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Abstract—Tracking a mobile node using a wireless sensor
network under non-line of sight (NLOS) conditions, has been
considered in this work, which is of interest to indoor positoning
applications. A hybrid of time difference of arrival (TDOA)
and angle of arrival (AOA) measurements, suitable for trackng
asynchronous targets, is exploited. The NLOS biases of theDIDA
measurements and the position and velocity of the target are
included in the state vector. To track the latter, we use a moified
form of the extended Kalman filter (EKF) with bound constraints
on the NLOS biases, as derived from geometrical consideratns.
Through simulations, we show that our technique can outper-
form the EKF and the memoryless constrained optimization
techniques.
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sequential quadratic programming (SQP) in [6] has shown a
good performance for position and NLOS bias estimation. In
[6], the lower bound on the NLOS bias is set to zero and the
upper bound proposed in [7] is employed. When the target
is moving, the history of the past measurements along with
the state equation can help in estimating a better locatien o
time. In [8] and [9], the TDOA-AOA data are exploited for
cellular and UWB indoor tracking, respectively. In both peg
Kalman filter (KF) preprocessing is applied on the received
TOA data for NLOS mitigation, and the variances of the range
measurements are estimated. In [9], further NLOS mitigiatio
is done by scaling the covariance matrix of the measurement
noise in an extended Kalman filter (EKF).

sight; ultra wideband. While these methods enable the tracking of a moving node

under NLOS conditions, they have some disadvantages, First
I~ INTRODUCTION the KF preprocessing cannot mitigate the effect of NLOS
Ground-based wireless positioning has received great agffectively, especially if the nodes are initially in a seve

tention in indoor and dense urban areas due to the limiationNLOS situation. Second, the online variance calculation of
of the global positioning system (GPS) [1]. The fine timing the range measurement of a moving target might not be done
resolution of ultra-wideband (UWB) pulses makes them robuswith good accuracy for NLOS links. In [10], the state vector
against multipath fading and thus, the methods based on tinff the EKF is augmented with the NLOS biases in addition to
of arrival (TOA) can achieve good accuracy [2]. Localiza- Position and velocity, which helps in improving the postiiog
tion techniques that directly exploit the TOA measurementgiccuracy under NLOS conditions. Similar state equations ha
require accurate target-anchor synchronization. Howeifer been used in particle filters (PF) developed for UWB indoor
only anchor-anchor synchronization is maintained, theetim tracking of a target equipped with an inertial measuremaitt u
difference of arrival (TDOA) data can be exploited for local (IMU) in [11], [12]. However, the computational cost of the
ization. Furthermore, the angle of arrival (AOA) measurame PF grow exponentially with the size of the state vector [12],
of UWB signal requires no tight synchronization among thehence it is less suitable for practical applications.

anchors, and its accuracy improves with increasing theesyst In this paper, we propose a constrained form of the EKF

bandwidth [3]. Although the AOA measurement of UWB E)r localization of an asynchronous mobile node under mixed

signal is challenging in practice, some methods have bee » ;
recently proposed for the joint measurement of TOA and AOA OS/NLOS conditions. The state vector of the proposed filter

in UWB systems [4]. Indeed, exploiting a hybrid of angle andsimilar to [10], is augmented with the NLOS biases. The steps

range information can reduce the number of required line og fs':ihn?aii(()) rrllst(;?[{r;]eedslfali ]:?eltzot\grtg(tjseeag;tgsnsii(rfétz)r(ﬁe\?vtrjg;htﬁ
sight (LOS) nodes for localization. '

2-norm of a linearized vector function is minimized subject
One of the main challenges in network-based positioningo bound constraints on the NLOS biases. These constraints
remains the non-line of sight (NLOS) problem, which occursare linear and depend on the geometry and the type of
due to the blockage of target-anchor view. In a NLOS scepariche measurements exploited. Since here, we use TDOA-AOA
the TOA of the first detectable signal at the receiver is largemeasurements for localization of an asynchronous node, the
than it would be for a direct line of sight (LOS) path, resudti upper bound given in [7] can not be exploited. Therefore,
in a positively biased range measurement. Also, the AOAwve propose novel lower and upper bounds on the NLOS bias
measurements will be corrupted by a random perturbatioby exploiting the underlying geometry of the angle and range
distributed within [0,27) [1]. The TOA-based localization difference equations. Through simulations, we show that th
in NLOS for a single time instant is summarized in [5]. proposed constrained EKF outperforms the ordinary EKF in
More recently, the constrained optimization techniquengisi [10], and the memoryless constrained optimization tealmiq
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in [6]. Other advantages of the proposed approach are its The AOA can be measured jointly with the TOA by means

simplicity and low computational cost, which makes it shiga of UWB antenna arrays as done in [4]. The AOA of the

for practical applications. NLOS anchors are discarded as done in [9], since they are
corrupted by random perturbations uniformly distributedhie

The remainder of this paper is organized as follows: In .
; ! " interval [0, 27). The AOA of the LOS anchors with respect to
Section Il, the system model is described, and the formarati ea reference coordinate system are

of the problem is given. The derivation of the bounds on th
NLOS biases and the constrained EKF technique are described L /ylk - Y .

in Section 1. In Section 1V, illustration of simulation selts ~ i[k] = tan™" (ﬁ) +ng, k], i=N+1,...,M (4)
are presented. Finally, Section V concludes the paper. wlk] - Xi

where the measurement errag, [k], is normally distributed
II. SYSTEM MODEL AND PROBLEM FORMULATION with zero-mean and varianes .

A. Range and Bearing Measurements in NLOS The clock offset parametefk] is cancelled out by subtract-
ing the measured range of each anchor in (1) from a reference
anchor, which amounts to employing TDOA measurements.
If all the anchors are in NLOS, i.elN = M, then the

We consider a 2-dimensional (2D) indoor plane on which
a wireless sensor network (WSN) with/ fixed anchors

at known positionsp, = [X;,Y;]7 is deployed. The goal . ; . .
is to track a mobile target with unknown positigiik] = range difference _aCh'Qved through subtraptlon has elt_her a
positive or negative bias. For this scenario, the techrique

[z[k],y[k]]T and velocityv[k] = [v.[k],v,[k]]T at thek-th ! .
time instant. The synchronized anchoré are placed near tHB [8] and [9] can be employed, where KF preprocessing

boundary of the room in order to cover the area, as the ancho? used for smoothing and variance calculation. However, as

: e mentioned earlier, KF smoothing can not mitigate the effect
placement has a direct effect on the localization accuraty [ OB . .
For the sake of simplicity, let the indices € {1,...,N} of the NLOS bias efficiently. In this paper, to overcome this

denote the anchors that are in NLOS, ane {N+1, ..., M} limitation, we assume instead that there is at least one LOS

denote the anchors with LOS measurements. We assume tr{%gg g}fefgfgrzggni]néai\;?lﬁéeﬁt;.%éﬁ é\g 'Jgt;?ézgaﬁﬁﬁ trhees ect
the NLOS links can be identified accurately at every time 9 P

instant. To this end, NLOS identification techniques based o.tO a selected reference LOS anchor, which for simplicity is

hypothess esting have been proposed n 5], [9), (13, 5] M9EXE0, Y)Y 1 il LOS anchors e avellan, then
Furthermore, NLOS identification based on the features ®f th 9 ' prop

. e ; which is closest to the target, i.e., with respect to whidhted
received UWB timing pulse can yield a good result [14]. LOS range differences are positive. Since a smaller medsure

The range measurement for thh anchor,z;[k], is ob-  range is usually less likely to be in NLOS compared to a
tained by multiplying the corresponding TOA measurementarger range, this selection of the reference anchor igivelst
with the speed of wave propagation. The set of range equeatiomobust against false alarm in NLOS detection. Furtherntbee,
for the M anchors are choice of the reference anchor can change over time due to
the transition from LOS to NLOS. If théth anchor changes
zi[k] = dilk] + €[k] + bs[k] + nilk], i=1,...,M (1)  from NLOS to LOS, therb;[k] becomes zero, while if theth
where di[k] = /@] = X)2F G — Y2 is the true anchor changes from LOS to NLOS then the bias changes from

range,c[k] is proportional to the relative clock offset between zero to a positive random value. Therefore, if the reference

the target and the anchors (the clock offset is common amor\a%nchor goes through such a transition, then another anchor
the anchors as they are synchronizeég)] is the NLOS bias hich is in LOS has to be selected as the reference. If there

which is a positive random variable fore {1 N} and are two or more LOS anchors, _then by rejecting the NLOS
zero fori € {N + 1 MY, andn[k] is the measurement '&N9€ measurements, the location can be estimated without
noise. The distribut’i(.)'n. 7of tHe NLdS bias is location depen-amb'gu'ty’ however, the perf(_)rman_ce highly depends on t_he
. . o . : AOA measurement error, which might have a large error in
dent and time varying; therefore, assuming a priorly knownSome applications
distribution is not practical. However, as the target motes '
instantaneous value of the NLOS bias can be approximately The range difference equations hence take the form
modelled as a random walk

bilk +1] =b;lk] +wp[k], i=1,....,N (2) Azi[kz]—{

where the incrementy (k] is a uniform random variable with
zero-mean and variane€, [11], [12]. The measurement noise Where Az;[k] = z;[k] — zm[k], Ad;[k] = d;[k] — dum[k] and
in (1) is modelled as a normal random variable with zero-mead\n;[k] = n;[k] — nas[k].

and variances? [k]. In UWB systems, the variance of this
noise can be represented as

o2 [k] = o2d[K], 3)

uz

B. Problem Formulation

Let the unknown state vector, which includes the biases, be
whereoy is a proportionality constant and is the path-loss defined ass[k] = [z[k], y[k], v [k], vy (K], b1[K], ..., bn[K]]T.
exponent, which might have different values based on th&he measurement equation can be expressed as
environment, e.g.3 = 2 for LOS andjs = 3 for NLOS have

been considered in [15]. ylk] = h(slk]) + nlk], (5)
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where A. Constraint Region
_ i, [ Adi[k] +bi[k] 7] We are interested in tight lower and upper bounds on
Azi[k] : the NLOS biasb;[k] when TDOA-AOA measurements are
: : exploited. Note that in UWB systems, the range measurement
Azy[k] Adgg‘?] +b}é\7[k] noise is small compared to thg NLOS b!as. Also the AOCA
Azni[k] N+1[K] measurement error of a LOS link is relatively low. Thus, in
_ : deriving these bounds we assume that the noise terms are
y[k] = : , h(s[k]) = AdM. 1[] ’ negligible, i.e. Az;[k] = Ad;[k]+b;[k] fori e {1...,N} and
Azpr—1 k] 1 Y[k =Y tan(0a[k]) = (y[k] — Ym)/(z[k] — X ). Herein, we consider
On11[k] tan (m) the case where only one LOS anchor is available, although the
. . bounds are still applicable when more LOS anchors exist.
| Omlk] tan—1 (y[k]—YM) For illustrative purposes, consider the physical settifg o
L e[k]=Xnm the anchors and target shown in Fig. 1. The measured AOA

at the LOS reference anchdty,[k], defines a line segment
passing through the target position and denoted. gs Fur-
thermore, the true (unbiased) rangésdl[ |, define a set of
hyperbolas, denoted &3}, and given by

R[k]—[RT““] 0 } ©) Iz — il - llz — pyfll = Adilk], i=1,....N (8)

0 Rylk
¥ Therefore, if we knowAd;[k], then the target position can be
in which we let found by intersecting one of the hyperbold$,, with the ACA
9 T . 9 9 line segmentl,,;. Due to the NLOS condition, we measure
R, [k] = 03, [k 1115 + diag(oy, (K], - 00, (K], Azk], which is biased compared tAd;[k]. If |Az[k]| <
llp; — pasll, then all the pointse, for which the difference of

andn[k] is a normally distributed random vector with zero-
mean and covariance matriR[k]. We assume uncorrelated
range and angle measurements, i.e.,

Rylk] = 03Iy N, the distances from théth and theM -th anchor is equal to
) ) ) ) Az;[k] are located on a different set of hyperbolas, denoted as
wherely 1 = [1,...,1]T of sizemx1, andI,, is the identity HY,, and given by

matrix of sizem x m. _
|z —p;ll — |z —pyll = Az[k], i=1,...,N (9)

The state equation is given by
We note, however, that, if the bias is large, we might face

slk 4+ 1] = Ayslk] + Bowglk], (7)  a situation where\z;[k| > ||p;, — py,|l, and then there is no
point on the plane satisfying (9). In this case, it is coneahto
where redefingAzi [k] by thresholding it to its maximum permissible
A 0 B 0 wlk] value, i.e., Azlk] <+ min(Azk], [[p; — pall). If Azlk]
A, = {O IN:| , B, = [0 IN] , [k] = [’wb[kd , is replaced by||p;, — pyl|, then (9) becomes a ray passing

throughp,,. In the sequelAz; [k] refers to the range difference
measurement after being readjusted in this way.

1 0 46t 0 0.56t 0

01 0 ot 0 0.55+2 Since the bias is always positive, a trivial lower bound on
A= 001 of B= 5t 0 ) b;[k] is 0. Also, since by definitior;[k] = Az;[k] — Ad;[k],

0 0 0 1 0 5t an upper bound om;[k] can be found by finding a lower

bound onAd;[k]. Invoking the triangle inequality, it follows
wlk] is normally distributed with zero mean and covariancethat Ad;[k] > —|lp, — py/ll. Thus, loose lower and upper
matrix diag(o2, o é’ wy[k], which is uncorrelated withw[k],  bounds orb;[k] might be set as
has a uniform |str|but|on with zero mean and covariance
0 < bilk] < Azi[k] + [|p; — Pall- (10)

matrix Uv%;bIN' anddt is the time step duration.
However, we can achieve tighter lower and upper bounds on

The aim is to find the position and velocity of the target bi[k] by taking advantage of the geometry.

at the k-th time instant, i.e.,z[k] and v[k], based on all
the past and current measurememtl] for time instants Let the hyperbolai},, intersects with the line segment
j€{1,...,k}. Acommon approach is to employ the EKF as L), at g,[k], and define;[k] = ||q,[k] — p,,||- By expressing
done in [10]. However, in this work, we improve the estimatio the equation of hyperbola (9) in polar coordinates, it falo
accuracy by taking advantage of extra information, in thethat
form of practical constraints on the NLOS big$k|, which is _ 2 A2
derived in the sequel. ri[k] = Ip: = pur” = Az7[K] ,
2(Azilk] + [|p; — Pl cos(Onr[k] — 1))

. PROPOSEDTECHNIQUE wherep; is the angle between the horizontal axis and the line
segment connecting thieth and the reference anchors. If the
We first determine more accurate constraints on the NLO®ias does not exist in the range difference equation, thign
biases through the geometry of the network and then propose equal tod,,[k]. However, sinceAz;[k] > Ad;[k], ri[k] is
the improved EKF algorithm. biased compared tdy,[k]. It can be verified analytically that

(11)
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of the AOA line segment and the border of the closed area.
Similar to the analysis leading to the lower bound, define

AZi[k] = [|lm[k] — pil| — [m[k] — pall- (16)

According to (16),m[k] is located on a set of hyperbolas,
denoted ast?,, and representing the points for which the
distance difference from theth and M-th anchors isAz; [k].
The distance ofn[k] from the reference anchor, i.€i[k] =
|lm[k] — p,s]|, satisfies

: I, — parl ~ A2
rlk] = V4
" 2(AZ[k] + |p; — Pl cos(Oar k] — 1)) an

Since 7[k] > dp[k] and 7[k] decreases monotonically with
respect toAz;[k], then through a similar argument as used for
(12), it follows thatAz;[k] < Ad;[k]. Also from (16) and the

Fig. 1. Geometry of the nodes in 2-D. The anchor with indéx= 4 is the triangle inequality it follows that
reference LOS anchor and the other anchors are in NLOS. Weeitidexk
is omitted for convenience. Ad; [k] > A% [k] > —le- - pM||. (18)

Therefore,Az;[k] is a tighter lower bound or\d;[k], thus a

. ] ] . . better upper bound oby k] is achieved as
r;[k] in (11) is a monotonically decreasing function &t; [k]

with upper bound bilk] < wilk] = Azi[k] — AZi[k]. (19)
rilk] <dmlk], i=1,...,N (12)  B. Improved Extended Kalman Filter
. . The underlying concept of the constrained EKF is similar
Let us definer;[k] = max{r;[k],i = 1,...,N}; then o the conventional EKF except that a constrained optiritinat

rilk] < dml[k], ie. the distance of the target from the problem is solved at every iteration. At time instant 1, let us
reference anchor has to be at leask]. Note that in case assume that[k — 1|k —1] and X[k — 1|k —1] are the estimated

Azi[k] is replaced by|p, — py|. ri[k] = 0 and (12) is  state and covariance matrix, respectively. Then at timeaitis
satisfied. For the vectay;[k], define in turn k, we can do the prediction as
Azi[k] = lla;[k] — pill = lla;[k] — pasll; (13) s[klk — 1] = Aqs[k — 1|k — 1],

_ _ _ T T
which means thag ;] is located on another set of hyperbolas, Slklk —1] = AuZ[k — 1|k - 1]4, + BaQ,B,,  (20)
denoted asi?,,, representing the points for which the distancewhere Q,, is the covariance matrix ofw,[k]. Using the

difference from thei-th and M-th anchors isAz;[k]. For  predicted position, i.efz[k|k — 1],y[k|k — 1]]*, an estimate
example, in Fig. 1,H%, passes througly, where j = 3.  of the distanced;[k] between the target and each anchor is

Similar to (11), by intersecting’?,, and the line segmerit,,, computed. These estimates, séyf] are used to compute the

we have that measurement noise varianeg, [k] according to the model in
1Dy — pasI? 52[k] (3) and henceR|[k] is computed according to (6).
_ i PM — )
ilk] = 2(Azi[k] + |p; — Pasl cos(Om k] — @1)) (14) Next, we would like to make use of the new range differ-

ence and angle measurement vector atithth time instant,
Sincer;[k] < da[k] andr;[k] decreases monotonically with i.e. y[k] to obtain the filtered state[k|k] and associated co-
respect toAz;, it follows that Az;[k] > Ad;[k]. Thus, we variance matriX:[k|k]. To this end, we employ a linearization
can defineAz;[k] = Ad;[k] + b;[k], whereb;[k] > 0. Also,  technique based on the Taylor series expansion of the reamlin
since r;[k] < r;[k], then by comparing (11) and (14) it functionh(s[k]) in (5) around the predicted stasgk|k — 1]:
follows that Az;[k] > AZzk], and henceb;[k] > b;[k].

Although b;[k] is unknown, the positive term;[k] — b;[k], h(slk]) ~ h(s[klk —1]) + H{k|(s[k] — s[k[k —1]), (21)

which can be used as a lower boundigjt], is known through  where H k] = 6’58 2| k=sikik—1] IS the Jacobian matrix

bilk] — bi[k] = Az;[k] — Az][k]. Therefore, the lower bound gerived explicitly in ElO] Therefore, based on this firstier

on b;[k] is obtained as expansion we define a linearized measurement vector
bilk] > Li[k] = Azi[k] — Azi[k]. (15) ylk] = ylk] — h(s[k[k — 1]) + H[k]s[k[k — 1].

~ HIk|s[k] + n[k]

¥ we denote the prediction error iglk|k—1] by w[k|k—1] =

[k] — s[k|k — 1], which can be considered to be zero mean
ith covarianceX[k|k—1], then we can combine the linearized
range and angular measurements and the predicted state as

For the upper bound, we assume that the target position i
constrained to be in a closed area with arbitrary shape,avher
the coordinates of the border are known. In general it is no,
easy to handle complicated physical constraint on the iposit
in terms of computation. Therefore, we use the geometrical
constraints on the position to impose simple bound comggai { y[k) } N {H[l@]} slk] + [ n|k] }

[ - [ 1]’

on the NLOS bias. Let us assumalk] is the intersection s[klk — 1] TNy wlk|k —1 (22)
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where the covariance matrix of the noise vector is location of the target changes over time according to the
R[K] 0 d_yne_lmic model in (7) where the accelerations are normally

Clk] = [ 0 S[klk— 1]] . distributed witho, = o, = 10—3m/s’. The trajectory is

evaluated fok = 200 time samples with a step sizé = 0.1s.

The reference anchor, locatedgt, is in LOS, while the other
anchors are in NLOS. The exact range values are corrupted
by an exponentially distributed NLOS bias with a mean value

Now we finds|k|k], the filtered estimate of[k] by solving
the bounded least square problem

. 1 Ik Hlk 2 equal t00.2 of the true target-anchor range [6]. The additive
Igl[}f]l{H(C[k]) 2 ( [s[kﬁ/k[ll]} - |:IN[+4]1] S[k])H } noise n;[k] is modelled according to (3) witry = 1074,
st LK <bik] <wlk], i=1,... N (23) B = 2 for the LOS anchor, an@ = 3 for the other NLOS

anchors. The true angle of the LOS anchor is also disturbed by

Note that in ordinary EKF, (23) is minimized without con- @ normally distributed error with zero-mean amgl= 1deg.
straints. In contrast to the unconstrained EKF, (23) is a . . . .
linear least squares problem with additional bound comgsra | W_eh5|m|ula_t?] tge p(rjc_)posed con_stralned hEKEILd(;.\gcgbed In
on the entries of the state vector, and can be solved Witf‘?‘ gorithm |'with bounding constraints on the lases

moderate computational cost. In our work, we use the Matla@ingﬁgiﬁg Iine S?ﬁgolr(]) Oléle'Abo\Lljvne d C((igi'(;?]rgdthzogheﬁettis h?(:r
routinel sqgl i n. We can use the nonlinear functidris[k]) iy 9

in (23) instead of the first order Taylor series approxinmatio bounds in (15)-(19), and denote the corresponding algusith

however, the computational complexity would be much higherf:]S (ij?ni?;ralgriinfgti)ri %??hgggsgagﬁ%rﬁslzwg’ inp?hcewt?&
Moreover, we did not observe significant improvement in the P 9 !

localization accuracy in our simulation experiments. values ofog, oy, oo and sets,, = 3m, although the final
performance is robust to some amount of mismatch in these

To update the covariance, we use as an approximation thgarameters. We compare our result with the single snapshot
recursive formula of the ordinary EKF algorithm, that is constrained optimization technique in [6] and the EKF in
[10]. The PF is not considered herein since the nonlinearity
E[k|k] = (I - GK]H[K])Z[k|k — 1], (24)  is not severe and the distribution of the noise is Gaussfan. |
whereGJk] is the gain of the EKF fact, due to lacking a bound on the biases, the PF approach
might perform only slightly better than EKF [10]. The method
G[k] = Z[k|k — 1|H" [k|(R[k] + H[K|S[k|k — JH"[k])"". in [6], is implemented in Matlab by means 6fmi ncon
function with the choice of SQP technique. Again, we conside
At this stage, both the state and covariance matrix ardoth sets of constraints (10) and (15)-(19), and denote the

corrected and the algorithm continues recursively. corresponding algorithms as Memoryless | and Memoryless
I, respectively. The initialization of Constrained EKF hé
C. Initialization and Algorithm Summary Constrained EKF Il are done using the Memoryless | and

- . ) Memoryless IlI, respectively, while EKF is initialized with
_An initial guess of the position and biases can be mad§emoryless II. For the initialization of the state covadan
using the single snapshot constrained optimization teglni  matrix, we use[0[0] = 101, which appears to be reasonable

in [6], while the initial values of the velocity component®a for the considered area and the possible error in position
set to zero, thuss[0[0] is obtained. Since relatively decent ¢omponents and biases.

estimates of the location and biases are achievable usjng [6

a relatively moderate diagonal error covariance mag(g|0] To evaluate the comparative performance of the various

is considered. The algorithm is summarized below. tracking algorithms under study, we run Monte Carlo (MC)
simulations in Matlab for500 different starting points and

Algorithm 1 Proposed EKF with Bound Constraints trajectories, generated randomly as specified above. The pe

formance is evaluated in terms of the root mean squared error

1: Initialization : )
(RMSE) between the true and estimated vectors. The RMSE

2: Initialize position and biases using [6] and 260|0] = 0

3. Setx[0[0] = al wherea > 0 in the velocity estimate is also investigated.

4 for k=1,2,..., K do The RMSE in positioning is plotted in Fig. 2 for the

5. Prediction using (20) 5 different techniques under study. We generally find that the
6 E_sumatedi[k], computeo,, in (3) ar_]d _updatd_%[k] performance of the EKF in [10] is strongly dependent on the
7. Find s[k|k] via the constrained minimization in (23)  jjitialization and its convergence is not always guarastee
8 Update the covariance matri|k|k] using (24) due to the absence of bounds on the NOLS biases. The
9: end for constrained optimization technique in [6] can not yield sitho

position estimates due to its memoryless nature, although o
the average its performance is satisfactory. We emphdsite t
the performance of this algorithm is notably improved when
We considerM = 4 anchors with fixed positionp;, =  the tighter bound given in (15) and (19) is used instead of
[0,10]7, py, = [10,10]7, p; = [10,0]7, andp, = [0,0],  the simpler one in (10). Initially, Constrained EKF | has a
where the units are in meters. The initial position of thehigher RMSE compared to the unconstrained EKF, since it
target is selected randomly within the square region caMeye s initialized with a less accurate position. However, wita
the anchors. The direction of its velocity vector is inii@d  number of iterations, its performance surpasses that of EKF
randomly while its norm (i.e., speed) is set to 0.4m/s. Theand Memoryless |. Overall, constrained EKF Il exhibits the

IV. SIMULATION RESULTS
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Fig. 2. RMSE of target position vs. time steps.

(3]
best performance by a significant margin, which proves the

usefulness of our approach. (4]

The RMSE in estimating the velocity componentgk|
and vy [k] in Cartesian coordinates is illustrated in Fig. 3. [5]
Again, the performance of the newly proposed EKF technique,
with bounding constraints on the NLOS biases, exceeds that

of EKF by a significant margin. 6]
__ os8
(]
€ o0s ——— EKF i [7]
'II' — =— = Constrained EKF |
n 04r/ Constrained EKF Il |
=
x 02 J [8]
s> 5 TS S————— o
0 . : ;
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Time Steps
(&) RMSE in estimating,
[10]
g EKF |
= — =— = Constrained EKF | [11]
W )
%) Constrained EKF Il |4
=
4 ]
>7 p e ——— — [12]
50 100 150 200
Time Steps
(b) RMSE in estimating, [13]
Fig. 3. RMSE of velocity components in logarithm scale veisteps.
[14]
V. CONCLUSION
[15]

A modified EKF algorithm for localization of a moving
target was proposed in this paper, where novel bound con-
straints on the NLOS bias based on geometrical considestio
were incorporated in the filtering (optimization) step oeth
EKF equations. The main assumption is that at least one LOS
anchor remains available for referencing purposes. Throug
simulations, it was observed that our technique signiflgant
outperformed EKF and memoryless constrained optimization
techniques. Our technique shows good robustness against

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-284-4

NLOS biases, even when most of the nodes are initially (and
remain) under severe NLOS conditions.
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