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Abstract—This paper investigates several schemes to improve
the performance of the enhanced Physical Downlink Control
Channel (ePDCCH) in Long Term Evolution Advanced (LTE-
A) networks by means of Intercell Interference Coordination
(ICIC). Given the flexible design of the ePDCCH, based on
frequency division multiplexing, static ICIC techniques such
as Soft Frequency Reuse (SFR) can be applied and hence,
performance degradations at cell edges can be avoided in con-
trast to its antecesor, the Physical Downlink Control Channel
(PDCCH) in LTE. The study is focused in realistic/irregular
deployments, where the amount of intercell interference received
at different cells varies considerably making very difficult the
task of homogenizing the performance of the ePDCCH over the
coverage area. In order to address this problem, the proposed
multiobjective scheme adjusts the configuration of SFR at cell
level. The problem formulation includes several performance
metrics including spectral efficiency, cell edge performance, con-
sumption/amount of control resources and energy requirements.
The results reveal that the proposed scheme is able to (1) reduce
the average consumption of control resources and, (2) minimize
energy needs without penalizing the capacity of data channels.

Index Terms—Long Term Evolution Advanced; LTE-A; Soft
Frequency Reuse; SFR; Enhanced Physical Downlink Control
Channel; ePDCCH; Multiobjective Optimization

I. INTRODUCTION

According to the conclusions in [1], the mobile Internet
mass market becomes a reality. The findings of this survey in-
dicate that a tremendous number of Internet users do it through
mobile devices, a 69%, from which 61% use smartphones.
Mobile operators have answered to this challenge by investing
on promising technologies such as Long Term Evolution (LTE)
and its evolution, LTE-Advanced (LTE-A) [2]. Indeed, reliable
studies forecast 234 commercial LTE networks in 83 countries
by the end of 2013 [3].

In this context, it is expected that significant efforts are
being placed on LTE-A, the system called to fulfill the
expectations of users and industry in the medium term. LTE-
A features an interesting set of novelties with respect to LTE
such as wider bandwidths, enhanced downlink and uplink
transmission, relaying, support of heterogeneous networks and
Machine-Type communications among others [2]. However,
all these innovations require reliable means to convey an
increasing amount of control information. Thus, in 3GPP
Release 11, the need for enhanced capabilities for the Physical
Downlink Control Channel (PDCCH) was identified [4]. To be

precise, the design of the PDCCH in LTE is much less flexible
than the one in data channels. The structure and operation
of the PDCCH is described in [5], but basically, there do
not exist mechanisms to perform neither frequency domain
scheduling nor Intercell Interference Coordination (ICIC) over
the PDCCH and hence, low Signal to Interference plus Noise
Ratio (SINR) levels at cell edges, a well know issue in
Orthogonal Frequency Division Multiple Access (OFDMA),
degrade the performance of the PDCCH. Since the control
information carried by the PDCCH is highly sensitive, LTE
defines some mechanisms to guarantee the required reliability.
The most important one is based on Aggregation Levels (ALs),
which consists in grouping several Control Channel Elements
(CCEs), the basic control information unit, in order to transmit
the PDCCH using more robust transmission formats, i.e., lower
coding rates. However, higher ALs increase the consumption
of CCEs, thus reducing the capacity of the PDCCH. This
situation is critical in scenarios with a large number of users
using low-rate services such as VoIP as they tend to heavily
load the PDCCH. This issue has been analyzed in [6] and [7].

LTE-A provides alternative protection mechanisms for the
PDCCH: carrier aggregation plus cross carrier scheduling
[8] in the frequency domain and Almost Blank Subframes
(ABSs) [9] in the time domain. However, while cross carrier
scheduling is not an option for legacy users, ABSs severely
penalizes the capacity and hence, its usage has been reserved
for Heterogeneous Networks (HetNets). Thus, in the light of
these observations, a new enhanced PDCCH (ePDCCH) was
introduced in the Release 11 [10]. The ePDCCH employs
Frequency Division Multiplexing (FDM) and hence, it allows
frequency domain ICIC. In addition, it is compatible with
legacy carriers providing more signaling capacity and it can
operate in Multicast-Broadcast Single Frequency Network
(MBSFN) subframes [11].

However, given its recent appearance (Release 11, 2012),
few studies about the ePDCCH have been reported. Indeed,
most of the work done about the ePDCCH has been focused on
comparing the performance of its baseline design against the
conventional PDCCH. The study presented by Einhaus et al.
[12] demonstrates that the ePDCCH outperforms the PDCCH
in terms of achievable SINR levels mainly due to its inherent
capability to perform frequency domain resource allocation.
The work presented by Yi et al. [13] is concentrated on the
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design of the search space, i.e., how to allocate the enhanced
CCEs (eCCEs) [10], the basic control information unit defined
for the ePDCCH, in the physical resources devoted for such
purpose. Other related works, such as [8] and [9], as indicated
before, are just focused on the mechanisms introduced in the
Release 10 such as cross carrier scheduling and ABS. To the
best of the authors’ knowledge, no work has investigated static
ICIC mechanisms applied to the ePDCCH.

Thus, several ICIC strategies based on Soft Frequency
Reuse (SFR) [14] are investigated as alternatives to protect
the ePDCCH in the context of realistic/irregular macrocellular
deployments. Two different multiobjective optimization frame-
works are introduced and analyzed. The proposed schemes
adjust the operational parameters of SFR and the amount
of resources allocated to the ePDCCH in order to optimize
several performance metrics such as spectral efficiency, cell
edge performance, average consumption of eCCEs, amount
of control resources and energy requirements. Therefore, the
study presented herein is unique in the sense that it:
• Introduces several effective SFR-based optimization

frameworks for the ePDCCH. In fact, not only the
performance of this channel is studied, the work also
analyses the impact on the capacity of data channels. As
a consequence, interesting tradeoffs and design insights
are identified.

• Provides means, due to its multiobjective nature, to obtain
several network configurations instead of one single solu-
tion. This feature is important, because it allows mobile
operators to select different configurations according to
time-varying network conditions such as load and/or
traffic patterns.

The rest of the paper is organized as follows: the next
section introduces the system model and provides a brief
introduction to the structure of the ePDCCH and the operation
of SFR. Section III describes the multiobjective optimization
framework and proposed schemes. Finally, the paper is closed
with the analysis of numerical results and conclusions in
Sections IV and V, respectively.

II. BACKGROUND

A. System Model

This study considers the downlink of a LTE-based cellu-
lar network. The system bandwidth BSYS is composed
of NSC subcarriers grouped in NPRB Physical Resource
Blocks (PRBs). In LTE/LTE-A, a PRB is the minimum allo-
cable resource unit in frequency domain. It is composed of 12
contiguous subcarriers each of them spaced 15 kHz. In time
domain, the Transmission Time Interval (TTI) is 1 ms and it
contains 14 OFDM symbols. The first 3 symbols are devoted to
the PDCCH as it is illustrated in Figure 1. The total available
power per cell is PCell

max . The conclusions obtained in this
study are independent of the value of NPRB and hence, more
or less PRBs would just shift absolute values. The cellular
network, composed of L trisectorial cells, provides service to a
coverage area divided in A small area elements (pixels). Given

Fig. 1. Structure of the PDCCH and ePDCCH in LTE/LTE-A.

the small granularity used in this study, it is reasonable to
assume that within each pixel the average received power and
hence, average SINR are constant. Average SINR values S̄ are
computed based on the average Reference Signals Received
Power (RSRP). In LTE and LTE-A, cell-specific Reference
Signals (CS-RS) are embedded into the system bandwidth
to allow for channel estimation, synchronization and cell
selection procedures [10]. Due to their importance, CS-RSs are
the highest powered components within the downlink signal
and they are transmitted with constant power within each cell
as it is shown in Figure 1. Thus, the vector pRSTP ∈ RL
represents the Reference Signals Transmit Power (RSTP) of
each cell. The matrix RRSRP ∈ RA×L corresponds to the
average RSRP at each pixel with respect to each transmitter
and it is obtained according to:

RRSRP = G · diag(pRSTP) (1)

The matrix G ∈ RA×L contains the Long Term Channel
Gain (LTCG) of each pixel with respect to each transmitter.
LTCG includes propagation losses, large scale fading and
antenna gains. The pixel a (ath row in RRSRP) is served by
the cell l? from which it receives the highest RSRP, thus:

l? = argmax
l∈{1,2,··· ,L}

RRSRP(a, l) (2)

Therefore, the binary matrices S, Sc ∈ {0, 1}A×L indicate the
coverage of each cell. If a is served by l?, then S(a, l?) = 1
and the rest of the ath row is 0. Sc is the binary complement
of S. It is assumed, without loss of generality, that the power
allocated to RSs is the same for all cells and hence, the cell
coverage pattern depends on local propagation conditions.

B. Description of the ePDCCH

As it was indicated previously, in order to allow frequency
domain ICIC, the ePDCCH is based on FDM as it is illustrated
in Figure 1. Note that additional Demodulation Reference
Signals (DM-RS) are inserted within the ePDCCH to allow
for user-specific beamforming and spatial diversity. Thus, each
serving cell can configure a User Equiment (UE) with one
or more ePDCCH PRB sets, i.e., a set of contiguous PRBs
devoted to allocate the ePDCCH. This user-specific allocation
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is transmitted to UE by means of higher layers signaling.
The exact position and amount of resources devoted to the
ePDCCH can be changed dynamically and it depends on
aspects such as system bandwidth, required control capacity
and location of the ePDCCH in neighbor cells. Details about
the resource allocation control mechanism for the ePDCCH in
LTE-A, i.e., how to localize and index the eCCEs within the
PRBs carrying the ePDCCH, can be found in [10].

The information transmitted over the ePDCCH includes
downlink (and uplink) scheduling grants, power control
commands and data required to decode and demodulate
OFDM symbols in the downlink (encode and modulate in
the uplink) [10]. Given the importance of such information,
a target Block Error Rate (BLER) of 1% is pursued for the
ePDCCH. Therefore, different ALs in which one or more
eCCEs can be grouped have been defined. In this manner,
several coding rates provide the required reliability. For a
given UE, the selection of the appropriate AL depends on
the reported SINR for the subband in which its ePDCCH is
allocated. Thus, a user i is assigned with the AL x if its
SINR in the subband carrying the ePDCCH is greater than the
target SINR of that AL for a BLER of 1% ST

x . In this study,
the focus is precisely on improving the radio quality (SINR)
of the ePDCCH by means of SFR, a static ICIC technique
described in the next subsection. Other degrees of freedom
to enhance the performance of the ePDCCH are dynamic
control resource allocation schemes and efficient design of
users’ search space; examples of these approaches include [8]
and [13], respectively.

C. Soft Frequency Reuse

Broadly speaking, the main goal of any ICIC strategy is to
enhance the radio channel quality of cell edge users, a well
known issue in OFDMA-based cellular technologies such as
LTE/LTE-A [15]. As such, SFR accomplishes this target by
classifying users in Exteriors (E) or Interiors (I) according to
their average channel quality (based on CS-RSs and expressed
in terms of SINR) and then, applying different power levels
to each group in order to reduce the amount of Intercell
Interference (ICI) received by cell edge users, thus increasing
their SINR. The operation of SFR is illustrated in Figure 2. In
order to accomplish such target, a classification threshold STH
must be defined either globally in the network or locally at
each cell. This figure has a great impact on the performance
of SFR (see [16] and [17]) as it determines the amount of users
in each class. Similarly, the bandwidth and power allocated to
each group is controlled by means of the parameters β and α
respectively. Although SFR proved its effectiveness as an ICIC
technique in the context of OFDMA technologies ([18] and
[19] are representative examples) its usage was mainly focused
on data channels due to the rigid structure of the PDCCH
(time-multiplexed). However, as it was introduced previously,
the flexible design (based on FDM) of the ePDCCH in LTE-A
opens new possibilities from the perspective of ICIC; SFR is
certainly an interesting option that is investigated in this paper.

Fig. 2. Operational principle of SFR.

III. RESEARCH FRAMEWORK

A. Multiobjective Problem Formulation

This work investigates the advantages of applying SFR to
control channels in LTE-A. However, it is well known that the
enhancements in terms of cell edge performance achieved by
ICIC techniques are usually obtained at expenses of spectral
efficiency losses [16]. For this reason, it is desirable to have
a complete picture of the tradeoff existing among conflicting
criteria such as spectral efficiency, cell edge performance, en-
ergy consumption, etc. Moreover, the problem studied herein
adds another interesting perspective: the impact of allocating
resources (normally employed for data) to control channels on
the overall system performance. Therefore, in order to provide
such visibility, the performance assessment is based on the
joint optimization of the following metrics:

1) Maximization of the average cell capacity (f1 [Mbps]):
A metric proportional to the system spectral efficiency.

2) Maximization of the capacity of the worst 5% of the
coverage area (f2 [Mbps]): This indicator indicates the
capacity associated to cell edge areas and hence, it is a
measure of cell edge performance.

3) Minimization of the average eCCE consumption
(f3 [eCCE]): This metric reflects the impact of ICI on
the radio quality associated to the ePDCCH. It indicates
the average consumption of eCCEs per cell.

4) Minimization of the worst eCCE consumption
(f4 [eCCE]): It corresponds to the average eCCE con-
sumption in the worst cell of the system, i.e., the most
interfered cell.

5) Maximization of ePDCCH resources (f5 [PRB]): This
metric quantifies how many resources are devoted to the
ePDCCH. Thus, the maximization of this metric implies
more capacity for the control channels. However, it is
worth saying that this objetive is in conflict with the
capacity associated to data channels f1.

6) Minimization of the normalized energy consumption
(f6 [·]): Indicates the energy consumption in the system.

Thus, in order to achieve simultaneous optimization of the pre-
vious conflicting objectives, the problem under consideration,
i.e., optimization of SFR for the ePDCCH, has been addressed
as a multiobjective optimization task. Such problem has been
formulated as follows:

minimize f(x)

subject to: x(l) = xl ∈
[
xlmin, x

l
max

]
∀ l (3)

f(x) = [−f1(x) − f2(x) f3(x) f4(x) − f5(x) f6(x) ] (4)
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Fig. 3. SFR-based optimization models.

The vectors x and f contain the optimization (design) variables
and objective function values respectively. The parameters xlmin
and xlmax are the bounds of the lth design variable. Thus, in
order to provide a flexible framework, the optimization of
these performance indicators is done by tuning the operational
parameters of SFR: α, and STH (see Figure 2). Two diffe-
rent optimization models are proposed: Partially Optimized
SFR (POS) and Fully Optimized SFR (FOS). Both models are
described in the following points:

1) Partially Optimized SFR (POS): In this scheme, there
are L local design variables (classification thresholds)
optimized at cell level plus 2 additional network-wide
design variables (βc and α) that are applied globally in
the network, i.e., the same value for all cells. The reason
for selecting classification threshold SiTH as local design
variables is twofold: first, the performance of SFR is
highly sensitive to this parameter with the advantage that
varying this parameter locally has no effect on neighbor
cells (for a common value of α) and, second, its usage
was demonstrated to be effective in SFR optimization for
realistic/irregular deployments [20]. In [20], a multiob-
jective approach is also employed; however it is focussed
exclusively on data channels. The parameters βc and α
determine how many resources are devoted to the ePD-
CCH and the power ratio between exterior and interior
users respectively. As it can be seen in Figure 3, the
resources allocated to the ePDCCH (controlled by βc)
are distributed between the bandwidth portions of each
class of user (E and I). The bandwidth sharing coeficient
β is kept as an input and its value is set to the maximum
avoiding overlapping between cell edge subbands, thus
β = 1/3. Thus, the optimization framework employed
by this model corresponds to the following mapping:
x ∈ RL+2 → f ∈ R6. The design target of this scheme is
achieving a competitive optimization level while keeping
the computational complexity as low as possible; that
was the reason why in this model α is defined as a
network-wide design variable.

2) Fully Optimized SFR (FOS): This scheme is similar
to the previous scheme with the only difference that the
power ratio α is optimized locally at each cell in order to
attain a higher optimization level although at expense of

Fig. 3. SFR-based optimization models.

Two different optimization models are proposed: Partially
Optimized SFR (POS) and Fully Optimized SFR (FOS). Both
models are described in the following points.

1) Partially Optimized SFR (POS): In this scheme, there
are L local design variables (classification thresholds)
optimized at cell level plus 2 additional network-wide
design variables (βc and α) that are applied globally in
the network, i.e., the same value for all cells. The reason
for selecting classification threshold Si

TH as local design
variables is twofold: first, the performance of SFR is
highly sensitive to this parameter with the advantage that
varying this parameter locally has no effect on neighbor
cells (for a common value of α) and, second, its usage
was demonstrated to be effective in SFR optimization for
realistic/irregular deployments [19]. In [19], a multiob-
jective approach is also employed; however it is focussed
exclusively on data channels. The parameters βc and α
determine how much resources are devoted to the ePD-
CCH and the power ratio between exterior and interior
users respectively. As it can be seen in Figure 3, the
resources allocated to the ePDCCH (controlled by βc)
are distributed between the bandwidth portions of each
class of user (E and I). The bandwidth sharing coeficient
β is kept as an input and its value is set to the maximum
avoiding overlapping between cell edge subbands, thus
β = 1/3. Thus, the optimization framework employed
by this model corresponds to the following mapping:
x ∈ RL+2 → f ∈ R6. The design target of these
scheme is achieving a competitive optimization level
while keeping the computational complexity as low as
possible; that was the reason why in this model α is
defined as a network-wide design variable.

2) Fully Optimized SFR (FOS): These scheme is similar
to the previous scheme with the only difference that the
power ratio α is optimized locally at each cell in order to
attain a higher optimization level although at expense of
additional computational cost. This model corresponds
to the following mapping: x ∈ R(2·L)+1 → f ∈ R6

B. Evaluation of Objective Functions

Objective functions are evaluated according to the pseudo-
code shown in Function ObjFunc(), for which a prelimi-
nary set of computations (Function PreliminaryComp())

Function PreliminaryComp(·)
input : G, S, Sc, Ψ′

j , η, vϕ, pRSTP

output: Gj ,Sj ,S
c
j ,Ψ

′
j

// STEP 1: Average SINR (based on CS-RS);
1 Ψ′ = [(S⊙G) · pRSTP ]⊘ [ [(Sc ⊙G) · pRSTP]⊕ η ];

// STEP 2: Azimuth classification;
2 t←AzimuthClass(vϕ,S);

// STEP 3: Segmentation;
3 for each j ∈ J do
4 {Gj ,Sj ,S

c
j ,Ψ

′
j} ←Segmentation(t, j,G,S,Sc,Ψ′);

5 end

need to be performed once initially. Both pseudo-codes are
explained in the following points. Note that the optimization
model POS is indeed a particular case of the scheme FOS
when α1 = α2 = · · · = αL = α. Thus, the process of
evaluating the objective function values is decribed for the
most general case, i.e., the model FOS.

• PreliminaryComp(): The first step (line 1) corres-
ponds to the computation of average SINR values based
on RSRP. These figures are used to classify the pixels as
E or I. Note that ⊙, ⊘ and ⊕ indicate Hadamard (point-
wise) operations and η corresponds to the noise power.
Then, Function AzimuthClass()classifies cells accor-
ding to their azimth ϕ (stored in vϕ ∈ RL) as follows:

j =

{
0 0o ≤ ϕ < 120o

1 120o ≤ ϕ < 240o

2 240o ≤ ϕ < 360o
(5)

Pixels are also classified according to the type of serving
cell (see Equation 2). Thus, cells and pixels belong to one
of the sets Aj with j ∈ J = {0, 1, 2}. This classification
is stored in the vector t ∈ NA where each element
(representing one pixel) indicates the type of serving cell
it belongs to. Next, Function Segmentation()(line 4)
pulls out from the matrices G, S, Sc and Ψ′ the rows
whose corresponding value in the vector t is equal to
j, ∀j ∈ J . In other words, once instructions 3-5 are
executed, each one of these matrices is segmented in |J |
submatrices (Sj , Sc

j , Gj and Ψ′
j) each of them having L

columns but a different number of rows and so:

Sj , Sc
j , Gj , Ψ

′
j ∈ R|Aj |×L ∀j ∈ J

• ObjFunc(): Once Function PreliminaryComp()is
executed, and having fixed Gj ,Sj ,S

c
j ,Ψ

′
j ∀j ∈ J , the

vector f (objective function values) depends exclusively
on x, a potential solution or SFR configuration. First,
Function Class()(line 5) calculates the binary matrices
Cj ∈ R|Aj |×2 ∀j ∈ J indicating the class (E or I) to
which each pixel belongs to. The value ‘1’ in column 0
or 1 indicates the pixel belongs to E or I respectively.
Next, Function RelCov()(line 7) computes the matrix
Φ ∈ R2×L. While the columns of Φ correspond to cells,
the rows 0 and 1 are the inverse of the number of pixels

Fig. 4. Preliminary computations required for evaluating the objective
functions: fi, i = 1, 2, · · · , 6.

additional computational cost. This model corresponds
to the following mapping: x ∈ R(2·L)+1 → f ∈ R6

B. Evaluation of Objective Functions

In order to evaluate the objective functions, a preliminary set
of computations need to be performed as indicated in Figure 4.
Therefore, the objective functions are evaluated by means of
the pseudo-code shown in Figure 5. Both pseudo-codes are
explained in the following points. Note that the optimization
model POS is indeed a particular case of the scheme FOS,
when α1 = α2 = · · · = αL = α. Thus, the process of
evaluating the objective function values is decribed for the
most general case, i.e., the model FOS.
• PreliminaryComp(): The first step (line 1) corres-

ponds to the computation of average SINR values based
on RSRP. These figures are used to classify the pixels as
E or I. Note that �, � and ⊕ indicate Hadamard (point-
wise) operations and η corresponds to the noise power.
Then, Function AzimuthClass()classifies cells accor-
ding to their azimth ϕ (stored in vϕ ∈ RL) as follows:

j =

{
0 0o ≤ ϕ < 120o

1 120o ≤ ϕ < 240o

2 240o ≤ ϕ < 360o
(5)

Pixels are also classified according to the type of serving
cell (see (2)). Thus, cells and pixels belong to one of
the sets Aj with j ∈ J = {0, 1, 2}. This classification
is stored in the vector t ∈ NA, where each element
(representing one pixel) indicates the type of serving cell
it belongs to. Next, Function Segmentation()(line 4)
pulls out from the matrices G, S, Sc and Ψ′ the rows
whose corresponding value in the vector t is equal to
j, ∀j ∈ J . In other words, once instructions 3-5 are
executed, each one of these matrices is segmented in |J |
submatrices (Sj , Sc

j , Gj and Ψ′j) each of them having L
columns, but a different number of rows and so:

Sj , Sc
j , Gj , Ψ′j ∈ R|Aj |×L ∀j ∈ J

• ObjFunc(): Once Function PreliminaryComp()is
executed, and having fixed Gj ,Sj ,S

c
j ,Ψ

′
j ∀j ∈ J , the
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Function ObjFunc(x)

input : x, Gj , Sj , S
c
j , Ψ

′
j ,

output: f

// Classification thresholds;
1 sTH ← x(1 : L);
// ePDCCH bandwidth;

2 βc ← x(L+ 1);

// Power ratios: vα(l) = αl;
3 vα ← x(L+ 2 : 2 · L+ 1);

// Classification of pixels: E or I;
4 for each j ∈ J do
5 Cj ←Class(Sj , sTH,Ψ

′
j);

6 end
// Relative coverage per cell;

7 Φ←RelCov(S1, . . . ,S|J |,C1, . . . ,C|J |);

// Power matrices;

8 Pser =

[
Pmax Pmax · · · Pmax

α1Pmax α2Pmax · · · αLPmax

]T

;

9 for each s = 0 : ((L/3)− 1) do

10 Pbase
int (s) =




Pmax α(3s)Pmax α(3s)Pmax
α(3s)Pmax α(3s)Pmax Pmax

α(3s+1)Pmax Pmax α(3s+1)Pmax
Pmax α(3s+1)Pmax α(3s+1)Pmax

α(3s+2)Pmax α(3s+2)Pmax Pmax
α(3s+2)Pmax Pmax α(3s+2)Pmax




T

;

11 end
12 Pint =

[
Pbase

int (0)T Pbase
int (1)T · · · Pbase

int ((L/3)− 1)T
]T

;

// Bandwidth matrix;
13 B← BSYS · [ (1/3− (1/3 · βc)) ((2/3)− (2/3 · βc)) ];

// Reset accumulators;
14 f1 ← 0, f2 ← 0, r̂← [ ];

// Resize pγ (pointers to per-cell SINR values);
15 Resize(pγ , (2 · L));

// For each group of pixels (for each j ∈ J );
16 for each j ∈ J do
17 P̃int ← Pint( : , 2j : 2j + 1 );
18 ∆j ←

[
[(Sj ⊙Gj) ·Pser ]⊘

[ [
(Sc

j ⊙Gj) · P̃int

]
⊕ η

]]
;

19 UpdatePerCellSINR(pγ ,∆j);
20 Ψj ← ∆j ⊙Cj ;
21 Λj ←LinkPer(Ψj);
22 f1 ← f1 +

[
B ·

[
(ΛT

j · Sj)⊙ Φ
]]
· 1;

23 r←
[[
Sj · (ΦT · diag(B))

]
⊙ Λj

]
· 1;

24 r̂← [ r̂ rT ];
25 end
26 f2 ← CapPerc(r̂);
27 f5 ← βc ·NPRB;
28 f6 ← 1− ((2/3) · (1− α));

// For each cell l;
29 for each l = 1 : L do
30 fE ←CDF(pγ(2 · l− 1))); fI ←CDF(pγ((2 · l) + 1));
31 p0

E ← (1− fE(S
T
0)); p

1
E ← (fE(S

T
0)− fE(S

T
1));

32 p2
E ← (fE(S

T
1)− fE(S

T
2)); p

3
E ← fE(S

T
2);

33 p0
I ← (1− fI(S

T
0)); p

1
I ← (fI(S

T
0)− fI(S

T
1));

34 p2
I ← (fI(S

T
1)− fI(S

T
2)); p

3
I ← fI(S

T
2);

35 Γl
E ← (p0

E · AL0) + (p1
E · AL1) + (p2

E · AL2) + (p3
E · AL3);

36 Γl
I ← (p0

I · AL0) + (p1
I · AL1) + (p2

I · AL2) + (p3
I · AL3);

37 µE ← (1/Φ(0, l)); µI ← (1/Φ(1, l));
38 Γ(l)←

[
(µE/(µE + µI)) · Γl

E
]
+

[
(µI/(µE + µI)) · Γl

I
]

;
39 end
40 f3 ← mean(Γ);
41 f4 ← max(Γ);

42 f ← [ −f1/L − f2 f3 f4 − f5 f6 ];

Function ObjFunc(x)

input : x, Gj , Sj , S
c
j , Ψ

′
j ,

output: f

// Classification thresholds;
1 sTH ← x(1 : L);
// ePDCCH bandwidth;

2 βc ← x(L+ 1);

// Power ratios: vα(l) = αl;
3 vα ← x(L+ 2 : 2 · L+ 1);

// Classification of pixels: E or I;
4 for each j ∈ J do
5 Cj ←Class(Sj , sTH,Ψ

′
j);

6 end
// Relative coverage per cell;

7 Φ←RelCov(S1, . . . ,S|J |,C1, . . . ,C|J |);

// Power matrices;

8 Pser =

[
Pmax Pmax · · · Pmax

α1Pmax α2Pmax · · · αLPmax

]T

;

9 for each s = 0 : ((L/3)− 1) do

10 Pbase
int (s) =




Pmax α(3s)Pmax α(3s)Pmax
α(3s)Pmax α(3s)Pmax Pmax

α(3s+1)Pmax Pmax α(3s+1)Pmax
Pmax α(3s+1)Pmax α(3s+1)Pmax

α(3s+2)Pmax α(3s+2)Pmax Pmax
α(3s+2)Pmax Pmax α(3s+2)Pmax




T

;

11 end
12 Pint =

[
Pbase

int (0)T Pbase
int (1)T · · · Pbase

int ((L/3)− 1)T
]T

;

// Bandwidth matrix;
13 B← BSYS · [ (1/3− (1/3 · βc)) ((1− 1/3)− (2/3 · βc)) ];

// Reset accumulators;
14 f1 ← 0, f2 ← 0, r̂← [ ],;

// Vectors of pointers to cell SINR statistics;
15 Resize(S, (2 · L));

// For each group of pixels (for each j ∈ J );
16 for each j ∈ J do
17 P̃int ← Pint( : , 2j : 2j + 1 );
18 ∆j ←

[
[(Sj ⊙Gj) ·Pser ]⊘

[ [
(Sc

j ⊙Gj) · P̃int

]
⊕ η

]]
;

19 UpdatePerCellSINR(S,∆j);
20 Ψj ← ∆j ⊙Cj ;
21 Λj ←LinkPer(Ψj);
22 f1 ← f1 +

[
B ·

[
(ΛT

j · Sj)⊙ Φ
]]
· 1;

23 r←
[[
Sj · (ΦT · diag(B))

]
⊙ Λj

]
· 1;

24 r̂← [ r̂ rT ];
25 end
26 f2 ← CapPerc(r̂);
27 f5 ← βc ·NPRB;
28 f6 ← 1− ((2/3) · (1− α));

// For each cell l;
29 for each l = 1 : L do
30 fE ←CDF(S(2 · l− 1))); fI ←CDF(S((2 · l) + 1));
31 p0

E ← (1− fE(S
T
0)); p

1
E ← (fE(S

T
0)− fE(S

T
1));

32 p2
E ← (fE(S

T
1)− fE(S

T
2)); p

3
E ← fE(S

T
2);

33 p0
I ← (1− fI(S

T
0)); p

1
I ← (fI(S

T
0)− fI(S

T
1));

34 p2
I ← (fI(S

T
1)− fI(S

T
2)); p

3
I ← fI(S

T
2);

35 Γl
E ← (p0

E · AL0) + (p1
E · AL1) + (p2

E · AL2) + (p3
E · AL3);

36 Γl
I ← (p0

I · AL0) + (p1
I · AL1) + (p2

I · AL2) + (p3
I · AL3);

37 µE ← (1/Φ(0, l)); µI ← (1/Φ(1, l));
38 Γ(l)←

[
(µE/(µE + µI)) · Γl

E
]
+

[
(µI/(µE + µI)) · Γl

I
]

;
39 end
40 f3 ← mean(Γ);
41 f4 ← max(Γ);

42 f ← [ −f1/L − f2 f3 f4 − f5 f6 ];

Fig. 5. Pseudo code corresponding to the evaluation of the objective functions
considered in this study.

vector f (objective function values) depends exclusively
on x, a potential solution or SFR configuration. First,
Function Class()(line 5) calculates the binary matrices

Fig. 5. Pseudo code corresponding to the evaluation of the objective functions
considered in this study.

vector f (objective function values) depends exclusively
on x, a potential solution or SFR configuration. First,
Function Class()(line 5) calculates the binary matrices

Cj ∈ R|Aj |×2 ∀j ∈ J indicating the class (E or I) to
which each pixel belongs to. The value ‘1’ in column 0
or 1 indicates the pixel belongs to E or I respectively.
Next, Function RelCov()(line 7) computes the matrix
Φ ∈ R2×L. While the columns of Φ correspond to cells,
the rows 0 and 1 are the inverse of the number of pixels
classified as E and I (at each cell) respectively. As SFR
assigns specific portions of the system bandwidth to each
group of pixels (E and I), Φ is required to guarantee
bandwidth proportionality and hence, calculate true ave-
rage values. Instructions from line 8 to 12 create the
matrices corresponding to the particular power allocation
specified by x. In line 13, the bandwidth allocated to each
class of users is calculated as a function of βc. In line 15,
a vector of 2·L pointers is created. They point to vectors
storing the SINR distribution of each class (E and I) at
each cell. The loop comprising the lines 16 to 25 deter-
mines the capacity in bps associated to each pixel; once
this loop is executed, the vector r̂ ∈ RA contains such in-
formation. Function UpdatePerCellSINR()updates
the statistic of the SINR per class/cell by using the
SINR values stored in the matrix ∆j ∈ R|Aj |×2. Func-
tion LinkPer()computes for every single element of
Ψj ∈ R|Aj |×2 a non-decreasing function of the SINR.
Thus LinkPer(z)= Log2(1 + z) [bps/Hz], i.e., the
Shannon bound. Finally, the metrics related to the con-
sumption of eCCEs (f3 and f4) are obtained in a per-cell
basis by means of the instructions in the loop comprising
the lines 29 to 39. To be precise, the Cumulative Density
Function (CDF) of each class (E and I) at each cell
is estimated by means of Function CDF()using the
information pointed from pγ . Note that pγ(2 · l− 1) and
pγ(2 · l) point to the vectors containing the SINR values
of the classes E and I (at the lth cell) respectively. Once
the CDFs are obtained, the instructions from line 31 to
38 determine the average eCCE consumption at each cell
taking into account the relevant information of each AL.
To be precise, for the AL x, the number of eCCEs and
target SINR are specified by ALx and ST

x respectively.
Recall that ST

x represents the target SINR of the ALx for
a BLER of 1%.

C. Multiobjective Evolutionary Optimization

In the light of the previous subsection, where objective
functions were defined, it is clear that the domain (search
space) created by the optimization variables is a n-dimensional
space, where n = L + 2 and n = 2 · L + 1 for POS and
FOS respectively. Given that the objective space (or image
defined by such objectives is not only highly non-linear, non-
convex, but also full of discontinuities and local optima [21],
traditional optimization approaches such as Simplex [22] can
not be employed as they are susceptible to be trapped in
local minima. Other techniques such as Sequential Quadratic
Programing based methods [23] require convexity (a very
strong assumption in this context) to guarantee convergence.
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Summarizing, the problem of interest requires of an optimiza-
tion tool fulfilling the following set of features:

• It must be able to find good solutions by efficiently
exploring the search space.

• It should operate efficiently with multiple criteria and a
large number of design variables.

• It should not have strong requirements on objective
functions such as linearity, convexity, continuity or diffe-
rentiability.

Multiobjective evolutionary algorithms (MOEAs) [24] fulfill
the previous requirements and hence, their usage in this
context has been investigated. MOEAs are population-based
metaheuristics that simulate the process of natural evolution.
In MOEAs, a population of individuals (candidate solutions)
is iteratively modified by means of two basic principles: se-
lection and variation. While selection tries to imitate the battle
for reproduction among living beings, variation mimics their
inherent ability of creating new (better adapted) individuals
through recombination and mutation. A well-known MOEA
has been selected for this study: The Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [25]. The reason is that
this algorithm provides means to accomplish desired features
such as: elitism, fast convergence and good distribution of
solutions. Interested readers are referred to [26] for further
details. Finally, recall that multiobjective optimization has
an additional advantage: the solution is not only one single
configuration but a set of so many Pareto Efficient solutions.
A solution x1 is preferred to (dominates in the Pareto sense)
another solution x2, (x1 � x2), if x1 is better than x2 in at
least one criterion and no worse with respect to the remaining
ones. The set of nondominated solutions X ? is called Pareto
Front.

IV. NUMERICAL RESULTS

In order to perform numerical evaluations, a realistic cellular
deployment covering the city of Vienna and its surroundings
has been considered. This deployment represents the system
model described in Subsection II-A. Actual parameter values
are shown in Table I. To be precise, the cellular layout
is composed of 60 tri-sectorial cells. The evaluation area
corresponds to a urban subarea of 2.75×2.625 km2. The digital
elevation model and cell parameters have been obtained from
the MORANS initiative [27]. The propagation model is the
COST 231-Walfish-Ikegami. Figure 6 shows the cellular layout
and the resulting propagation pattern for one site as reference.
In addition, the CDFs of S̄ corresponding to the coverage
of each cell are also shown. It can be observed how much
different those CDFs are. It can be noticed that areas in which
the average SINR S̄ < 0 dB vary from 5 to 70% of the total
coverage at different cells. These differences are exploited by
the proposed framework in order to fit SFR to the scenario
under consideration and hence, maximize its benefits.

The list of parameters employed for NSGA-II together with
the rest of parameters employed in numerical evaluations are
shown in Table I. In general, the performance (convergence) of

Fig. 6. Realistic deployment used in numerical evaluations. Left: Per-cell
and global SINR statistic. Right: one single site propagation losses.

TABLE I
EVALUATION SETTING

Parameter Value
NSGA-II: Population size 300
NSGA-II: Max number of generations 3000
NSGA-II: Crossover probability 1.0
NSGA-II: Mutation probability 1/(L+ 1)
NSGA-II: Design variables type Binary coded

System model: [AL η ] [ 288750 60 -125 dBm/15kHz ]
System model: Pixel resolution 5×5 m2

System model: [BSYS NSC NPRB ] [ 5.40 MHz 360 30 ]
System model: [ PCell

max β ] [ 43.0 dBm 1/3 ]
System model: [ Pmax RSTP ] [ 17.4 18.5 ] dBm/15kHz
System model: [AL0 AL1 AL2 AL3 ] [ 1 2 4 8 ]
System model: [ST

0 S
T
1 S

T
2 S

T
3 ] [ 9.25 2.50 -0.50 -2.50 ] dB [28]

MO problem: [ βc,min βc,max ] [ 0.10 0.30 ]
MO problem: [ αl,min αl,max ] [ 0.15 0.60 ]
MO problem: [ Sl

TH,min Sl
TH,max ] [ -3.00 6.00 ] dB

NSGA-II depends on its operational parameters. The following
points are practical calibration guidelines:

• Population size: It is widely accepted that populations
larger than 100 individuals only provide marginal gains
and the same global convergence is obtained [29]. How-
ever, in some cases such as the problem herein, larger
populations will have the benefit of getting more solutions
or network settings at expenses of computational cost.

• Termination criterion: The execution of NSGA-II fini-
shes when the improvement of each objective function is
less than 0.001% after a block of 40 generations.

• Genetic operators: Crossover and mutation are impor-
tant in genetic algorithms to preserve elitism and achieve
good diversity respectively. Crossover and mutation rates
(probabilities) follow the recommendations given in [25].

For comparison, several benchmarks have been considered.
These references include the important case of Full Frequency
Reuse (FFR) and baseline designs of SFR according to the
bandwidth proportionality criterion (see [15] and [30]), i.e.,
schemes in which optimization is not available and hence, the
parameters α, β and STH are selected according to the SINR
statistic (observed in the whole coverage area) and applied
globally. The configurations of these benchmarks together with
their corresponding objective function values are shown in
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TABLE II
BENCHMARKS

Ref Type STH [dB] α β βc f1 [Mbps] f2 [Mbps] f3 [eCCE] f4 [eCCE] f5 [PRB] f6 [·]
x1FFR FFR N/A N/A N/A 0.10 8.38 7.54 4.25 6.26 3.00 1.00
x2FFR FFR N/A N/A N/A 0.20 7.45 6.70 4.25 6.26 6.00 1.00
x3FFR FFR N/A N/A N/A 0.30 6.52 5.87 4.25 6.26 9.00 1.00
x1SFR SFR 0.00 0.40 1/3 0.10 7.51 8.11 4.08 5.67 3.00 0.60
x2SFR SFR 0.00 0.40 1/3 0.20 6.50 7.03 4.08 5.67 6.00 0.60
x3SFR SFR 0.00 0.40 1/3 0.30 5.84 6.31 4.08 5.67 9.00 0.60

Fig. 7. Overall performance obtained by means of the optimization frameworks POS and FOS.

Table II. The statistic of the different performance metrics
corresponding to the sets of nondominated solutions of the
models POS and FOS, X ?POS and X ?FOS respectively, is shown
in Figure 7. In the figure, the performance of the benchmarks
is also plotted (in red). These results indicate, on the one hand,
that the SFR settings obtained through the proposed schemes
are able to offer different tradeoffs among f1, f2, f4 and f5
while, on the other hand, the performance in terms of f3
and f6 is always enhanced with respect to the benchmarks.
This means that by applying the solutions in the sets X ?POS
and X ?FOS it is possible to select different tradeoffs among the
perfomance metrics such as spectral efficiency vs. cell edge
performance (f1 vs. f2) or spectral efficiency vs. resources
allocated to control channels (f1 vs. f5), but always achieving
gains in terms of eCCE and energy consumption (f3 and f6).
Note that the performance obtained by means of the model
FOS is slightly better than the model POS. This is especially
noticeable in terms of f1 and f2. Moreover, the smallest values
of f3 and f4 are also attained through elements in X ?FOS, which
is expected given the higher number of optimization variables
used by this model. However, focusing on each benchmark
separately, Figure 8 shows the gains that can be achieved with
respect to each benchmark and performance metric. Such gains
are computed based on the subsets of solutions dominating

each benchmark in the Pareto sense and hence, no loss is
expected. The cardinality of these subsets for each model
is presented in Table III. Clearly, the proposed frameworks
always succeed in finding non-empty sets of SFR configura-
tions outperforming each reference scheme. The gains shown
in Figure 8 make evident that significant improvement are
obtained with respect to the important case of Full Frequency
Reuse. Both subfigures include an example indicating how
they must be read. For instance, focusing on Figure 8b and
x2FFR, it has been obtained that the energy consumption (f6)
can be decreased up to 53% without losses in terms of any
other performance metric. The proposed schemes outperform
all the benchmarks achieving gains of 20% or more in at least
one of the objective functions.

These results confirm the effectiveness of the optimization
models presented herein as they are able not only to achieve
effective ICIC for the ePDCCH (this is evident given the
gains in terms of f3 and f4) but also to improve spectral
efficiency and cell edge performance (f1 and f2). This is
quite interesting if one takes into account that some of the
SFR settings found so far, accomplish the previous and, in
addition, increase the amount of resources available for the
ePDCCH.

In order to provide additional insights on the tradeoff
between the performance metrics, 2D profiles are presented
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(a) POS (b) FOS

Fig. 8. Gains achieved by means of the proposed optimization models.

in Figure 9. 2D profiles are generated by projecting the
Pareto Front onto different planes in order to obtain alternative
representations providing better insights about the tradeoff
between any pair of objective functions. The figure includes
3 different planes: f1-f2, f1-f5 and f3-f4. While in the two
first cases, it is notorious the conflicting nature of each pair
of metrics, note how the last case, f3-f4, suggests that SFR
settings attaining better average eCCE consumption are also
able to minimize the consumption of control resources in
the worst cell of the system, which is not evident from the
analogy that could be made a priori with f1-f2. Thus, as a
conclusion, while the amount of resources allocated to the
ePDCCH f5 presents a tradeoff with the spectral efficiency f1
and hence f2, the average consumption of control resources is
basically linked to the ICIC mechanism employed to protect
the ePDCCH. In practice, it will also depend on system load,
and in particular, on the amount of low-rate services such as
VoIP that tend to heavily load control channels.

Finally, to close the section, Figure 10 illustrates the con-
vergence pattern of both optimization frameworks in terms of
the hypervolume of the Pareto front L [31]. It can be seen
that initially the convergence of FOS is slower than POS.
This is due to the higher number of design variables that need
to be adjusted in FOS. However, after a certaing number of
generations (approx. 500), FOS features better convergence,
explaining so the differences in performance previously found.
However, it is worth mentioning that both schemes are valid
since there are cases in which the computational cost is a
limiting factor, for instance, in very large scale scenarios, and
hence a 3% in convergence can be traded by an interesting
saving of 26% in processing that can be achieved by means
of POS.

TABLE III
CARDINALITY OF THE SUBSETS DOMINATING EACH BENCHMARK.

Model x1
FFR x2

FFR x3
FFR x1

SFR x2
SFR x3

SFR

POS 36 3 22 8 2 10
FOS 47 7 29 13 3 10

Fig. 9. 2D representations of the resulting Pareto Front: POS model.

V. CONCLUSIONS AND FUTURE WORK

A novel multiobjective algorithm has been proposed for
SFR optimization aiming at improving the performance of
the ePDCCH in LTE-A networks. The optimization frame-
works presented herein have been designed to be applied
in realistic/irregular macro/micro cellular deployments, for
which only (commonly available) propagation information
is required. The proposed schemes succeed in finding good
quality SFR settings achieving significant gains with respect
to baseline designs and important reference schemes such
as full frequency reuse. It was found that, by means of the
proposed framework, the overall performance of the ePDCCH
can be increased without penalizing neither spectral efficiency
nor cell edge performance. Indeed, results indicate that the
effective intercell interference coordination achieved by the

207Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-284-4

ICWMC 2013 : The Ninth International Conference on Wireless and Mobile Communications



Fig. 10. Convergence pattern of the optimization models: POS and FOS.

proposed schemes results in significant gains in terms of
average eCCE consumption (f3) and transmitted power (f6).
The gains with respect to the important case of full frequency
reuse range from 12% to 30% and 11% to 25% for POS and
FOS respectively while reducing the transmitted power at least
40% in any of these cases.

Finally, as future research item, adaptive mechanisms able
to cope with heterogeneous/irregular traffic distributions both
in time and space are going to be investigated. Also, more
realistic traffic models (real-time and elastic services) are
expected to be included into our framework.
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[17] D. González G., M. Garcı́a-Lozano, S. Ruiz, and J. Olmos, “An
analytical view of static intercell interference coordination techniques in
OFDMA networks,” in IEEE Wireless Communications and Networking
Conference (WCNC), Apr 2012, pp. 1–6, Paris, France.

[18] D. Jia, G. Wu, S. Li, G. Li, and X. Zhu, “Dynamic soft-frequency reuse
with inter-cell coordination in OFDMA networks,” in Computer Com-
munications and Networks (ICCCN), Proceedings of 20th International
Conference on, Aug 2011, pp. 1–6, Hawaii, United States.

[19] L. Chen and D. Yuan, “Soft Frequency Reuse in Large Networks with
Irregular Cell Pattern: How Much Gain to Expect?” in Personal, Indoor
and Mobile Radio Communications (PIMRC), IEEE 20th International
Symposium on, 2009, pp. 1467–1471, Tokyo, Japan.

[20] D. Gonzalez G, M. Garcia-Lozano, S. Ruiz Boque, and D. Lee,
“Optimization of soft frequency reuse for irregular LTE macrocellular
networks,” Wireless Communications, IEEE Transactions on, pp. 1–14,
2013.

[21] T. Weise, Global Optimization Algorithms - Theory and Application,
2nd ed. Self-Published, Jun. 26, 2009, available online at http://www.it-
weise.de/, [retrieved: Mar, 2013].

[22] D. Gale, “Linear programming and the Simplex method,” Notices of the
AMS, vol. 54, no. 3, pp. 364–369, March 2007.

[23] Gill, P. E. and Wong, E., “Sequential Quadratic Programming Methods,”
Department of Mathematics, University of California, San Diego, La
Jolla, CA, Tech. Rep. NA-10-03, Aug 2010.

[24] C. A. Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary
Algorithms for Solving Multi-Objective Problems, 2nd ed. Springer:
Genetic and Evolutionary Computation Series, 2007.

[25] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” Evolutionary Computation,
IEEE Transactions on, vol. 6, no. 2, pp. 182–197, Apr 2002.

[26] J. Jürgen Branke, K. Deb, K. Miettinen, and R. E. Slowiński, Multiobjec-
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