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Abstract—In this paper, we consider the problem of
data-aided carrier frequency offset (CFO) estimation for
filter bank multicarrier systems, with emphasis on over-
sampled perfect reconstruction filter banks. By exploiting
statistical properties of the transmitted pilots in such sys-
tems, the maximum likelihood (ML) estimator of the CFO
is derived and its performance is investigated numerically
for different channel scenarios. The Cramer Rao bound
(CRB) on CFO estimator variance for the additive white
Gaussian noise (AWGN) channel is also derived as a
performance benchmark. Simulation results show that the
proposed ML estimator reaches the provided CRB over
AWGN channel, while it also exhibits a robust performance
in the case of frequency selective channels.

Keywords—Data-aided estimation, carrier frequency off-
set estimation, maximum likelihood, filter bank multicarrier
systems.

I. INTRODUCTION

Due to its desirable characteristics, multicarrier modu-
lation (MCM) is currently the main choice for high speed
wireless communications. For instance, one specific form
of MCM, orthogonal frequency division multiplexing
(OFDM), has been used in many standards, including
WiMAX and LTE-Advanced. Recently, to overcome cer-
tain limitations of OFDM, alternative forms of MCM
have been proposed, which fall into the general category
of filter bank multicarrier systems (FBMC). Filtered
multitone (FMT) [1] and oversampled perfect recon-
struction filter banks (OPRFB) [2], [3] are examples
of such systems. However, while FMT and OPRFB
have been shown to be less sensitive than OFDM to
carrier frequency offset (CFO) [4], some counter measure
techniques should be also applied to fully exploit the
benefits of MCM in this case.

To mitigate this sensitivity and remove the CFO

effect, limited number of frequency estimation or syn-
chronization algorithms for FBMC systems have been
considered. In [5], a non data-aided (i.e., blind) CFO
estimator for FMT systems is obtained based on the
maximum likelihood (ML) principle. Another blind CFO
estimator based on the best linear unbiased estimation
(BLUE) principle, under the assumption of additive
white Gaussian noise (AWGN) channel, is proposed
in [6]. Alternatively, a data-aided joint symbol timing
and frequency synchronization scheme for FMT systems
is presented in [7], where the synchronization metric
is derived by calculating the time-domain correlation
between the received signal and a known pseudo-random
training sequence. In [8], a synchronization scheme for
data-aided symbol timing and frequency offset recovery
is developed by employing the least-squares (LS) ap-
proach and exploiting the known structure of a special
training sequence whose estimation error does not reach
the provided lower bound. Authors in [9], [10] propose
CFO estimation schemes based on the ML criterion
that are specifically tailored for FBMC systems. While
[9] uses a sequence of consecutive pilots, the approach
in [10] employs scattered pilots instead, which helps
estimate and track channel variations during multicarrier
burst transmissions. This method exhibits an improved
estimation accuracy when compared to the blind ones,
while requiring a moderate pilot overhead and a low
complexity.

Although these data-aided methods perform well for
FMT systems with root raised cosine prototype filters,
they do not demonstrate the same level of accuracy for
OPRFB systems. In particular, since OPRFB transceiver
employs longer prototype filters, some of the essential
assumptions of these methods, e.g., constant CFO effect
during the filter support in [9], [10], are not valid in prac-
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Fig. 1. DFT modulated OPRFB transceiver

tice, which in turn significantly degrades the estimation
accuracy as we have been able to observe and therefore,
they can not be applied to OPRFB systems that employ
longer filters. Consequently, finding a synchronization
method well suited for OPRFB systems is of particular
interest.

In this paper, we propose a data-aided, ML-based
CFO estimation method that is well suited to OPRFB-
based MCM systems with longer prototype filters, and
investigates its performance numerically for different
wireless channel scenarios. By applying judicious simpli-
fications to the log-likelihood function and ignoring the
negligible terms, we are able to significantly reduce the
implementation complexity of the proposed ML estima-
tor. The Cramer Rao bound (CRB) on CFO estimator
variance for the AWGN channel is also derived as a
performance benchmark. Results of simulation experi-
ments show that the proposed ML estimator reaches the
provided CRB over AWGN channel, while it exhibits
a robust performance in the case of frequency selective
channels, despite the fact that no channel state informa-
tion (CSI) is employed.

The paper organization is as follows. The OPRFB
system model is outlined in Section II along with a
discussion of CFO in such systems. The proposed ML
estimator for CFO and the CRB are presented in Section
III. The estimator performance is assessed in Section IV.
Finally, conclusions are drawn in Section V.

Notations: Bold-faced letters indicate vectors and ma-
trices. Superscript (.)∗ denotes the complex conjugation,
Re[.] the real part and |.| the absolute value of a complex
number. IK denotes the K × K identity matrix. More-
over, (.)T represent transpose, (.)H Hermitian, (.)−1 the
inverse of a matrix, while E[.] stands for the statistical
expectation.

II. PROBLEM FORMULATION

A. OPRFB System Model

We consider a DFT modulated OPRFB transceiver
system, as depicted in Fig. 1, where parameters M and

K represent the number of subbands and the upsam-
pling/downsampling factor, respectively, and K > M is
assumed. Here, xi[n] denotes the complex-valued data
sequence transmitted on the ith subband at discrete-time
nTs, where i ∈ {0, . . . ,M − 1}, n ∈ Z, Ts = F−1

s

and Fs is the input sampling rate. In DFT modulated
FBMC systems, the transmit and receive subband filters
can be derived from common prototypes with finite
impulse responses (FIR) of length D and respective
system functions F0(z) =

∑D−1
n=0 f0[n]z−n and H0(z) =∑D−1

n=0 h0[n]zn. For convenience in analysis, Hi(z) is
assumed non-causal although in practice, causality can
be restored simply by introducing an appropriate delay
in the receiver. Defining w = e−j2π/M , the transmit
and receive filters for the ith subband are respectively
obtained as

Fi(z) = F0(zwi), Hi(z) = H0(zwi). (1)

In this work, the filter length D is restricted to be a
multiple of M and K, i.e., D = dPP , where P denotes
the least common multiple of M and K and dP is a
positive integer. As proposed in [2], [3], to enforce the
perfect reconstruction (PR) property, the paraconjugates
of the transmit filters are employed as receive filters, i.e.,
hi[n] = f∗i [n]. Therefore, PR can be expressed as

∞∑
q=−∞

fj [q − pK]f∗i [q − nK] = δijδnp, (2)

where δij denotes the Kronecker delta function. As
shown in Fig. 1, the transmitter output signal at discrete-
time mTs/K is given by

y[m] =

M−1∑
i=0

∑
q

xi[q]fi[m− qK], (3)

where the range of the summation over q is delimited by
the finite support of the subband FIR filter, fi[m].

We assume that during a time interval equal
to the processing delay of the transceiver system
(i.e., 2DTs/K), the transmission channel can be mod-
elled as a linear time-invariant system with FIR c[l] of
length Q and corresponding system function C(z) =∑Q−1

l=0 c[l]z−l. The channel output is corrupted by an
AWGN sequence ν[m], with zero-mean and variance
E[|ν[m]|2] = σ2

ν , assumed to be statistically independent
from the input data. The input-output relationship of the
noisy channel can therefore be expressed as

ȳ[m] =

Q−1∑
l=0

c[l]y[m− l] + ν[m], (4)
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where ȳ[m] denotes the received baseband discrete-time
signal. On the receiver side, ȳ[m] is passed through a
bank of analysis filters and downsampled by K. Accord-
ingly, for each subband, the reconstructed signal x̄i[n]
can be written as

x̄i[n] =
∑
q

ȳ[q]f∗i [q − nK]. (5)

B. Effect of Carrier Frequency Offset

In practice, there often exists a mismatch between
the carrier frequency in the receiver and the transmitter,
denoted as CFO. In this case, the received signal ȳ[m]
can be modelled as [6]–[8]

ȳ[m] = e2πµm
Q−1∑
l=0

c[l]y[m− l] + ν[m], (6)

where µ is a normalized CFO with respect to the subband
spacing FsK/M . Upon substitution of (3) and (6) into
(5), the reconstructed signal for the ith subband, x̄i[n],
can be written in terms of the input signals xj [n], for
j ∈ {0, ...,M − 1}, as

x̄i[n] =
∑
p

M−1∑
j=0

Γn,pi,j (µ)xj [p] + νi[n], (7)

where Γn,pi,j (µ) and νi[n] are defined as

Γn,pi,j (µ) =

Q−1∑
l=0

∑
q

e2πµqc[l]fj [q − l − pK]f∗i [q − nK],

(8)
νi[n] =

∑
q

ν[q]f∗i [q − nK]. (9)

Here, the complex factor Γn,pi,j (µ) (8) characterizes the
interference level of the pth input sample from the jth
subband on the nth output sample of the ith subband,
in the presence of CFO with magnitude µ. We note that
for |n − p| > (D + Q)/K, due to the finite support of
fi[n], Γn,pi,j (µ) = 0; accordingly, the range of the sum
over p in (7) is finite. The term νi[n] (9) represents
the additive noise passed through the ith subband of the
receive filter bank. This term has zero-mean and, due to
the PR property imposed on fi[n], its covariance is given
by

E[νi[q]ν
∗
j [p]] = δijδqpσ

2
ν . (10)

Considering the reconstructed signal x̄i[n] in (7),
it appears that even if the channel could be perfectly
equalized, which is equivalent to c[0] = 1 and c[l] = 0 for

l 6= 0, the presence of the CFO term e2πµq in the inter-
ference factors Γn,pi,j (µ) (8) would render the transceiver
system non-PR. That is, the terms Γn,pi,j (µ)xj [p] would be
non-zero for j 6= i or p 6= n, and this in turn would result
in a loss of performance in the data transmission process.
It is worth to mention that in previous work [9], [10], it
is assumed that the CFO factor e2πµq can be taken out of
the summation in (8) and consequently the interference
terms Γn,pi,j (µ)xj [p] when j 6= i or p 6= n are negligible,
which does not hold for the OPRFB systems. Our interest
therefore lies in the development of a suitable, data-
aided ML-based approach for the estimation of the CFO
parameter µ.

As seen from Fig. 1, once a suitable estimate of µ is
available, say µ̂, it can be used to compensate the CFO at
the receiver front-end and thereby avoid its deleterious
effects. In this paper, we focus on a simplified model
of the noisy channel, i.e., AWGN for which the above
condition on the channel coefficients c[l] is satisfied, but
extensions of our proposed approach to more complex
time dispersive channels with joint equalization and CFO
recovery is possible.

III. FREQUENCY OFFSET ESTIMATION

In this section, we first derive a novel CFO estima-
tor based on the ML principle, which employs known
transmitted pilots. We then propose a number of practical
simplifications in the calculation of the associated log-
likelihood function (LLF) that result in a lower imple-
mentation complexity for this estimator. Finally, the CRB
on the variance of unbiased CFO estimators is derived
as a performance benchmark.

A. ML Estimator

As indicated above, we consider a simplified AWGN
channel model (i.e., C(z) = 1) in the derivation of the
proposed ML-based CFO estimator; consequently, the
resulting approach will not require the use of a priori
CSI. In this special case, (8) reduces to

Γn,pi,j (µ) =
∑
q

e2πµqfj [q − pK]f∗i [q − nK]. (11)

In this work, we define a data frame as the set
of M subband inputs xi[n] (i ∈ {0, 1, . . . ,M − 1})
entering the transmit filter bank at time n. We assume
that within a burst of N consecutive frames, say from
n = 0 to N − 1, a total of L frames, with time indices
0 ≤ t0 < t1 < · · · < tL−1 ≤ N − 1, are selected for
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the transmission of pilot tones. At any given time tn, a
subset of S subbands, with indices 0 ≤ s0 < s1 < · · · <
sM−1 ≤ M − 1, are dedicated to the transmission of a
unit-energy pilot symbol psi [tn]. We therefore consider
a rectangular lattice of NP = LS pilot tones distributed
over the time-frequency plane. However, our approach
can be applied to other distributions of pilot symbols.
Without loss in generality (since the pilot symbols are
known to the receiver), we set psi [tn] = 1 for all
pair (si, tn). Let zsi [tn] denote the reconstructed signal
corresponding to the transmitted pilot psi [tn]. From (7),
it follows that

zsi [tn] = γtnsi (µ) + νsi [tn], (12)

where we defined

γtnsi (µ) =
∑
p

M−1∑
j=0

Γtn,psi,j
(µ) (13)

In order to express (12) in compact vector form, we
introduce:

zsi = [zsi [t0], zsi [t1], · · · , zsi [tL−1]]T (14)

λsi(µ) = [γ0
si(µ), γ1

si(µ), · · · , γL−1
si (µ)]T (15)

νsi = [νsi [t0], νsi [t1], · · · , νsi [tL−1]]T (16)

Therefore, we can write (12) as

zsi = λsi(µ) + νsi . (17)

Moreover, by arranging , we can write

Z = Λ(µ) + W (18)

where
Z = [zTs0 , z

T
s1 , · · · , z

T
sS−1

]T , (19)

Λ(µ) = [λs0(µ)T ,λs1(µ)T , · · · ,λsS−1
(µ)T ]T , (20)

W = [νTs0 ,ν
T
s1 , · · · ,ν

T
sS−1

]T . (21)

As a consequence of the AWGN model assumption, it
follows that W is a zero-mean Gaussian random vector
with diagonal covariance matrix CW = E[WW∗] =
σ2
νI , where I is the identity matrix. Accordingly, for a

given value of the unknown CFO parameter µ, the obser-
vation vector Z in (18) is also Gaussian with mean Λ(µ)
and covariance σ2

νI. The probability density function
(PDF) of Z, say f (Z;µ) can therefore be formulated and
subsequently maximized to produce the desired estimate

of µ. Take the natural logarithm of this PDF, the LLF
[11] can be expressed (up to a constant term) in the form

log(f (Z;µ)) = − 1

σ2
[Z−Λ(µ)]H [Z−Λ(µ)]

= − 1

σ2

S−1∑
i=0

L−1∑
n=0

∣∣zsi [tn]− γtnsi (µ)
∣∣2 .(22)

Finally the ML estimator of the CFO can be written as:

µ̂ = arg max
µ∈M
{log(f (Z;µ))}, (23)

where M is the search range for µ. According to (22),
maximization of the LLF attempts to find the CFO µ,
such that the skewed pilots by this hypothetical µ best
match (in the LS sense) the reconstructed pilot data at
the output of the receive filter bank.

B. Simplifications of Γn,pi,j (µ)

Here, we propose two simplifications of Γn,pi,j (µ) to
speed up the calculation of the (22). First consider (11),
which includes a summation over the length D (often
large) of the prototype filter f0[q]. Recall that fi[q] =
f0[q]w−iq, therefore, (11) can be first simplified as

Γn,pi,j (µ) = wK(pj−in)ϕn,pi−j(µ), (24)

where

ϕn,p∆ (µ) =
∑
q

e2πµqf0[q − pK]f∗0 [q − nK]wq∆. (25)

By this implementation, instead of calculating Γn,pi,j (µ)

for all the M2 possible pairs (i, j), it is sufficient to
compute ϕn,p∆ (µ) for 2M − 1 possible different values
of i − j = ∆ ∈ {−M + 1, · · · ,M − 1} and find
the corresponding Γn,pi,j (µ) by a multiplication as in
(24). Therefore, we can roughly reduce the number of
operations needed to compute the terms Γn,pi,j (µ) by a
factor of M/2.

Due to the excellent spectral containment of the
prototype filters, we can assume that the main source of
the CFO-induced interference on each target subband is
due to the first few neighbouring subbands, and that the
interference from more distant subbands is negligible.
Therefore, as the second proposed simplification, to
derive the total interference from the other subbands
on the subband with pilot index si, it is sufficient to
only factor in the contribution from the two neighbouring
subbands on each side of the sith one. As a result, (13)
is approximated as

γtnsi (µ) ≈
∑
p

si+2∑
j=si−2

Γtn,psi,j
(µ) (26)
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C. Cramer Rao Bound

Next, we derive a compact expression for the CRB
on the variance of an unbiased data-aided CFO esti-
mator obtained over the AWGN channel. Considering
∂CW/∂µ = 0, the Fisher I(µ) [11] is

I(µ) = 2Re

[
∂Λ(µ)H

∂µ
C−1
Z

∂Λ(µ)

∂µ

]
=

2

σ2

S−1∑
i=0

L−1∑
n=0

∣∣∣∣∂γtnsi (µ)

∂µ

∣∣∣∣2 , (27)

where Re[.] represents the real part of its argument and

∂γtnsi (µ)

∂µ
= 2π

∑
p

M−1∑
j=0

∑
q

qe2πµqfj [q−l−pK]f∗si [q−tnK].

(28)
Therefore, we can obtain the CRB on the variance of an
unbiased CFO estimator µ̂ as

Var(µ̂) ≥ 1

I(µ)
=

(
2

σ2

S−1∑
i=0

L−1∑
n=0

∣∣∣∣∂γtnsi (µ)

∂µ

∣∣∣∣2
)−1

. (29)

It can be seen that this CRB is inversely proportional
to the signal-to-noise ratio (SNR), or proportional to the
noise variance σ2. Moreover, it generally depends on the
number of the observed pilots Np = LS. Specifically, it
is a decreasing function of both L and S.

IV. RESULTS AND DISCUSSION

In this section, the performance of the proposed ML
estimator of the CFO is assessed and compared with
the CRB (29). In addition to the AWGN channel (where
Q = 1 and c[0] = 1), we consider a frequency selective
channel consisting of Q = 5 independent Rayleigh-
fading taps with an exponentially decaying power delay
profile, i.e., E[|c[l]|2] = βe−αl for l ∈ {0, · · · , Q − 1},
α = 0.5, and β is a constant such that

∑Q−1
l=0 E[|c[l]|2] =

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

10-2

10-1

CFO

R
M

S
E

 

 

CRB
AWGN
Rayleigh

Fig. 3. RMSE of CFO estimator µ̂ versus µ (SNR=10dB, L = 10)

1. The results are reported for an OPRFB system with
M = 64 subbands, up/downsampling factor K = 72
and real prototype filter of length D = 1728, designed
based on the method [2], [3]. Results are presented for
different values of the SNR, defined as Es/N0, where
Es = E

[
|xi[n]2|

]
is the input symbol energy and

N0 = σ2 is the variance of the channel induced Gaussian
noise. Moreover, L known pilots are inserted at the start
of the transmitted burst on all the available subbands
(S = M ).

Figure 2 justifies the assumptions made in Section
III-B about the cross-channel interference. In this figure,
the level of interference Γn,pi,j (µ) from the pth input
sample of the jth subband on the nth output sample
of the ith subband is plotted for p ∈ {0, 1, . . . , 10},
j ∈ {0, 1, . . . , 63}, n = 4, i = 16 and µ = 0.08. It is
evident that only a few subbands surrounding the target
subband are contributing as interference sources.

The root mean square error (RMSE) of the proposed
estimator, i.e.,

√
E[|µ̂− µ|2], is shown in Figure 3 versus

the true CFO µ for SNR=10dB and L = 10 pilot frames.
Here, the AWGN acquisition range (i.e., the CFO values
where the algorithm’s RMSE coincides with the CRB) is
observed to be |µ| < 0.2 (i.e., 20% of subband spacing).
Clearly, in this interval, the RMSE of the proposed
estimator over the AWGN channel is almost independent
of the CFO. It is worth mentioning that the results
reported in [10] show an acquisition range |µ| < 0.1
when implemented for FMT transceivers, whereas in the
OPRFB context, it leads to unsatisfactory results (i.e.,
RMSE level of the order of 10%) due to its underly-
ing assumptions. Moreover, the proposed method also
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exhibits a robust performance over frequency selective
Rayleigh channel, with an RMSE of about 1% within
the range |µ| < 0.1.

Sensitivity of the proposed estimator to L, the number
of the pilots being used, is depicted in Figure 4 with
SNR= 10dB and CFO µ = 0.08. As expected, by in-
creasing L, a better estimation accuracy can be achieved.
In addition, over AWGN channel, the CRB is always
attainable. Figure 5 exhibits the RMSE performance
of the proposed estimator as a function of SNR with
true CFO µ = 0.08 and L = 10. Interestingly, in
contrast to the result for the CFO synchronization method
reported in [8], the proposed ML estimator can achieve
a performance very close to the CRB over a wide range
of SNR values..

V. CONCLUSION

In this paper, we considered the problem of data-aided
CFO estimation and recovery for FBMC systems with
emphasis on OPRFBs. By exploiting statistical properties
of inserted pilots transmitted by such systems over an
AWGN channel, the ML estimator for the CFO was
derived. The complexity of the proposed estimator is
considerably reduced by identification of the insignificant
LLF terms and consequently neglecting them in the
estimation. This method was tested over AWGN and
frequency selective channels with various CFOs, SNRs
and number of pilots. The results show that over the
AWGN channel, the proposed estimator exhibits a per-
formance close to the CRB with wider acquisition range
compared to other methods, whereas its performance
remains satisfactory over frequency selective channels.
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Fig. 5. RMSE of CFO estimator µ̂ versus SNR (CFO=0.08, L = 10)
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