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Abstract—This paper deals with retrial systems where
servers are subject to random vacations. So far, these systems
were analyzed only by queueing theory and almost works
assuming that the service station consists of one server and the
customers source is infinite. In this paper, we give a detailed
performance analysis of finite-source multiserver networks with
repeated calls of blocked customers and multiple or single
vacations of servers or all station, using Generalized Stochastic
Petri nets. We show how this high level stochastic model allows
us to cope with the complexity of such networks involving
the simultaneous presence of retrials and vacations, and how
stationary performance indices can be expressed as a function
of Petri net elements.

Keywords-Repeated calls; Finite-source; Vacation policies;
Generalized Stochastic Petri nets; Modeling and Performance
measures.

I. INTRODUCTION

Models with repeated calls describe operation of many
computer networks and telecommunication systems, e.g.,
call centers, cellular mobile networks [1][2][3][4] and wire-
less sensor networks [5]. Systems with repeated attempts are
characterized by the following feature: When an arriving
customer finds all servers (resources) busy or unavailable,
is not put in a queue, but joins a virtual pool of blocked
customers called orbit, and will repeat the request to try
again to reach the servers after a random delay. Significant
references reveal the non-negligible impact of repeated calls,
which arise due to a blocking in a system with limited
capacity resources or due to impatience of users. There has
been a rapid growth in the literature on the queueing systems
with repeated attempts (also called retrial queues). For a
recent summary of the fundamental methods, results and
applications on this topic, the reader is referred to [6][7]
and [8].

In this paper, we consider multiserver retrial systems in
which each server sometimes takes a vacation, i.e., becomes
unavailable to the primary and repeated calls for a random
period of time. These vacation periods are usually introduced
in order to exploit the idle time of the servers for other
secondary jobs as: servicing customers of another system,
inspection tasks and preventive maintenance actions which
are mainly doing to prevent the risk of failure, to preserve
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the sanity of the system, to provide a high reliability and
to improve the quality of service. Similarly, the servers
breakdowns which may occur randomly, and the repair
periods, may be regarded as servers vacations.

A wide class of policies for governing the vacation
mechanism, have been discussed in the literature, namely
the multiple vacation policy and the single vacation policy.
Other studies have considered synchronous vacations of
some servers or all the station servers (station vacation). On
the other hand, multi-server vacation models were mainly
studied in the past decade. Zhang et al. [9][10] studied the
multi-server models with either single vacation or multiple
vacations. Later, Lin et al. [11] analyzed the multi-server
model with working vacations. Ke et al. [12] studied the
optimal threshold policies in a finite buffer multi-server
vacation model with unreliable servers. Recently, Ke et al.
[13] consider a multi-server queueing system with multi-
threshold vacation policy and servers breakdowns. Excellent
surveys on the vacation models have been reported by Doshi
[14], Takagi [15], Tian et al. [16], and recently, by Ke et al.
[17].

The main reason for the growing interests in multiple-
server vacation models is because they can realistically
represent some service/manufacturing systems and com-
puter/telecommunication networks. However, all these works
on multi-server vacation queueing models, assume that the
customers source is infinite and do not take into account the
repeated calls of blocked customers.

In retrial systems with vacations, customers who arrive
while all servers are busy or on vacation, have to join the
orbit to repeat their call after a random period. Thus, there
is a natural interest in the study of this class of models,
which has been used in concrete applications as digital
cellular mobile networks [18], local area networks with
nonpersistent CSMA/CD protocols [19], with star topology
[20] and so on. However, almost works combining retrial
and vacation phenomenon, assume that the service station
consists of one single server and the customers source is
infinite [20][21][22]. On the other hand, in all the works
cited above, the retrial systems with vacations are analyzed
only by the queueing theory.
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In this paper, we propose the applicability of Generalized
Stochastic Petri nets formalism (GSPNs) for modeling and
performance evaluation of networks with repeated calls of
blocked customers and servers vacations. To this end, we
consider different vacation policies, namely the single and
multiple vacations of servers or all the service station.

The paper is organized as follows: First, we describe the
systems under study. In Section 3, we present the GSPN
models describing multiserver retrial systems with station
and server vacations mechanisms and under multiple and
single vacation policy. Performance indices are given in
Section 4. Next, several numerical examples are presented
with some comments and discussions. Finally, we give a
conclusion.

IT. DESCRIPTION OF RETRIAL NETWORKS WITH
DIFFERENT VACATION POLICIES

In the analysis of retrial systems with vacations, it is usu-
ally assumed that the customers source is infinite. However,
in many practical situations, it is very important to take into
account the fact that the rate of generation of new primary
calls decreases as the number of customers in the system
increases. This can be done with the help of finite-source
retrial models where each customer generates its own flow
of primary demands.

In this paper, we consider retrial systems with finite source
(population), that is, we assume that a finite number K
of potential customers generate the so called quasi-random
input of primary calls with rate A. Each customer can be
in three states: generating a primary call (free), sending
repeated calls (in orbit) or under service by one of the
Sservers.

If a customer is free at time ¢, it can generate a primary
request for service in any interval (¢, ¢+ dt) with probability
(K —n)Adt + o(dt) as dt — 0, where n is the number of
customers in the system. Each customer requires to be served
by one and only one server.

The service station consists of ¢ (¢ > 1) homogeneous and
parallel servers. Each server can be idle, busy or on vacation.
If one of the servers is idle at the moment of the arrival
of a call, then the service starts. The requests are assigned
to the free servers randomly and without any priority order.
The service times are independent, identic and exponentially
distributed with rate u. After service, the customer becomes
free, so it can generate a new primary call, and the server
becomes idle.

We consider the two vacation mechanisms: server va-
cation and station vacation. For the first one, which is
encountered even more often in practice, each server is an
independent working unit, and it can take its own vacation
independently of other servers states. In the model with
station vacation mechanism, ALL the servers take vacations
simultaneously. That is, whenever the system is empty, all
the station leaves the system for a vacation, and returns
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when the vacation is completed. So, station vacation is group
vacation for all servers. This occurs in practice, for example,
when a system consists of several interconnected machines
that are inseparable, or when all the machines are run by
a single operator. In such situations, the whole station has
to be treated as a single entity for vacation. Hence, if the
system (or the operator who runs the system) is used for
a secondary task when it becomes empty (or available), all
the servers (the operator) will then be utilized to perform a
secondary task. During this amount of time, the servers are
unavailable to serve any primary or repeated call and this is
equivalent to taking a station vacation.

The exhaustive service discipline is considered here. That
is, each free server (or all station) can take a vacation only
if the system is empty at either a service completion or at
the end of a vacation, and only at these epochs. On the
other hand, upon completing a vacation, the server returns
to the idle state and starts to serve customers, if any, till
the system becomes empty. Otherwise, if the server (or the
station) at the moment of returning from vacation, finds the
system empty, it takes one of the two actions:

o Under the multiple vacation policy, the server (station)
shall leave immediately for another vacation and con-
tinues in this manner until he finds at least one customer
(not being served) in the system upon returning from a
vacation.

o Under the single vacation policy, the server (station)
should wait until serving one call at least before com-
mencing another vacation.

The vacation times of all servers (or station) are assumed

to be independent and exponentially distributed with rate 6.

At the moment of the arrival of a call, if all the servers are
busy or on vacation, the customer joins the orbit to repeat
his demand after an exponential time with parameter v.

As usual, we assume that the interarrival periods, service
times, vacation times and retrial times are mutually indepen-
dent.

III. GSPN MODELS OF MULTISERVER RETRIAL SYSTEMS
WITH VACATIONS

In this section, we present our approach for modeling
finite-source multiserver retrial systems with station and
server vacations, under multiple and single vacation policies
using the generalized stochastic Petri nets model.

A GSPN is a directed graph that consists of places (drawn
as circles), timed transitions (drawn as rectangles) which
describe the execution of time consuming activities and
immediate transitions (drawn as thin bars) that model actions
whose duration is negligible, with respect to the time scale of
the problem. This class of transitions has priority over timed
transitions and fire in zero time once they are enabled.

Formallyy, a GSPN [24] is an eight-tuple
(P, T,W—, W+ W m M,,0) where :

o P={P,Ps,...,P,} is the set of places;
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Figure 1. GSPN model of retrial systems with multiple vacations of servers

o T ={ty,ta,...
transitions;

e« W=, W* , Wh:PxT — IN are the input, output and
inhibitor functions respectively;

e m:T — IN is the priority function;

e My : P — IN is the initial marking which describes
the initial state of the system;

e O : T — IRT is a function that associates rates of
negative exponential distribution to timed transitions
and weights to immediate transitions.

,tm } is the set of timed and immediate

A. Retrial systems with multiple vacations of servers

This model is used for describing many practical prob-
lems where servers take individual vacations. This means,
whenever a server completes servicing and there are no more
requests in the system, it takes a vacation independently of
other servers states. On the other hand, multiple vacations
policy means that at the end of a vacation period, if the
orbit is empty and there is no primary or repeated arrival,
the server takes immediately another vacation. The process
continues until the server upon returning finds any customer
in the system.

Fig. 1 shows the GSPN model describing the above
system.

o The place P, contains the free customers;

o The place P. contains the primary or repeated (return-

ing) calls ready for service;

« The place P, contains the free (available) servers;

o The place P, represents the orbit;

o The place P, contains customers in service (or busy

servers);

o The place P, contains the servers that are on vacation.

The initial marking of the net is:

My = {M(Pa)a M(Pe)a M(Pd)7 M(Po)a M(R@)a M(R))} =
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{K,0,¢,0,0,0}, which represents the fact that all customers
are initially free, the c servers are available, no server is
on vacation and the orbit is empty. Hence, at time ¢ = 0,
all servers take a vacation simultaneously. So, this initial
state is vanishing and equivalent to the tangible state
(K,0,0,0,0,c).

o The firing of transition ¢, indicates the arrival of a
primary request generated by a free customer. It has
an infinite servers semantics, which is represented by
the symbol # placed next to transition. This means
that the firing rate of ¢, is marking dependent and
equals \.ED(t,, m) where ED(t,, m) is the enabling
degree of the transition ¢, in the marking m. Hence,
all potential customers are able to generate requests for
service.

e At the arrival of a primary or repeated request to
the place P., if P; contains at least one available
server, the immediate transition X fires and one token
is deposited in P,, which represents the begin of the
service. Otherwise, if all servers are busy or on vacation
(ie. no token in Py), the immediate transition Y fires
and a token will be deposited in the place P,. So, the
customer joins the orbit.

o When the transition ¢, fires, the customer in orbit tries
again for service, so the system receives a repeated
request.

o The firing of the immediate transition Z represents the
event that an idle server is commencing a vacation since
there is no call left to be served. This represents the
exhaustive service discipline.

o The firing of transition ¢, represents the end of the
vacation time. Hence, the server is returned to the
available state.

e« When the timed transition ¢, fires, the customer under
service returns to the idle state and the server becomes
ready to serve another customer.

e The service semantics of the timed transitions ¢5 and
t, are infinite servers semantics, because the c servers
are parallel. So, several servers can be in service or
on vacation at the same time. Similarly, the transition
t,. is marking dependent because the customers in
orbit are independent and can generate repeated calls
simultaneously.

B. Retrial systems with multiple vacations of the station

In this model, as soon as the system is empty, all the
servers become idle, and consequently the station takes a
vacation. As one may expect, this situation appears to be
more complicated that the previous one. In fact, it is more
simple, because all servers take a vacation simultaneously
and return to the system at the same time also. Hence, the
GSPN modeling this system with multiple vacations of the
station, is the same model as the one given in Fig. 1, in
which the multiplicity of the arc connecting the place Py to

45



ICWMC 2014 : The Tenth International Conference on Wireless and Mobile Communications

Y
Pe Pd
'l_ zZ X
A OO
#
ts n
TC
#[] w
|_| 0

Figure 2.  GSPN model of retrial systems with single vacations of servers

transition Z and transition ¢, to place P, equals c (rather
than 1), because the c¢ servers of the station take a vacation
together. So, if the place P, contains c idle servers, the orbit
(P,) is empty and there is no arrival to the place P., the
immediate transition Z fires, which represents the begin of
the station vacation time. At the end of this period (after
a mean delay equals 1/6), ¢ tokens corresponding to the ¢
servers of the station will be deposited in F;.

C. Retrial systems with single vacations of servers

This model corresponds to systems where each server
is an independent working unit. The single vacation policy
means that at the end of a vacation period, even if the system
is empty, the server is obliged to wait until serving one call
at least, before commencing another vacation.

Fig. 2 shows the GSPN model describing the above
system.

In the previous models with multiple vacations, the place
P, contains all the free servers. Hence, at the end of a
service or vacation period, the server returns to the idle state
represented by the place P;. However, in the model with
single vacations given in Fig. 2, at a service completion, the
server joins the place P; which contains the servers having
served at least one call since the last vacation period. So,
they can serve other calls if any (firing of transition X).
Otherwise, they can take a vacation after the firing of the
immediate transition Z. However, at the end of a vacation
period, the server joins the place P, which represents the
servers having just finished a vacation. Hence, the servers
of P, are obliged to serve at least one call after the firing
of the immediate transition W to join the place P, where
they can commence another single vacation.

Initially, all customers are free, the orbit is empty and the
¢ servers are available to serve the calls or to take a vacation.
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At the arrival of a primary or repeated request to the place
P,, several alternatives are possible:

o If the place P, of servers just returning from vacation,
contains at least one server, the immediate transition
W fires and the service of the arriving call starts.

o If the place P, is empty and the place P, contains at
least one free server, the immediate transition X fires
and the service period starts.

« If the two places P; and P, are empty which represents
the fact that all the servers are busy or on vacation,
the immediate transition Y fires and a token will be
deposited in the place P,. So, the customer joins the
orbit.

D. Retrial systems with single vacations of the station

The GSPN modeling systems with single vacations of the
station is the same as the model given in Fig. 2, in which the
multiplicity of the arc connecting the place Py to transition
Z and transition t, to place P, equals c (rather than 1),
because the c servers of the station take a vacation together.
At the end of this period, c tokens corresponding to the ¢
servers of the station will be deposited in P,. Hence, the
station can’t take another vacation until each server serves
at least one call.

IV. PERFORMANCE MEASURES

The aim of this section is to derive the formulas of the
most important stationary performance indices. As, all the
proposed models are bounded and the initial marking is a
home state, the underlying continuous time Markov chains
are ergodic for the different vacation policies. Hence, the
steady-state probability distribution vector 7 exists and can
be obtained as the solution of the linear system of equations
7.Q = 0 with the normalization condition , T = 1, where
m; denotes the steady-state probability that the process is in
state M; and @ is the transition rates matrix. Having the
probabilities vector 7, several stationary performance indices
of small cell wireless networks with different vacation
policies can be derived as follows. In these formulas, M;(p)
denotes the number of tokens in place p in marking M;, A
the set of reachable tangible markings, and A(t) is the set
of tangible markings reachable by transition ¢ and E(t) is
the set of markings where the transition ¢ is enabled.

¢ The mean number of customers in orbit

(o)
no= Y M(P,)m (1)
i :M;ERS
e The mean number of busy servers (ng):
ne= Y M(P).m )
i:M;ERS
¢ The mean number of customers in the
system (n) :
n=ns+n, 3)
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e The mean number of servers on

vacation (ny) :
ne= Y M(P,).m 4)
i:M;ERS
e The mean number of idle servers (ny):
ny = c¢—(ns+ny) (5)
Zi:MieRS M;(Py).m;,
in multiple vacations,
= (6)
> inters [Mi(Pa) + Mi(Pr)].mi,
in single vacations.
e The mean rate of generation of
primary calls (A):
X= > M(P.)A\m (7)
i:MiGE(ta)
e The mean rate of generation of
repeated calls (7):
v= Y M(P)wv.m (8)
M, EE(t,)
e The mean rate of service (f):
i= > M(P).pm ©)
i:MiGE(tS)
e The mean rate of vacation (7):
7= Z M;(P,).0.7; (10)

i:M;€E(ty)

e The blocking probability of a primary
call (B,):

K . .
Zi;M,- €RS Zj:l J-A-Prob[M;(Pa)=78M;(Pa)=0]
X b
in multiple vacations,

B =
D K .
Zq‘,:]\/]iERS 2_7‘:1 J-APi5)
. . X . ’
in single vacations.
(11)
where:

Pli.jy = Prob[M;(P,) = j&M;(Py) = 0&M;(P,) = 0].

e The blocking probability of a
repeated call (B,):

K . .
Z’i:IVIiEA ZFI j.v.Prob[M;(P,)=j&M;(P4)=0]

9

v
in multiple vacations,

ZizluieA Zf:l J-v-Pij)

v
in single vacations.

B,,. =

i

12)
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where:

Py jy = Prob[M;(P,) = j&M;(Py) = 0&M;(P,) = 0].

e The blocking probability (B):
B = B, + B, (13)
e The admission probability (A):
A=1-B (14)
e Utilization of s servers (Ug): (1<s<
c)
U= Y, (15)
i:M;(Ps)>s
e Vacation of s servers (Vy): (1<s<¢)
Vo= > om (16)
©:M;(Py)>s
e Availability of s servers (As): (1 <
s<c)
Ay =1-— Z i (17)
i:M; (Ps)+M;(P,)>s
e The mean waiting time (W) :
W = o/ (18)
e The mean response time (R) :
R=(no,+mns)/\ (19)

V. VALIDATION OF RESULTS

In this section, we consider some numerical results to
validate the proposed models and also to show the influ-
ence of system parameters and vacation policies on the
performance measures of multiserver retrial systems. The
numerical results were established using the GreatSPN tool.

In Table 1, some experimental results are collected when
the servers vacation rate and the station vacation rate are very
large. The results were validated by the Pascal program given
in the book of Falin and Templeton [25] for the analysis of
multiserver retrial queues without vacations. From this table,
we can see that the corresponding performance measures are
very close to the case without vacation and to each other with
server or station vacation policy with very high vacation rate.

Define the parameter p = N)/u, which is the largest
offered load in the system. Table 2 shows the variation of
the mean response time with p, for the single and multiple
vacation policies, when the service station consists of one
server and the retrial rate is very high. From this table, we
can see that the numerical results are very close to those
obtained by Trivedi [23] for single server queueing systems
with vacations and without retrials, since the retrial rate is
very large.
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Table T
VALIDATION OF RESULTS IN MULTISERVER RETRIAL CASE WITHOUT VACATIONS
Model without Model with Model with
vacation [25] servers vacation | station vacation
Number of servers 4 4 4
Size of source 20 20 20
Primary call generation rate 0.1 0.1 0.1
Service rate 1 1 1
Retrial rate 1.2 1.2 1.2
Vacation rate - le+25 le+25
Mean number of busy servers 1.800 748 1.800 768 1.800 758
Mean number of customers of 0.191 771 0.191 788 0.191 786
repeated calls
Mean rate of generation of 1.800 748 1.800 744 1.800 746
primary calls
Mean waiting time 1.106 495 1.106 518 1.106 510
Table II

MEAN RESPONSE TIME WITH N =50, u =1, =0.5,c=1

p Models without retrials [23]
Multiple vacations | Single vacations

0.1 3.107 1.494

0.3 3.391 2.370

0.5 3.834 3.172

0.7 4.592 4.152

0.9 6.000 5.718

Models with v = 1le + 25
Multiple vacations | Single vacations
3.106 810 1.493 581
3.390 962 2.370 404
3.833 990 3.172 221
4.592 591 4.152 760
6.000 657 5.719 090

VI. CONCLUSION

In this paper, we proposed a technique that allows mod-
eling and analyzing finite-source multiserver retrial systems
with different vacation policies using GSPNs. The nov-
elty of the investigation is essentially the combination of
multiplicity of servers with the simultaneous presence of
repeated calls and vacations, which make the system rather
complicated.

The flexibility of GSPNs modeling approach allowed
us a simple construction of detailed and compact models
for these systems. Moreover, it made it possible to verify
many qualitative properties of interest by inspection of
the reachability graph. From a performance point of view,
the proposed approach offers a rich means of expressing
interesting performance indices as a function of the Petri
net elements.

Finally, many retrial and vacation systems problems and
their solutions can be simplified using the stochastic Petri
nets modeling approach with all the methods and tools
developed within this framework.
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