consumption to
maintain network connectivity. Section IV presents ourEE-
AOC framework and describes its architecture and algo-
rithms for offloading the network connectivity and presence
maintenance to the W-NIC. Section V evaluates the pro-
posedEE-AOCtechnology and presents the implementation
results. We conclude the paper in Section VI.

II. RELATED WORK

Several mechanisms have been proposed to reduce the
energy consumption of networked platforms, and various
regulatory organizations worldwide are now mandating
improvement in the energy consumption of platforms in
standby state [9]. Prior proposals can generally be grouped
into three categories: (i) those that reduce the active power
consumption of systems [10]–[12], (ii) those that reduce the
power consumption of the network infrastructure, routers
and switches [13]–[15], and (iii) those that opportunistically
put the devices to sleep [16]–[18].

EE-AOC falls into the third category and advocates for
localized energy-efficient optimization within the platform
to extend the sleeping state while maintaining network
connectivity, presence and reachability.EE-AOC uses the

platform W-NIC device for both wake-up and presence,
rather than using a network-wide implementation of a proxy
service [19]. As mentioned previously,EE-AOC is not
restricted to a magic packet as defined in WoWLAN, and it
supports any wake patterns securely negotiated between the
client and the server. In [16], network presence, reachability
and application support are realized through the use of an
offload processor and application program modifications. In
this paper, we show thatEE-AOCachieves this goal at a very
low energy level, without requiring additional hardware.EE-
AOC saves significant platform energy because it interrupts
the host platform only when application support is required.

III. PROBLEM STATEMENT

In this section, we analyze and quantify the potential
platform power implications when the platform low-power
state is continuously interrupted to exchange keep-alive
messages.

A. Mobile Platform Battery Lifetime

Current platform power management policies guide the
platform to enter a low-power sleep state (i.e., Sx) when
the platform becomes idle for a pre-defined period of time.
In general, the longer the system stays in sleep state un-
interrupted, the higher the energy gain is, because more
peripheral devices and system components can enter a
deeper low-power state for a longer period of time.

Recent work has shown that smart timing approaches for
Operating Systems (OS) can be used to increase the quiet
(idle) time for the OS by skipping timer tick interrupts when
the platform is idle or by adaptively changing the rate of
timer interrupts (e.g., [20]). This forms the basis for“tickless
OS”, in which the OS is moving away from scheduling
periodic clock interrupts every few milliseconds to a more
event-driven approach [21], [22], in which the OS is woken-
up to process an event being posted by the applications or
by the hardware on demand.

Figure 1. Platform Battery Life vs. S3 Time

111Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

Figure 1 illustrates the relationship between typical plat-
form battery life (in days) and sleep time, i.e., the period of
time the platform resides in the sleep state (i.e., S3) before
transitioning to the active state (i.e., S0). The concavity
of the curve indicates that the battery life is sensitive to
the sleep time (or the wakeup frequency). It shows that
the battery depletes much faster with increasing wakeup
frequency and becomes less sensitive to wakeup frequency
at longer sleep times (e.g.,> 25 min). The concavity of the
curve can indeed be attributed to the considerable energy
overhead caused by platform transitions from the sleep state
to the active state.

Figure 2. Power Waveform for S3-S0 Transition

Figure 2 shows the power measurement of a laptop when
it wakes up from S3 to S0. It indicates that the energy
consumed in waking up (i.e, the area under the curve from
16s to 32s) is much higher than the energy consumed when
the platform is in sleep state (which is the flat line near
0). The time duration in which the platform stays in the
active state before going back to the low-power state depends
on various factors, such as the OS scheduling policy, the
number of applications running, network connection time,
the amount of data exchanged, and network traffic charac-
teristics. Therefore, it is important to minimize the energy
overhead due to state transitions to achieve energy-efficient
always-on network connectivity.

B. AOAC and Wakeup Frequency

As we mentioned earlier, Always-On-Always-Connected
(AOAC) capabilities are crucial for mobile platforms to
receive “pushed” data (e.g., an IM message or a tweet
update, etc.) from an Internet server in real-time. AOAC
is also important for several usage models, in which remote
devices need to be discovered and paired together, and thus
must be reachable across the Internet (e.g., when a user
wants to use his smartphone at a hotel to watch a movie
he downloaded on his laptop left at home.)

As a result, connectivity between client platforms and
Internet servers must be maintained, which is typically
accomplished by exchanging “keep-alive” messages at fixed
time intervals. When a connection is established between
an AOAC application client (e.g., IM client) and AOAC
application servers (e.g., IM server) the connection is kept
alive until it expires after a timeout of “T” seconds. If no
data is exchanged over this connection for longer thanT
seconds, the connection is dropped, and the client becomes

unreachable by the server (i.e., the server marks the client
as offline). Once the connection is dropped, new data (e.g.,
new IM message sent to the client) will no longer be pushed
to the client. However, exchanging keep-alive packets is an
energy consuming task because it either requires the client
to be in the active state or to transition from a low-power
state to the active state.

A key parameter that determines the lifetime of an AOAC
device is the frequency of the keep-alive messages. The
maximum value ofT should be the minimum ofTS and
TN, whereTS is the timeout of the application server andTN

is the minimum timeout of any communication equipment
(e.g., Network Address Translation “NAT” box [23]) along
the route from the client to the server. These timeouts are
in place mainly because each connection has a state (e.g.,
a state may include source and destination addresses and
port numbers) that must be maintained. Due to limited
resources and/or improved responsiveness (e.g., faster offline
indication) the storage time of the connection state cannotbe
indefinite and will be dropped after a given timeout. There-
fore, AOAC devices must exchange keep-alive messages in
a timely manner in order to maintain network connectivity.

Figure 3. Skype IM Application Keep-Alive Message Period

However, it is practically infeasible to accurately predict
connection timeout values (i.e.,T) at the design stage
because of their inherent variability and the unpredictability
of the network path between client and server. For example,
from the application server side, a typical TCP default
session timeout is 2 hours. On the other hand, from the
client side, an IM offline indication is usually in the range
of 3-5 minutes. Figure 3 shows the network packet trace
of a Skype application, in which the client exchanges keep-
alive messages with the server approximately once every 60
seconds. Moreover, the network timeout has a wide range
of values. Default factory settings of an NAT device timeout
can typically range from as short as 15 seconds to as long
as one hour. Therefore, AOAC devices need to use a shorter
timeout (in the range of tens of seconds) for keep-alive
period, i.e.,T, which may have a significant power impact
as shown in Figure 1. In the next section, we elaborate on
how EE-AOCovercomes these practical challenges.

112Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

IV. EE-AOC TECHNOLOGY

EE-AOCachieves the functionality of exchanging keep-
alives with the Internet application server, and hence, main-
tains the connectivity, presence and reachability of an AOAC
device to the network at very low power. This is achieved
by offloading a series of “keep-alive” packets to the wireless
network interface card (W-NIC), which impersonates the
platform in a low-power state to other hosts and servers on
the network.

Furthermore,EE-AOC allows the NIC to maintain a
TCP keep-alive session to the server, modifying only the
NIC firmware, without changing the NIC hardware. More
importantly, by using TCP at the server side, the network
infrastructure pipes (e.g., network switches, network wire-
less access points, etc.) do not require changes and are not
even aware that the platform is not running in the active
mode.

A. Always-On-Always-Connected System Architecture

In an AOAC system, clients maintain connectivity with the
Internet server and keep the network pipe open with keep-
alive messages to the server. For example, when there is ap-
plication data to be pushed to the client, e.g., an IM message
or an email, the server will use the established client-server
session. Like most Internet traffic, the established session is
based on TCP protocol. Consequently, in order for the client
to receive live updates from a set of AOAC applications,
it has to maintain an alive session with the corresponding
server for each supported AOAC application. Obviously,
the overhead of connection maintenance increases with the
number of established connections.

When the client enters a low-power state between the
transmission of keep-alive messages, then from an energy-
efficient system design standpoint, it is crucial to maximize
the time the client spends in a low power state. Having
multiple ongoing AOAC connections, each with its own
periodicity, leads to unaligned timing in sending the keep-
alive messages, and as a result, the client is forced to exit
the low-power state more often.

To reduce unaligned keep-alive message periods, an
AOAC system uses a push server, as shown in Figure 4.
A typical example of such architecture is Apple Push
Notification Service (APNS) [24]. In this case, the client
maintains the connectivity and an alive session with only one
Internet push server. The server aggregates and proxies data
updates for other application servers. As shown in Figure 4,
when an update is available for the user, the application
server sends a notification to the push server, which then
pushes this notification to the client. Upon reception of the
notification, the client either (i) exits the low-power state to
an active state, so that it can receive the data update from
the push server or (ii) can establish a new connection to the
application server to retrieve the available update.

Figure 4. AOAC System Architecture

B. EE-AOC and Network Infrastructure

The client is connected to the Internet through a network
infrastructure (i.e., routers NAT boxes, proxy servers, etc.),
and each component of this infrastructure will keep a state
for the client as long as the connection is maintained. Soon
after the connection terminates, or if it is not maintained,
the network infrastructure will drop the client state to save
resources. Then, the client will need to re-initiate its state
in the network for new connections.

Figure 5. Keep-Alives Handshake through Network Infrastructure

An example of such a network state is firewall flow
state that does not block traffic as long as it is part of an
existing flow. As shown in Figure 5, when the client initiates
the connection, the firewall will check the connection state
to decide whether or not it is permissible or not. If the
connection is legitimate, then the firewall will keep the traffic
belonging to this flow going through and will not block
the traffic. When the firewall detects that the traffic has
stopped, e.g., with no TCP FIN (i.e., flow end message)
being detected, it will drop the state of this flow after a
short timeout, unless new packets belonging to this flow
are identified. In this case, the client must reset the cycle
and reinitiate the request to connect to the server. On the
other hand, most firewalls will block the traffic if the flow
state is dropped and new data or a new connection request
is sent form the Internet cloud server to the client because
most firewalls do not allow connections to be initiated from
outside.

Therefore, protocols for keep-alive messages must be able
to traverse the network infrastructure with default settings

113Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

(i.e., no special ports to be opened or no special changes to
the security policy). Furthermore, the keep-alive handshake
process has to be initiated by the client because a server-
initiated handshake will not work in the absence of an alive
session. In section IV-D, we highlight how ourEE-AOC
technology achieves the above-mentioned properties.

C. EE-AOC and Secure Wake

AOAC clients are always connected to the network,
waiting for data updates to be pushed by the push server.
This always-on connectivity, hence longer exposure to the
Internet, makes mobile clients vulnerable to attacks. An
attacker can launch a Denial-of-Service (DoS) attack on
AOAC clients by pushing frequent wake-up messages to
deplete their batteries faster (see Figure 1), thereby rendering
them unreachable to legitimate users.

Another possible attack scenario is that an attacker can
impersonate the client by sending fake keep-alive messages
to the server on behalf of the legitimate AOAC client. As a
result, the server can be misled to believe that the legitimate
client is still available and connected to the network. This
may cause a data integrity violation because the client’s
presence can no longer be trusted. Even worse, it can cause
data loss if the server forwards the client’s private data to
the attacker.

Therefore, the keep-alive message exchange must be
designed to provide integrity and authenticity of the data
exchanged between the client and server. In the next section,
we discuss the secure design and overall operations ofEE-
AOC.

D. EE-AOC Software Architecture

EE-AOCenables end-users’ software applications/services
to be connected to the network application server, while
the platform remains in a low-power standby mode. As we
mentioned earlier, these applications/services can maintain
connectivity by periodically sending keep-alive messagesto
the application servers. To achieve this goal in an energy-
efficient manner,EE-AOCdefines an interface and network
device functionality and capability as we describe next.

AOAC applications intending to maintain connectivity
and presence to the network pre-build a list of keep-alive
messages for the next few minutes, using each application’s
proprietary protocol, appropriate sequence number, and peri-
odicity information (if required). Then they are secured with
the application key/tokens, and handed over to the com-
munication device along with the appropriate information
about each message (e.g., required periodicity to maintain
presence, where should it be sent (to which address), etc.)
before the platform transitions into the standby state.

Upon transitioning to the low-power state, the commu-
nication device performs the following three operations:
(i) it recovers the keep-alive messages, (ii) it orders them
chronologically, and (iii) it sends these pre-build keep- alive

messages to their destinations network at the appropriate
time in order to maintain its presence to the application
servers. The outline of theEE-AOC architecture and the
offload algorithm is highlighted in Figure 6.

It should be noted that the idea of offloading TCP has
been proposed before. However, full TCP offload is very
complex and consumes a considerable amount of scarce
resources (e.g., processing, memory, etc.) from the network
interface card, to the extent that can hardly be supported by
client network card vendors. AlthoughEE-AOCdefines an
offload framework for the NIC, it is simple and requires no
modifications to hardware or additional resources from the
network card, as will be evident later.

Figure 6. EE-AOC Offload Architecture and Operation

As shown in Figure 6, the offload operations can be
divided into two phases. The first phase is to prepare a list of
keep-alive messages, and this is executed while the platform
is in the active mode; this phase runs inside the wake agent
as part of the OS or as an application. The second phase is
to exchange the packets with the Internet server in a timely
manner to keep the connection alive. This will run inside
the NIC firmware when the platform is in standby or a
low-power state, while the NIC is in the operating state.
We elaborate on the detailed steps of these two phases as
follows:

In the platform active state before going to standby:

1) The wake agent registers the platform with the Internet
server.

2) The wake agent exchanges keys with the server and
establishes a shared private key with the server. [Arrow
1 in Figure 6]

3) The wake agent prepares a train of payloads (multiple
payloads) that are encrypted with the shared private
key.

4) The wake agent formats the train of packets as http
post messages (destination port 80) on top of TCP.
Since HTTP/TCP connections are legitimate inside out
connections, no firewall will block the connection.

114Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

5) The wake agent adds TCP-SYN packet to the head of
the packet train, followed by an ACK packet. (needed
for the 3-way TCP session initiation handshake)

6) The wake agent transfers the train of packets to the
NIC driver. [Arrow 2 in Figure 6]

7) The wake agent downloads the wake filter to the NIC.
This is a pattern of a general packet that once the NIC
receives and matches, it should wake the platform up.

8) When the driver detects the OS event that indicates
that the platform is transitioning to standby it loads
the NIC firmware image with the train of packets.

In the standby/low power platform state:

1) The NIC blindly transmits the first packet it got from
the train of packets. As mentioned, the first packet is
TCP-SYN

2) The server replies to the TCP-SYN with a SYN-ACK
message that has its own sequence number that the
NIC firmware will extract from the packet and send
the Ack message (2nd packet in the train of packets)
accordingly. [Arrow 3 in Figure 6]

3) Once the TCP flow is initiated with the server, the
NIC sends the http-formated keep-alive packets down-
loaded from the wake agent.[Arrow 4 in Figure 6]

4) The server decrypts the keep-alive packet, and if the
decrypted packet is correct, then an ack message is
sent to the client. [Arrow 5 in Figure 6]

5) The NIC keeps a retransmission window of 1 packet
and waits for an ack of the packet from the server. If
the ack is not received, then the packet is retransmitted
for a maximum number of retries. Keeping a window
of 1 packet eliminates the need for a complete TCP
stack offload because the NIC firmware does not need
to handle the sizing of the TCP congestion window or
any optional flags in the TCP header.

6) If the maximum number of retries (or any other
exception, e.g., platform is out of network coverage)
the NIC wakes up the platform to S0 to handle this
case.

7) The NIC goes on the train of packet payloads it has in
its firmware, sending them one by one to the server.
This is done at a pre-determined frequency, typically
once every minute. [Arrow 6 in Figure 6]

8) The NIC keeps sending the keep-alive packets until the
whole list of packets has been exhausted, and in this
case, the NIC wakes up the platform to active state to
restart, where the wake agent re-exchanges keys and
prepare a new list of packets.

9) If while in standby there is new data to be sent
from the server to the client (outside in data), the
server simply sends the encrypted wake message as
the payload to a TCP message, formatted as an http
reply. [Arrow 8 in Figure 6]

10) The NIC decrypts the received packet, and if the wake

packet content matches the pre-defined wake filter,
then the NIC wakes the platform up to active state.

11) In active state, the application connects to the server
to download the new data received, and when this is
finished, the platform goes back to standby and the
keep alive cycle restarts.

V. PERFORMANCEEVALUATION

We implemented the system described in Figure 4. Specif-
ically, we used the Intel WiFi 5350 [25] NIC firmware
to offload the secure keep-alive messages. We had a wake
service running on the Internet server to aggregate and push
updates to the client when it was in a low-power state. We
used two exemplary applications, i.e., Facebook and email,
to demonstrate the benefits ofEE-AOC. We implemented the
wake server to periodically monitor the Facebook account
of the client and push updates posted on his Facebook wall
towards the client. Similarly for an email application, we
used push Internet Message Access Protocol (p-IMAP) [26]
to push new emails sent to the client as soon as they arrived
at the mail server. In our evaluation, we analyze the power
consumption and battery life of the platform when using
EE-AOC.

Figure 7. Normalized Power Consumption Comparison

Figure 7 shows the power consumption of a laptop in
three operating states. (1)Fully-on, that is when the platform
is switched on and stays in the active state (i.e., S0), but
no active workload is running. (2)Standby withEE-AOC
enabled, that is when the platform is in standby, butEE-AOC
is implemented in the NIC, which entails that the commu-
nication device is turned on and is exchanging the keep-
alive messages with the service to maintain connectivity and
presence. (3)Standby, that is when the platform is in sleep
state with no network connectivity. The power consumption
in Figure 7 is normalized to thefully-onstate. This is because
we believe that although the absolute power consumption in
each of these states will decrease from one generation to the
next, and will be different based on the platform itself, the
relative power consumption among these states will remain
relatively unchanged.

115Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

As shown in Figure 7, there is a significant difference
in power consumption between thefully-on state and the
standbystate. In standby, (a.k.a. suspend to RAM), most of
the platform components are turned off and the operating
system and application states are saved to the RAM which
remains powered. The platform in standby consumes only
about 10 % of the power consumed in thefully-on state,
confirming that standby is a very efficient power saving
mode for the client. On the other hand,EE-AOC requires
additional power for the network communication device,
which remains connected to the network, sending and receiv-
ing data packets. However, The NIC power consumption is
typically very small when compared to the whole platform.
Thus, the power consumption ofEE-AOCis slightly higher
(∼8 %) than that of standby mode power consumption, yet
significantly lower than lighting up the whole platform.

Figure 8. Battery Life vs. Sleep Time with EE-AOC

Figure 8 shows the battery life (in days) of an AOAC
client with respect to the frequency of exchanging the keep-
alive messages for the following three cases: (1) when the
platform is in the fully-on mode and exchanges the keep-
alive messages (denoted as S0 BL), (2) when the platform
enters the standby state between keep-alive messages (which
is the result discussed in Figure 1) and wakes up to S0 when
it is time to send a new keep-alive message (denoted as Wake
BL), and (3) when the keep-alive messages are offloaded to
the NIC with EE-AOC(denoted asEE-AOCBL).

Figure 8 shows that when the platform stays in the fully-
on mode, the battery life of the platform is very short
and will only last for less than two days. In this case,
the curve is almost constant and the battery life depends
less on the periodicity of the keep-alive messages because
the energy consumption for transmitting and receiving a
packet is negligible when compared the power consumption
of the whole platform. However, when the platform enters
the standby state between the keep-alive packets, energy
consumption is dominated by the overhead of entering into
and exiting from the sleep state, leading to the concave-

shaped curve of battery life. Unfortunately, withoutEE-
AOC, most applications/networks require the keep-alives to
be exchanged in the order of every tens of seconds, which
leads to a poor platform battery life.

On the other hand, whenEE-AOC is used, the network
communication device exchanges the keep-alive messages
on behalf of the platform. Most of the platform components
will stay in a low-power mode, while the NIC is turned on
to serve the keep-alive messages. The battery in such a case
lasts longer than 8 days, which is more than a 4X increase.
Moreover, similar to the fully-on case, the curve is almost
flat because the energy of sending and receiving packets
is small relative to the NIC power. This indicates that the
battery life withEE-AOCis almost constant, irrespective of
the frequency of the packets exchanged.

VI. CONCLUSION AND FUTURE WORK

Conventionally, platform power management policies are
designed to guide individual platform components or the
whole platform into low-power sleep states when the plat-
form becomes “idle”, with no active workloads. Individual
power management techniques differ in how deep the sleep
state is, the algorithms used to enter and exit the sleep states,
and the optimizations to extend these sleep states as long as
possible. In this paper, we proposed a novel, yet simple,
architecture, calledEE-AOC, that achieves energy-efficient
always-on network connectivity for mobile platforms.EE-
AOC is very different from existing solutions in a sense that
it does not require hardware modifications, while it provides
the core functionalities for Always-On-Always-Connected
(AOAC) usage models and application visibility to mobile
platforms, such as Ultrabooks, laptops and tablets.

As future work we’ll explore how the communication
device can help optimize the overall platform power when
the platform is in the active state (i.e., S0) either idle with
no active applications running or lightly loaded with various
tasks. As the platform’s energy in S0 is optimized with the
new generation of platforms, any help provided by peripheral
devices to optimize its energy consumption will benefit the
end-users with longer battery life

REFERENCES

[1] “ACPI advanced configuration and power interface specifica-
tions rev 4.0,” http://www.ecma-international.org/, November
2009, [Online; accessed 08-June-2012].

[2] Z. Duan, K. Gopalan, and Y. Dong, “Push vs. pull: Implica-
tions of protocol design on controlling unwanted traffic,” in
SRUTI, 2005, pp. 25–30.

[3] “Wake-On-Lan,” http://en.wikipedia.org/wiki/Wake-on-LAN,
[Online; accessed 08-June-2012].

[4] N. Mishra, K. Chebrolu, B. Raman, and A. Pathak, “Wake-
on-wlan,” in international conference on World Wide Web
(WWW), 2006, pp. 761–769.

116Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

[5] D. C. Plummer, “An Ethernet Address Resolution Protocol,”
http://tools.ietf.org/html/rfc826, November 1982, [Online; ac-
cessed 08-June-2012].

[6] “Transmission control protocol, protocol specification,” http:
//www.ietf.org/rfc/rfc793.txt, September 1981, [Online; ac-
cessed 08-June-2012].

[7] M. Crispin, “Internet message access protocol,” http://tools.
ietf.org/html/rfc3501, March 2003, [Online; accessed 08-
June-2012].

[8] J. Henrys, “The compute continuum: A wave of connected
devices,” http://www.internetviz-newsletters.com/eletra/mod
print view.cfm?this id=1940237&u=intel&showissue
date=F&issueid=000481299&lid=b11&uid=0, [Online;
accessed 08-June-2012].

[9] “ENERGY STAR: program requirements for computers,”
http://www.energystar.gov/ia/partners/proddevelopment/
revisions/downloads/computer/Version5.0ComputerSpec.
pdf, [Online; accessed 08-June-2012].

[10] Y. Agarwal, T. Pering, R. Want, and R. Gupta, “SwitchR:
Reducing System Power Consumption in Multi-Clients Multi
Radio Environment,” inIEEE International Symposium on
Wearable Computers (ISWC), 2008, pp. 99–102.

[11] J. Flinn and M. Satyanarayanan, “Managing Battery Lifetime
with Energy Aware Adaptation,” inACM Transactions on
Computer Systems, vol. 22, 2004, pp. 137–179.

[12] X. Li, R. Gupta, S. Adve, and Y. Zhou, “Cross Compo-
nent Energy Management: Joint Adaptation of Processor
and Memory,” inACM Transactions on Architure and Code
Optimization, vol. 4, no. 14, 2007.

[13] C. Gunaratne, K. Christensen, and B. Nordman, “Managing
Energy Consumption Costs in Desktop PCs and LAN Switch-
ing with Proxying, Split TCP Connections and Scaling of
Link Speed,” in International Journal of Network Manage-
ment, 2005, pp. 297–310.

[14] M. Gupta and S. Singh, “Greening of the Internet,” inACM
Sigcomm, 2003, pp. 19–26.

[15] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and
D. Wetherall, “Reducing Network Energy Consumption via
Sleeping and Rate Adaptation,” inUSENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2008,
pp. 323–336.

[16] Y. Agarawal, S. Hodges, R. Chandra, J. Scott, P. Bahl,
and R. Gupta, “Somniloquy: Augmenting Network Interfaces
to Reduce PC Energy Usage,” inUSENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2009,
pp. 365–380.

[17] E. Shih, P. Bahl, and M. Sinclair, “Wake on wireless: An event
driven energy saving strategy for battery operated devices,”
in IEEE International Conference on Mobile Computing and
Networking (MobiCom), 2002, pp. 160–171.

[18] J. Sorber, N. Banerjee, M. Corner, and S. Rollins, “Turducken:
Hierarchical Power Management for Mobile Devices,” in
IEEE International Conference on Mobile Systems, Applica-
tions and Services (MobiSys), 2005, pp. 261–274.

[19] “proxZZZy for sleeping hosts,”
http://www.ecma-international.org/publications/files/
ECMA-ST/ECMA-393.pdf, February 2010, [Online;
accessed 08-June-2012].

[20] C. Olsen and C. Narayanaswami, “PowerNap: An Efficient
Power Management Scheme for Mobile Devices,” inIEEE
Transactions on Mobile Computing, 2006, pp. 816–828.

[21] V. Yodaiken and M. Barabanov, “A Real-Time Linux,” in
Linux Journal, vol. 34, 1997.

[22] T. Gleixner and I. Molnar, “Dynamic Ticks,” http://lwn.net/
Articles/202319/, October 2006, [Online; accessed 08-June-
2012].

[23] K. Egevang, C. Communications, and P. Francis, “The IP
Network Address Translator (NAT),” http://www.ietf.org/rfc/
rfc1631.txt, [Online; accessed 08-June-2012].

[24] “Apple push notification service,” https://developer.
apple.com/library/mac/documentation/NetworkingInternet/
Conceptual/RemoteNotificationsPG/ApplePushService/
ApplePushService.html, [Online; accessed 08-June-2012].

[25] “Intel WiFi Link 5100 Series specifications,” www.intel.com,
2008.

[26] S. H. Maes, C. Kuang, R. Lima, R. Cromwell, E. Chiu,
J. Day, R. Ahad, W.-H. Jeong, and G. Rosell, “Push ex-
tensions to the imap protocol (P-IMAP),” http://tools.ietf.org/
html/draft-maes-lemonade-p-imap-12, March 2006, [Online;
accessed 08-June-2012].

117Copyright (c) IARIA, 2012. ISBN: 978-1-61208-203-5

ICWMC 2012 : The Eighth International Conference on Wireless and Mobile Communications

