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Abstract—Underwater Wireless Sensor Networks (UWSNs) is a
group of sensors and underwater vehicles, networked via acoustic
links, that perform collaborative tasks and enable a wide range
of aquatic applications. Due to hostile environment, resource con-
straints and peculiarities of the underlying physical layer technol-
ogy, providing energy-efficient data collection in a sparseUWSN
is a challenging problem. We consider mobility-assisted routing
technique for enabling connectivity and improving the energy
efficiency of sparse UWSN, considering it as a Delay/Disruption
Tolerant Network (DTN) or Intermittently Connected Networ k
(ICN). We use analytical models to investigate the performance
of the data collection scheme. Based on the result that the DTN
scheme improves energy efficiency and Packet Delivery Ratio
(PDR) at the cost of increased message latency, we investigate
techniques to improve the delay performance. The effects ofusing
multiple mobile elements for data collection and priority-polling
based on traffic class and data generation rate are investigated.
The analytical results are validated through extensive simulations.
The results show that our model for data collection in sparse
UWSNs can effectively capture the underwater acoustic network
conditions. Also, the improved DTN framework shows superior
performance in terms of energy efficiency and network connec-
tivity over ad hoc multihop network, and in terms of message
latency and fairness over simple polling-based DTN framework.

Keywords-Underwater Sensor Networks; Delay Tolerant Network;
Mobile Sink; Priority Polling; Energy Efficiency; Fairness.

I. I NTRODUCTION

Underwater Wireless Sensor Networks (UWSNs) have
emerged as powerful systems for providing autonomous sup-
port for several activities like oceanographic data collection,
marine surveillance, disaster prediction, assisted navigation
etc. Acoustic communication, with its associated pros and
cons, is the underlying physical layer technology used in
UWSNs. Features like high latency, low bandwidth, high error
probability and 3-dimensional deployment make the UWSNs
significantly different from terrestrial WSNs [1]. The energy
saving/efficiency is a critical issue for UWSN because of the
high cost of deploying and/or re-deploying underwater equip-
ment. Underwater sensors are expensive, partially because
of their more complex transceivers and the ocean area that
needs to be sensed is quite large. Hence, UWSN deployment
can be much sparser compared with terrestrial WSNs. Due
to sparse deployment, harsh environment, node mobility and
resource limitations, the network can be easily partitioned
and a contemporaneous path may not exist between any

two nodes. This results in sparse UWSNs that need to be
treated as Intermittently Connected Networks (ICN) or Delay
/ Disruption Tolerant Networks (DTN) [2]. DTNs are char-
acterised by frequent partitions and potentially long message
delivery delays. Such networks may never have an end-to-end
contemporaneous path and traditional routing protocols are not
practical since packets will be dropped when no routes are
available.

The primary objective of DTN routing is to provide eventual
delivery of data, rather than optimizing some routing metric,
say message latency. In energy-constrained underwater sen-
sors, for certain delay-tolerant applications like environmental
sensing or continuous monitoring, enhanced network lifetime
will be more important than message delay. Enabling reliable
and energy-efficient data collection in resource-constrained
sparse UWSNs is a challenging problem that requires spe-
cialized routing approaches and QoS metrics. Conventional
DTN approaches like multipath routing are resource-hungry
and hence not suitable for resource-constrained underwater
applications.

The three main approaches used for data collection in
wireless sensor networks, in general, are [3]: (i) Base Station
(BS) approach which uses direct communication between the
source and the sink; (ii) Ad hoc network which uses a multi-
hop path from the source to the sink; and (iii) Mobility assisted
routing which makes use of a mobile sink or mobile relays for
data collection. The first approach provides fast delivery,but
suffers from reduced life time of sensors due to the increased
requirement of communication energy. The ad hoc network
provides medium delay and medium power requirement, but
suffers from the ‘hot spot’ problem and the necessity for an
end-to-end contemporaneous path. Mobility assisted routing
approach supports the DTN concept, reduces transmit power
consumption, and eliminates the relaying overhead. However,
due to the limited travel speed of the mobile elements, data
collection latency will be large, but such large latency maybe
acceptable in certain environmental sensing applicationswhich
are not time-critical. Typical example of such an application is
the continuous monitoring and recording of the behaviour of
underwater plates in tectonics, for later scientific analysis. Pro-
viding support for delay-sensitive applications like pollution
monitoring and earthquake prediction, and ensuring fairness
among different traffic classes using energy-efficient mobility-
assisted routing in sparse UWSNs is the focus of this paper.
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We start with a basic DTN framework for energy efficient
data collection in sparse underwater sensor networks using
a mobile sink; and then augment it with techniques to im-
prove its data collection performance by introducing priority
and employing multiple data collectors. Analytical results for
energy efficiency, packet delivery ratio, message latency,and
sensor buffer occupancy are presented. The analytical results
are validated using our own simulation model developed in
Aqua-Sim [4], an NS-2 [5] based network simulator, developed
by the University of Connecticut. A brief review of the related
work is given in Section II. The system model is presented
in Section III. The expressions used for analytical resultsare
developed in Section IV. Section V discusses the analytical
and simulation results. The paper is concluded in Section VI.

II. RELATED WORK

Several routing protocols have been developed for un-
derwater sensor networks, most of them suitable only for
connected networks. Vector Based Forwarding (VBF) is a
typical geographical routing protocol and Hop-by-hop Vector-
based forwarding (HH-VBF) [6] is its more energy-efficient
version, better suited for sparse networks. Both VBF and HH-
VBF do not support mobility-assisted data collection and they
require the network to be connected. Recently, considerable
effort has been devoted to developing architectures and routing
algorithms for DTNs and routing in DTNs is investigated by
Jain et al. [7]. Guo et al. have proposed an adaptive routing
protocol for UWSNs, considering it as a DTN [8]. Shah et al.
[3] have presented a three-tier architecture based on mobility
to address the problem of energy efficient data collection in
a terrestrial sensor network. The same architecture with an
enhanced analytical model has been presented by Jain et al. [9].
Energy analysis of routing protocols for UWSNs is presented
by Domingo [10] and by Zorzi et al. [11]. An M/G/1 queueing
model is used by He et al. [12] for mobility-assisted routing,
proposed for reducing and balancing the energy consumption
of sensor nodes. The use of controlled mobility for low energy
embedded networks has been discussed by Arun et al. [13].
AUV-aided routing for UWSNs is discussed by Yoon et al.
[14] and Hollinger et al. [15]. Polling-based scheduling inbody
sensor networks has been discussed by Motoyama [16] and the
usage of message ferries in ad hoc networks is considered by
Kavitha et al. [17].

The development of routing protocols for dense UWSNs
and the adaptation of DTN approaches for terrestrial sensor
networks have already been addressed, but the energy-efficient
data collection in resource-constrained sparse/disconnected
UWSNs has not been adequately investigated. Also, an analyt-
ical framework and the simulation environment for evaluating
the performance metrics of data collection in UWSNs will
be useful for designing application-oriented networks. Inthis
paper, we propose a mobility-assisted DTN scheme for data
collection in sparse UWSNs and propose techniques for pro-
viding support for delay-sensitive applications, by employing
multiple data collectors and introducing priority.

III. SYSTEM MODEL

We consider large and sparse underwater sensor networks
with possibly disconnected components and with mobile el-
ements used for data collection. The static sensors monitor
the underwater surroundings, generate data and store it in
the sensor buffer. They have limited non-rechargeable battery
power and they can communicate using acoustic links. Sen-
sors’ bulk data communications are limited to transferringdata
to a nearby mobile collector (MC), so as to reduce energy
consumption. Mobile Collectors are mobile entities with large
processing and storage capacity, renewable power, and the
ability to communicate with static sensors, BS and other MCs
(if any). As an MC moves in close proximity to (i.e., within
transmission range of) a static sensor, the sensor’s data is
transferred to the MC and buffered there for further processing.
The mobility of the MC can be either random or controlled.

The static sensors can request the service of the MC by
sending service request messages to the base station (BS) using
direct or ad hoc multi-hop communication. The service request
packet is assumed to be very short compared to data packets
and the former will contain location information of the node,
priority of application, and any other relevant information like
data rate or the delay-sensitivity of request. The BS will collect
the requests and based on the system load and the delay
requirements, it can decide the number of MCs needed and
the sequence of visiting the nodes by each MC. Accordingly,
BS will create one or more visit tables specifying the order of
visiting the nodes and schedule the required number of MCs
with a unique visit table assigned to each one of it. Each MC
will visit the sensor, collect the data generated and buffered
so far, and proceed towards the next node in the table and
this process is repeated. After one cycle is completed, it may
visit the BS and collect the updated visit table if it has been
modified by the BS during that cycle. The data is assumed to
have been successfully delivered once it has been collectedby
the MC.

Underwater Channel: If a tone of frequencyf and power
P is transmitted over a distancel, the received signal power
will be P/A(l, f), where the attenuation factorA(l, f) is the
sum of absorption loss and spreading loss. At shorter ranges,
spreading loss plays a proportionally larger role comparedwith
absorption loss. Spreading loss is frequency-independent, but
depends on the geometry. The SNR of an emitted underwater
signal at the receiver is expressed by the passive sonar equa-
tion [18] and the transmission loss or the attenuation factor
A(l, f) of an underwater acoustic channel for a distancel and
frequencyf is given by Eqn. 1 as [18]:

10 logA(l, f) = k 10 log l + l 10 log a(f) (1)

where the first term is the spreading loss and the second term
is the absorption loss. The spreading coefficientk = 1 for
cylindrical spreading (shallow water scenario) andk = 2 for
spherical case (deep water scenario). The absorption coefficient
can be expressed empirically, using the Thorps formula which
gives a(f) in dB/km for f in kHz as Thorp’s formula [18] is
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used to express the absorption coefficient as :

10 log a(f) =
0.11f2

1 + f2
+

44f2

4100 + f2
+

2.75f2

104
+ 0.003 (2)

The absorption coefficient increases rapidly with frequency
(typical values being 50 dB/km at 200 kHz and 320 dB/km at
1 MHz, thus imposing a limit on the maximal usable frequency
for an acoustic link of a given distancel (which may typically
vary from a few metres to a few kilometres).

IV. A NALYTICAL STUDY

In this section, we develop the necessary analytical expres-
sions, the numerical results of which are compared with the
simulation results in Section V.

A. Energy Efficiency

One important motivation for employing a mobile sink is
that it increases the lifetime of the network by balancing
the energy consumption of the sensor nodes. The energy
consumption of the static nodes alone is considered, since the
mobile node is assumed to be rechargeable or having much
higher initial energy compared to the static sensors. The energy
consumed by the static sensor nodes for sensing and processing
are negligible compared with that for underwater acoustic data
transmission, and hence we consider the energy consumption
for data transmission only. For a given target signal-to-noise
ratio SNRtgt at receiver, available bandwidthB(l), and noise
power spectral densityN(f), the required transmit power
Pt(l) can be expressed as a function of the transmitter-receiver
distancel [11]. If Pr is the receive power,L is the packet size
in bits,M is the number of packets transferred from the source
node to the destination andα is the bandwidth efficiency of
modulation, the energy consumption for the single hop data
transfer becomes

Ehop(l) =
M(Pr + P el

t (l))L

αB(l)
(3)

whereP el
t (l) is the electrical power (in watts) corresponding

to Pt(l) in dB reµPa. Compared toPr, P el
t is very large and

hence its contribution to the energy consumption of sensor
nodes is significant.

In order to assess the energy efficiency of the MC-based
DTN model, let us compare the energy overhead associated
with transferring one packet from the sensor to the BS us-
ing the ad hoc multi-hop approach and thestore-carry-and-
forward DTN approach.

AssumingN static sensor nodes randomly and uniformly
deployed over a circular area A of radius R as in [13], we can
calculate the minimum energy requirement of each node for
transferring one packet generated by each node to the sink at
the centre of the circular area, in the ad hoc multi-hop network.

If every static node with a transmission ranger and located
in the kth annulus of the circular area generates one packet,
then the minimum number of transmissions due to packets

originated from thekth annulus isMinTx(k) = N
A(k)

A
k,

where A(k) is the area of thekth annulus andk = 1 for
the innermost annulus. In the mobility-assisted data collection,
irrespective of the position of the nodes, each static node trans-
mits only the packets generated by it. Instead, in the case of
multi-hop architecture, if every node generates 1 packet each,
for a large value of N, on an average, the number of receptions
and transmissions to be undertaken by a node in annulusk will

be, respectively,NodeRx(k) =
A(k + 1)

A(k)
NodeTx(k+1) and

NodeTx(k) = 1 +
A(k + 1)

A(k)
NodeTx(k + 1), except for the

outermost annulus
(

k =
⌈

R
r

⌉)

where the corresponding values
are 0 and 1.

The above analysis shows the increased relaying overhead
of a sensor node with its proximity to the sink. If we define the
Energy Overhead Factor(EOF) of a node as the ratio of the
total number of transmissions from the node to the number of
transmissions corresponding to the packets originated at that
node, it is seen that all the sensor nodes have the same EOF
(equal to l with an error-free channel) in MC-based scheme,
while it is approximately equal toNodeTx(k) in multihop
network. High Energy Overhead Factorimplies low energy
efficiency.

B. Data Collection Latency

A polling model is used to investigate the delay performance
of MC-based data collection. In the basic polling model, a
single server visits (or polls) the queues in a cyclic order and
after completing a visit to queuei, the server incurs a switch
over period orwalk time [19]. The period during which the
server continuously serves queuei is called aservice period
of queuei and the preceding period is called theswitch over
period of queuei. Different service policies can be employed,
out of which theExhaustiveservice scheme is the optimal.
Mobile Collector and the static sensor buffers in our model
correspond to the single server and queues of the polling
model, respectively. Travel time of the MC to move from one
location to the next is modelled as thewalk timeand the time
spent at each location to transfer data from the near by sensor’s
buffer to the MC is modelled as theservice time.

Assuming Poisson arrival of packets at rateλ at each sensor
buffer, the offered load is given byρ = NλX , whereX is the
mean message service time. For system stability,ρ should be
less than 1. If the mean of the total walk time is denoted by
R, the mean cycle time of the MC is given by

E[C] =
R

1− ρ
(4)

Let X2 denote the second moment of the packet transfer
time and the MC travel time between two consecutive locations
be a random variable with mean and varianceW and W 2,
respectively. Under the assumption of symmetric queues and
exhaustiveservice, the mean waiting time of the packet in the
sensor buffer before the MC approaches it for data transfer can
be obtained as:
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Wq =
W 2

2W
+

NλX2 +W (N − ρ)

2(1− ρ)
(5)

Assuming that the static nodes are uniformly distributed in
the network, their locations can be treated as random points
in the square sensing field. The probability density function of
the distance between two arbitrary points in a unit square is
given by [12]fD(d) =






















2d(π − 4d+ d2) 0 ≤ d ≤ 1

2d[2sin−1( 1
d
)− 2sin−1

√

1− 1
d2

+ 4
√
d2 − 1− d2 − 2] 1 ≤ d ≤

√
2

0 otherwise

(6)

From this, if the MC moves at a constant velocity V, the
mean and the variance of the MC travel time between two
arbitrary points in a unit square area can be obtained as
0.4555/V and3.95/V 2, respectively.

The expected response time of a message, buffer size,
and number of messages in the system (in queue and in
service) areX + Wq, Wqλ, and (X + Wq)λ, respectively.
Using the parameters of data generation, data transfer, and
MC mobility, the delay performance of our system model is
evaluated. The controlled mobility of the MC gives better
performance compared to random mobility and hence the
former is recommended if the deployment permits.

The delay performance of the MC-based DTN scheme with
a single mobile element is not at all comparable with that of ad
hoc multihop network (of the order of several minutes for the
former, while a few seconds for the latter). Correspondingly,
the buffer requirement of static sensors is negligible in anad
hoc network, while it is considerably high in the MC-based
scheme.

C. Packet Delivery Ratio (PDR)

In the exhaustiveservice policy of polling scheme, all the
data generated at one sensor in onecycle timeis transferred in
one visit of the MC. The mean number of packets generated in
1 cycle time =λE[C]. Assuming sufficiently large buffer space
to avoid buffer overflow, ideal channel, and no MC failures,
the PDR will be 1. But practically, there exists a probability
that a node is not detected (or acontactdoes not occur) within
a reasonable time period. In such situations, the significance
of the data may be lost if the application is delay-sensitive, or
the data itself may be lost due to buffer overflow.

D. Performance Enhancement

To improve the delay and delivery performance of the
basic DTN scheme with a single MC, two techniques can be
employed: i) use of multiple mobile sinks or mobile collectors,
and ii) priority polling. In the first technique, more than one
mobile sink or mobile collectors are used, thus increasing the
effective service rate, thereby reducing the message waiting
time. In the second one, different priority is assigned to
different nodes (based on data generation rate, traffic class

etc) and the order and/or frequency of polling or visiting
the static sensor nodes is modified to account for the service
requirement. In both cases, the scheduling of MC(s) should
take into account the service demand, in terms of varying
network load, meeting deadline, or ensuring fairness.

1) Multiple Mobile Collectors: In our basic polling model,
there is only a single server, servicing a number of queues
in a cyclic manner, with a non-zero switch-over time. When
the number of mobile data collectors is increased, the model
is converted to a Multi Server Multi Queue (MSMQ) system
or multi server polling model, the exact analysis of which
is not available. Assuming independent mobile collectors,
symmetric Poisson-distributed data arrivals, independent and
identically distributedservice timesand walk timesand no
server clustering, an approximate expression for the mean
waiting time can be derived following the approach used in
[20]. If S is the number of MCs, to get the mean message
waiting time in the multiple MC case, the expression for mean
waiting time in single MC case as given by Eqn. 5 can be
modified by substitutingX/S, X2/S2, W/[S − (S − 1)ρ],
and W 2/[S − (S − 1)ρ]2 in place of, respectively,X, X2,
W , andW 2. Thus the mean waiting time in the multiple MC
situation becomes

Wq =
W 2

2W [S − (S − 1)ρ]
+

N
[

λX2

S
+ W (S−λX)

S−(S−1)ρ

]

2(S −NλX)
(7)

Compared to the basic single MC network, here the expected
waiting time and the sensor buffer occupancy decrease with the
number of serversS. Thus, the delay and delivery performance
is improved by the use of multiple data collectors, while energy
consumption and network lifetime are not affected, since the
number of transmissions and the range of transmission are not
changed by the use of more number of MCs.

2) Priority Polling: In practical situations, all the nodes may
not be generating data at the same rate and hence the earlier
assumption of symmetric queues may not be valid. When
the data generation rates among the static sensor nodes vary
considerably, it will be better to visit the nodes with higher
arrival rates more frequently, rather than following the cyclic
order. In cyclic polling, the server polls the queues in the order
Q1, Q2, ...., QN , Q1, Q2, ...., QN , .... In Periodic polling, the
server visits the queues in a fixed order specified by apolling
table in which each queue occurs at least once [21].

Consider the single server polling model with the difference
that the arrival rates at the queues are not equal, instead the
packet arrival intensity at sensori is λi, i 1,...N. The offered
load at sensori is ρi = λiXi, whereXi is the mean service
time at sensori. The total offered load in the networkρ =
∑N

i=1 ρi. The MC visits the sensors according to a periodic -
not necessarily cyclic - polling scheme. The approach followed
in [21] can be used to minimize the workload in the system
and to ensurefairnessamong the sensors by using optimum
visit frequencies. Forexhaustiveservice, assumingWi to be
the switch-over time from queuei − 1 to queuei, the visit
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frequency at nodei becomes

fexh
i =

√

ρi(1− ρi)/Wi
∑N

j=1

√

ρj(1− ρj)/Wj

(8)

Now, all the nodes are not visited equally in a cycle, instead
the nodes having more buffered data waiting for transmission
(due to higher arrival rate) will be visited more often than those
with less buffered data. Assume that sensori is visitedni times
in a cycle of the MC and these visits are spread as evenly as
possible. Considering the interval between two successiveMC
visits to a nodei as a sub cycle, the mean residual time of a
sub cycle ofi will be

ERSCi ∝
E[C]

ni

(9)

whereE[C] is the mean time for one complete visit cycle of
the MC according to the polling table. Now the mean waiting
time at nodei will be [21]:

(Wq)i ∝ (1− ρi)
E[C]

ni

(10)

which shows that the sensor nodes with high data generation
rates (having high values ofρi and ni) get better treatment
and majority of the generated packets get good treatment, in
terms of waiting time and buffer requirement.

V. A NALYTICAL AND SIMULATION RESULTS

Extensive simulations have been done to validate our ana-
lytical results using the NS-2 based network simulator for un-
derwater applications, Aqua-Sim. It is an event-driven, object-
oriented simulator written in C++ with an OTCL (Object-
oriented Tool Command Language) interpreter as the front-
end. We have incorporated in it, the DTN concepts of bea-
coning,contactdiscovery andstore-carry-and-forwardand the
polling based (exhaustiveservice) data collection.
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Figure 1. Hop Energy Consumption for varying hop length and bandwidth

Assuming tunable transmit powerPt, receive powerPr fixed
at 0.075 W, and packet lengthL fixed to 400 bits [4], the
effect of hop length, target SNR, and channel bandwidth on
per-hop energy consumption as expressed by Eqn. 3 is plotted
in Fig. 1 for shallow water environment. Decreasing the source
to sink distance reduces the transmission loss and increasing

the bandwidth reduces the time required for transmission.
Both situations lead to reduced transmit energy consumption,
thus validating the suitability of short range communication in
energy-constrained environments.

1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

Number of hops from sink

En
er

gy
 O

ve
rh

ea
d 

Fa
ct

or

 

 

Multihop, PER = 0.0

MC−based, PER = 0.0

Multihop, PER = 0.1

Multihop, PER = 0.4

MC−based, PER = 0.4

Figure 2. Transmit Energy Overhead of static sensor nodes with multi-hop and
MC-based schemes for different PERs

Assuming static sensor nodes having transmission range
250m uniformly distributed in the area of radius 1000m, the
variation of theEnergy Overhead Factor(defined in Section IV
A) with proximity to the sink, in multi-hop routing is illustrated
in Fig. 2. Due to the increased relaying overhead, the nodes
nearer to the sink will deplete their battery power soon. The
impact of packet error rate (PER) due to non ideal channel is
also shown in this figure. If we define the lifetime of a network
as the timespan till the first node dies due to energy depletion,
it is evident that the use of mobile elements for data collection
leads to enhanced lifetime of the network due to reduced and
balanced energy consumption among the sensor nodes.
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Figure 3. PDR with multi-hop and MC-based data collection

The variation of packet delivery ratio with node density
is shown in Fig. 3. Assuming infinite buffer size and no
communication errors, ideally the packet delivery ratio should
be 1 for the DTN data collection scheme irrespective of
the number of nodes in the network. For ad hoc multi-hop
network, delivery ratio is very small for low node density
due to end-to-end connectivity issues. As the node density
is increased, PDR increases initially and finally reaches a
maximum value. It then remains almost constant if only one
node is transmitting, but starts reducing due to packet collisions
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if multiple nodes are transmitting. For the DTN scheme,
delivery ratio is independent of node density. Hence, it is the
ideal one for sparse networks and heavy traffic environments,
provided the network lifetime and successful data deliveryare
of prime concern and the application is not time-critical. If the
sensors are not equipped with sufficient buffer space to avoid
buffer overflow at high loads, packets are dropped and PDR
is reduced.
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Figure 4. Variation of Mean Waiting Time

The mean waiting time for different values of data gener-
ation rate and different speeds of the single MC is plotted
in Fig. 4, considering the controlled motion of the mobile
sink in a square area of size 1000m× 1000m with 10 nodes
randomly and uniformly distributed in this area. The sensors
are equipped with sufficient buffer space so that packets arenot
lost due to buffer overflow. The mean waiting time increases
with the packet arrival rate and decreases with the speed of the
MC. Analytical and simulation results show close agreement,
validating the suitability of our model. Fig. 5 shows the
variation of the mean buffer occupancy with varying load and
MS speeds for the same scenario. The buffer space requirement
also increases with the input load and decreases with MC
speed.
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Figure 5. Variation of Mean Buffer Occupancy

Fixing the packet size to be 50 Bytes, and data rate 10 Kbps,
the impact of the speed and number of MCs on the delay
performance is also studied and plotted in Fig. 6. Since it not
practical to have MC speeds above 20 m/s, use of multiple

MCs is to be adopted for heavy traffic environments, delay-
sensitive applications, and very limited sensor buffer situations.
Also, the performance gain obtained by using 3 MCs over 2
MCs is much less compared to that obtained by using 2 MCs
over a single one.
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Figure 6. Mean Waiting Time with Multiple MCs

With priority polling, assuming 10 sensor nodes randomly
and uniformly distributed in an area of size1000m× 1000m,
generating packets (of size 50 bytes) at four different rates,
a single MC moving at 15 m/s, and having a data rate 10
kbps, Table I gives the visit frequency and the mean waiting
time for different packet arrival rates. Based on the simulation
for a fixed finite amount of time, the percentage of packets
missed due to the MC not arriving in time is also noted. As

TABLE I. MEAN MESSAGE WAITING TIME AT DIFFERENT NODES

Arrival Rate Visit Freq. Waiting Time Miss Ratio
(Pkts/min) (Percentage) (Minutes) (Percentage)

0.01 1.53 22.37 71.25
0.1 5.10 17 57.42
1.0 16.58 12.43 13.10
2.0 23.7 11.47 1.01

the packet generation rateλi at nodei increases, the input
load ρi, the number of sub-cyclesni, and the visit frequency
fi increase, while the mean waiting time(Wq)i decreases. Due
to the unequal visit frequency at different nodes, the percentage
of packets collected by the MC within a finite simulation time
is also not equal (more at high data rate nodes and less at low
data rate nodes). Thus by reducing the unnecessary travels
to the low data rate nodes, the overall system utilization is
improved and majority of packets will be serviced within a
reasonable waiting time.

VI. CONCLUSION

The suitability of a mobility-assisted framework for energy-
efficient data collection in sparse underwater acoustic sensor
networks has been investigated in this paper. The mobility-
assisted data collection improves energy efficiency and deliv-
ery ratio at the cost of increased latency and hence it is more
suited for sparse or disconnected networks and in situations
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where network lifetime is more important than message delay.
For applications which are delay sensitive but not critical,
techniques like multiple mobile collectors and priority polling
have been found to improve the delay performance. The basic
DTN framework having a single mobile sink and cyclic polling
and the enhanced one having multiple mobile collectors and
priority polling have been implemented in the NS-2 based
network simulator, thus enhancing the scope for further re-
search in this area. The enhanced model has been found to
support delay-sensitive applications and optimize the delay and
delivery performance.
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