
Cross-Platform End-to-End Encryption of Contact Data

for Mobile Platforms using the Example of Android

Markus Hofmarcher, Michael Strauß, and Wolfgang Narzt

Department of Business Informatics – Software Engineering

Johannes Kepler University Linz

markus.hofmarcher@gmail.com, michael@strauss.eu.com, wolfgang.narzt@jku.at

Abstract— Storing and synchronizing personalized or business-

related data, especially contact data, is increasingly done by

cloud services. Thereby, control over personal data is subject

to the technical conditions and measures of the cloud service

providers. However, abstaining from the utilization of cloud

services is not an alternative as their amenities are

indispensable both for private and business users. End-to-end

encryption, as it is already maturely applied for various

communication services, would enable users to still keep their

contacts on remote storage nodes, but save them in encrypted

form. Although, the principal concepts for this kind of security

measure are well-studied, there is still no service for protecting

cloud-based contact data by end-to-end encryption using

mobile platforms. This paper presents the ideas and the

architecture for end-to-end encryption of contact data using

the example of Android.

Keywords – end-to-end encryption; cloud services; Android;

contact data; cross-platform

I. INTRODUCTION

The list of one’s own contacts is the backbone for
modern communication. Cloud services offer powerful
interfaces for conveniently managing this data on remote
servers, from where they can be synchronized to arbitrary
clients and platforms. They have become indispensable for
present communication systems, from which private as well
as business users cannot escape.

However, utilizing cloud services is potentially unsafe
and simultaneously means giving up control to the service
providers due to varying international security laws and
regulatory frameworks. Users are unaware of the location
and the amount of physical server nodes where their data is
stored on. As a consequence, legal positions and applicable
laws are not transparent to the users, especially for the
private user sector [1]. Deleting data can also be challenging,
as the physical deletion is not executed in many cases even
when users request it [1]. Moreover, recent press releases
have pointed out the drawbacks of cloud services in respect
to security and compliance [2][3]. Missing transparency and
the lack of control and security mechanisms are mentioned
as the major issues.

Nevertheless, cloud services provide a valuable method
for managing and synchronizing data and are even obligatory
nowadays for many business companies [4]. Hence, we
propose a method for protecting cloud-based data by (well-
proven) end-to-end encryption. In particular, we refer to
contact data to be securely exchanged and synchronized with

mobile devices. The advantages of cloud services remain;
only the data is stored encrypted. We present a generic cross-
platform architecture, show an exemplary implementation
for the Android platform, where users can select those apps,
which are granted access to the decrypted contact data, and
finally discuss re-utilization of the concept for other mobile
platforms. Simplicity and usability are major aspects to be
considered in our work, in order to raise acceptance among
the users, whereby the main reasons people refrain from
using encryption for email and file transfer are the lack of
knowledge and the additional time and effort for installing
and using security features [5].

The paper is organized as follows. Section II discusses
related work and similar approaches. Section III introduces
our architecture followed by its implementation in Section
IV. Section V shows the results of our investigation. Sections
VI and VII discuss possible solutions for other platforms and
concepts for synchronization. Finally, in Section VIII we
draw conclusions and formulate ideas for future work.

II. RELATED WORK

Among the scientific investigations concerning privacy
protection and information security in cloud systems,
research is mainly focused on strategies and mechanisms
offered by the cloud service provider [6][7][8] or is even
restricted to the selection of trustworthy providers. Security
issues concerning cloud services are thoroughly analyzed
with respect to architecture, data delivery models and from
the stakeholders’ perspective [9].

In order to overcome the uncertainties of cloud services,
Puttaswamy et al. [5] propose to insert a trustworthy
(because self-managed) organizational node in between
client and cloud in order to pre-encrypt data before
transferring them to the cloud. The organizational node holds
the keys and additionally identifies functionally encryptable
data, i.e., data never interpreted by the cloud and not
breaking application functionality. It automatically encrypts
them and generates and provides appropriate access keys for
its users. Thus, the authors’ proposal represents an approach
of minimizing the weak points of cloud services by an
intercalated server instance offering end-to-end encryption.
End-to-end encryption, in general, is the preferred method
for storing data in cloud services [10][11].

Practically applied end-to-end encryption can be found,
e.g., in PrivacyCrypt for Facebook [12], a special security
feature for encrypting messages in the social network
Facebook. The public key used for asymmetric encryption

168Copyright (c) IARIA, 2014. ISBN: 978-1-61208-347-6

ICWMC 2014 : The Tenth International Conference on Wireless and Mobile Communications

has to be exchanged with the target users who are allowed to
decrypt and read those messages. A Firefox extension
contains the implementation for this security feature. Fig. 1
illustrates its principle scheme. The left part in Fig. 1 shows
the message in plain language, which is encrypted by the
Firefox plugin at the client side using the public key(s) of the
receiver(s). The encrypted message is then transferred to and
stored on the server (“Facebook cloud”). Facebook
consequently receives encrypted messages, which can only
be decrypted by those having the appropriate private key.

Client

PrivacyCrypt
Browser-Extension

Facebook Cloud

Figure 1. PrivacyCrypt for Facebook

Boxcryptor [13] uses a similar approach. This application
supports users encrypting their data stored on cloud servers
such as Dropbox, Google Drive or Microsoft SkyDrive.
First, the files are encrypted locally on a user’s device and
afterwards sent to and stored on a remote server. Boxcryptor
is available for Microsoft Windows, Mac OSX, iOS and
Android. Furthermore, there is an extension for Google
Chrome which enables users to access and decrypt their data
via a browser instance.

Fig. 2 briefly explains Boxcryptor’s support for two
exemplary platforms (desktop with Google Chrome and
Android) having a comparable working procedure to
PrivacyCrypt as both approaches use end-to-end encryption.

Smartphone

Desktop

Dropbox Cloud

Boxcryptor
Browser

Extension

Boxcryptor
App

Figure 2. BoxCryptor

End-to-end encryption is also our proposed method to
securely store (contact) data on cloud servers, allowing its
users to keep control over their own data. Privacy and
information security is therefore guaranteed by end-to-end
encryption [11]. Even insufficient protection mechanisms of
cloud service providers have no negative effects in respect to
data security as the data can only be decrypted by the owners
themselves as long as they use state-of-the-art keys [14].

There are numerous existing solutions for data
encryption. For instance the first version of Pretty Good
Privacy (PGP) was released in 1991 and is nowadays, beside
S/MIME, an established standard of e-mail encryption.
Although several implementations are available, PGP or
S/MIME are not commonly used, despite the high need of e-
mail encryption. A case study pointed out that it is hardly
possible to set up or use PGP without specialized knowledge
[15]. Lack of knowledge and inconvenience are the main
reasons for not using encryption [16].

III. APPROACH

The challenge in developing a suitable method for
encryption is security and also usability. To achieve high
acceptance it is necessary to design the application for
encryption as transparent and as user friendly as possible.
Furthermore, compatibility with third party applications must
be ensured. In conclusion, we claim that there are three
primary “quality” criteria which must be fulfilled by our
solution:

 Comfort

 Transparency

 Security
Comfort means that the use of cloud services is still

possible even when the data is stored in encrypted form. That
must be possible without or rather with little migration effort.
In addition to this, the user should be able to use encrypted
data like unencrypted data. A password recovery concept is
also important. Another aspect is multi-platform support.
The user should not be limited, and therefore, the encryption
solution should work on the most common platforms.

Third party applications must still be able to access
contact data if this is allowed by the user. Hence, the
encryption mechanisms must be implemented transparently
so that there is no need to adapt these third party
applications. They should be able to access data when
needed in the same way even though the data is stored in
encrypted and decrypted form. This is important for software
components providing contact data synchronization.

Of course, data must be encrypted securely. That means
an up-to-date algorithm for encryption must be used. Fig. 3
outlines the common data flow of contact data in
combination with cloud services for synchronization.

Figure 3. General contact data flow

Data is used and managed by the client application,
which usually provides a GUI enabling the user to read or
change contact data. These applications retrieve data from a
(central) interface, where sometimes data persistence is also
implemented. To synchronize data with cloud services a
communication module is necessary.

Depending on the platform some of the described
modules are possibly bundled in one component. However,

169Copyright (c) IARIA, 2014. ISBN: 978-1-61208-347-6

ICWMC 2014 : The Tenth International Conference on Wireless and Mobile Communications

as a general rule data is processed according to the following
steps:

 Representation and user access (application)

 Data management (interface and persistence layer)

 Server communication (through a communication
module)

These steps are potential levels where en- or decryption
can take place. According to the three mentioned quality
criteria, it is inappropriate to implement encryption at the
application level because that would require adaptations of
every used application.

Fig. 4 shows the discussed data flow specifically for
Android. There are three applications (People, Facebook and
Email) that are able to access contact data. The central
Android interface for accessing contacts is called “Contacts
Provider”. All requests are handled by this interface, which
also implements data persistence. “Sync Adapters” are
responsible for synchronizing data with cloud services and
resolving conflicts.

Figure 4. Android contact data flow

Further, it is also improper to implement encryption at
the level of the communication module. This would also
require adapting every used Sync Adapter in the case of
Android. Therefore, we chose the central access interface
(Contacts Provider) for our proof-of-concept to implement
encryption. This ensures that all quality criteria are fulfilled,
which is further discussed in Section V.

For this implementation to work seamlessly the internal
data structure of the contacts has to remain unchanged and
only the value of the individual fields can be encrypted so
applications and backend services can still process the data.
The central data interface (Contacts Provider) provides three
methods with the following functionalities:

 “query”: Retrieve one or more contacts

 “update”: Modify or delete an existing contact

 “insert”: Create a new contact
A hook on every one of the three mentioned methods is

an easy and effective way to intercept all requests according
to contact data operations.

IV. IMPLEMENTATION

Before implementing the proposed architecture for
Android, it was necessary to determine if it is possible to set
hooks on method calls of other processes and applications.
Our research shows that there is no official interface for this
purpose due to Android’s security concepts, but as Android

is an open source platform, this functionality has been added
by external developers. One such implementation is provided
by the “Xposed Framework” which we used to implement a
module according to the proposed architecture.

Installing this framework requires so-called “root access”
as it needs privileged access rights. The process of attaining
this privileged access varies from device to device and can
lead to a partial or complete loss of warranty. We are aware
that this can pose a significant obstacle, especially in regards
to ease of use, but at the time of writing we are not aware of
any alternative. This is a direct result of Android’s security
concepts not providing access control mechanisms for third
party applications. Conventional server and desktop
platforms provide various ways of managing permissions,
while on Android the user typically has no way of gaining
privileged access rights. The idea behind this limited
privileges concept is to prevent applications from damaging
the system. This concept, however, neglects the need for
privileged access for security applications like anti-virus
software or firewalls.

Android applications are executed in a virtual machine,
called Dalvik, which is a specialized implementation of the
Java VM. The Xposed Framework loads additional classes to
every instance of a Dalvik-VM allowing the implementation
of hooks for every method call inside such an instance. A
hook is a method that is called before or after a specified
method and allows modifications to a method’s parameters
or its return value.

The prototype that was developed to prove the viability
of the proposed architecture was implemented as a module
for the Xposed Framework. This module defines hooks on
the query, insert and update methods to Android’s internal
Contacts Manager to implement encryption and decryption
of all contacts handled by this central manager.

Fig. 5 shows a schematic representation of a query
method call to obtain contact details from the Contacts
Provider. The highlighted modules have been implemented
by us.

Figure 5. Sequence of a query action

A. XContact Hook

The module “XContact Hook” provides the necessary
hooks on the three methods specified before to intercept calls
of all applications to the Contacts Provider. It defines hooks
that are executed before calls to the insert and update
methods of the Contacts Provider. The new or updated
contact data is encrypted in these hooks and then passed to

170Copyright (c) IARIA, 2014. ISBN: 978-1-61208-347-6

ICWMC 2014 : The Tenth International Conference on Wireless and Mobile Communications

the insert or update methods. It also defines a hook that is
executed after the query method collected the contacts
specified by its parameters. These are then decrypted and
passed to the calling methods if the application has the
permissions to get the decrypted contacts. In both cases, the
data structure of the contact data is kept intact, and internal
ID fields are not encrypted to keep compatibility with
applications and sync adapters.

B. Permission Manager

This module provides an interface for managing the
permission on an application level. It enables the user to
enable or disable the cryptographic module for specific
applications, therefore granting only trusted applications
access to unencrypted contact data.

C. Crypto Module

The cryptographic module provides routines for
encrypting and decrypting contact data while maintaining
interface compatibility by preserving the structure of the
encrypted data. For encryption the Advanced Encryption
Standard (AES) [17] algorithm is used as it is implemented
on Android and at the time of writing is sufficiently secure
[18]. Initially, a key length of 256 bit was used but with a
large number of contacts the additional processing required
for encryption and decryption was perceptible by the user.

Since only field data is encrypted, a new random
initialization vector is used for each field to mitigate
frequency analysis and known plaintext attacks.

V. RESULTS

The major result of our investigations is an architecture
concept for end-to-end encryption and a proof-of-concept for
Android. Furthermore, we analyzed the performance impact
of encryption key lengths and discussed how the proposed
architecture could be applied on other platforms. The defined
three quality criteria are fulfilled by the proof-of-concept.

Comfort: Although the contact data is encrypted the user
is able to use it as usual. The only difference is that users are
able to manage permissions with the “XContact Permission
Manager” (see Fig. 6). We also discussed potential ways for
recovering the password. Furthermore, the user is not forced
to use a specific platform because the concept is multi-
platform capable.

Transparency: All cloud services for remote data storage
can be used with our proof-of-concept because the structure
of the data is not changed. Only the data fields are encrypted.
Also third party applications (apps) are able to access contact
data as usual. There are no specific changes for them.

Security: AES, which was published by the National
Institute of Standards and Technology as a standard for data
encryption in 2000, is a secure encryption algorithm. There
are no known relevant attacks and even a successful brute-
force attack is hardly possible [19]. The private key for
encryption is only stored on the user’s device. So, the cloud
service provider is unable to decrypt the users’ data. In case
of any errors, the calling action is not executed. So, there is
no chance of an unencrypted data leak.

A. Proof-of-concept (prototype)

In this section, we present our proof-of-concept for end-
to-end contact data encryption on Android. The main
components of “XContact” are:

 Xposed Hook

 XContact Permission Manager
Xposed Hook works completely in background and is

used to hook every relevant method call on the Android
Contacts Provider. XContact Permission Manager is an app
that allows the user to control which applications are able to
access unencrypted contact data.

For installation it is necessary to install the Xposed
Framework. This is done in four steps, and, as already
mentioned, requires root-permissions. After that our
prototype can be installed with an APK file. To use the
described features it is necessary to active the XContact
module (see Fig. 6). So, users can select those applications
they would like to grant access to unencrypted contact data.

Figure 6. XContact Permission Manager GUI

The XContact Permission Manager shows all installed
applications that have requested permission to access contact
data at installation time. If the checkbox is not ticked, the
application will receive an empty list when it calls the
“query” method, and new contacts will not be encrypted.
Since XContact encrypts data transparently, the procedures
to retrieve, modify or delete contact data are not affected.
Therefore, encrypted data can be automatically synchronized
with cloud services like Google Contacts.

B. Performance impact measurements

In this section we discuss the performance impact of
encryption. Our test device is a Nexus 7 (2013) tablet
running Android 4.3.1 and Xposed 2.4.1. For our
measurements the time at the beginning and the end of an en-
or decryption hook have been monitored. The difference of
these values is the additional amount of time consumed by
the encryption algorithms.

For every test we used the same contact with three fields
(name, phone number and e-mail). Fig. 7 describes the
arithmetic mean of 30 measurements.

171Copyright (c) IARIA, 2014. ISBN: 978-1-61208-347-6

ICWMC 2014 : The Tenth International Conference on Wireless and Mobile Communications

Figure 7. Performance Measurements

The comparison of AES-128 and AES-256 shows that
the latter encryption algorithm is about 25% slower. AES-
128 is state-of-the-art and generally considered as secure
[19]. A key length of 128 bit for symmetric encryption is
recommended for long-term data protection [18].

The general performance impact depends on many
different factors (e.g., used CPU, other running processes,
number of different address books, number of contact groups
and single contacts). With our test device and one contacts
application we were not able to visually perceive or
recognize any delays for different use cases.

VI. PASSWORD AND SYNCHRONIZATION

The nature of the proposed architecture requires a different
approach to certain basic features. These features are
typically implemented server-side, however, our approach is
located only on the client. It, therefore, is essential to
minimize the risk for the users losing access to their data due
to a forgotten password. Typically, services provide
mechanisms for resetting passwords or asking secret
questions, but this would require storing the users’ password
on the device or a server-side implementation.

An alternative method for solving the password problem
is to securely store passwords with a password manager, so
the user only has to remember one password to access all
other passwords. The passwords for multiple services are
stored in an encrypted container that can be backed up using
cloud services or other backup solutions as it follows the
same end-to-end encryption principles as our approach.

While this method cannot strictly be labeled, we believe
that password recovery offers the best trade-off between
comfort and security. Furthermore, it can be implemented
without the need for a server or service provider and,
therefore, is best suited for the proposed architecture.

A stated goal of this paper is to utilize data encryption as
user-friendly as possible. The platform independent aspect
suggests that users may use the application on multiple
devices and, therefore, have to enter the password more than
once. Also, in the event of changing the password, the new
password has to be propagated to all devices using the
encryption module requiring a synchronization mechanism.
The client-side implementation requires alternatives to usual
cloud-based synchronization methods.

We propose the use of a peer-to-peer approach for
synchronizing the password across multiple devices and

platforms. A discovery protocol identifies relevant nodes on
a local network, while a specification of the transmission
protocol is needed for transmitting the data.

Based on such a protocol it is possible to synchronize
passwords across multiple devices on a local network. If the
user installs the encryption module on a new device, it can
detect already configured devices on the same network and
request the password from them. The user is notified about
this request and can either permit or deny it. It is also
possible to propagate password changes to all relevant
devices on a local network.

VII. CONCEPTS FOR ALTERNATIVE PLATFORMS

Enabling transparent end-to-end encryption for platforms
other than Android-based operating systems means
implementing an application for each targeted platform.
While the proposed architecture was designed with minimal
implementation overhead in mind, the nature of end-to-end
encryption makes this impossible to avoid.

Platforms can be divided into two main categories with
different requirements for implementation.

A. Desktop Platforms

A variety of operating systems and applications exist for
desktop computers and workstations that require contact
data. Therefore, we focus our research on web-browsers as
they are available on multiple platforms and are a common
way to access and manage contact data, largely because
service providers often provide web applications for doing
so. The authors of [12] show that there are no technical
restrictions for implementing the cryptographic module as an
extension for common web-browsers.

Contact data is an essential part of e-mail applications. At
the time of writing the most commonly used e-mail
application on desktop platforms is Microsoft Outlook with a
market share of 20.14% [20]. This application can be
extended with so-called Add-Ins similar to browser
extensions, thus facilitating the implementation of an
XContact extension for this application.

B. Mobile Platforms

The mobile operating system iOS by Apple is similar to
Android as it has a UNIX core and therefore similar
(unofficial) methods to acquire privileged access. A
framework similar to the Xposed Framework on Android is
called “Cydia Substrate” and provides the APIs for defining
hooks on methods of other applications. Installing Cydia
Substrate on an Apple iOS device requires superuser
privileges that can be acquired by “jailbreaking” the device.
On Apple iOS contacts are managed by a central address
book, providing the basic prerequisites for implementing the
XContact module for iOS.

For “Windows Phone” there is no official way of
acquiring privileged access and at the time of writing also no
unofficial way similar to iOS or Android. It is possible to
register a Windows Phone device as a developer device but
this is not feasible for end-users and the acquired privileges
are insufficient for implementing applications with the
proposed functionality.

172Copyright (c) IARIA, 2014. ISBN: 978-1-61208-347-6

ICWMC 2014 : The Tenth International Conference on Wireless and Mobile Communications

VIII. CONCLUSION

Privacy and information security in respect to distributed
data management and mobile data availability are on the rise
and are not solely discussed in scientific communities but
have also drawn public interest.

One effective measure for protecting user data is end-to-
end encryption, a well-established security paradigm already
applied to a series of scenarios concerning remote data
management, but especially for exchanging sensitive data
between two or more participants. The major drawback of
this technique is the administrative effort for creating and
securely exchanging keys, thus preventing it from being
widely used, e.g., for secure mail transfer.

In terms of synchronizing one’s own contact data through
cloud services, exchanging keys is irrelevant, for one user is
administering one key to be used for various clients. A
prototype implementation for end-to-end encryption of
contact data for the Android platform has proven the
applicability of such a security feature for mobile devices
with minimal impact in terms of convenient, transparent and
seamless usage. However, (still) off-the-record techniques
had to be applied (the device had to be rooted) in order to
practically implement this encryption model.

Nevertheless, we are convinced that developers will be
able to access critical system functions of mobile platforms
needed for special security operations in the near future, as
there are upcoming issues concerning malware that need to
be counteracted [21]. Appropriate third party partner
programs, for example, might be a way to enable only
licensed vendors in developing security-related software.

Independent from this vision, security issues for mobile
platforms will increasingly become a topic of research [22].
The security concept presented in this paper is an attempt to
protect personal contact data stored on cloud servers, the
architecture of which is adequately applicable for encrypting
calendar dates or private photos, and all this for various
platforms.

REFERENCES

[1] V. Tchifilionova, “Security and Privacy Implications of Cloud

Computing – Lost in the Cloud,” in Open Research Problems in

Network Security SE - 14, vol. 6555, J. Camenisch, V. Kisimov, and

M. Dubovitskaya, Eds. Springer Berlin Heidelberg, 2011, pp. 149–

158.

[2] A. Greenberg, “Cloud Computing’s Stormy Side - Forbes,” Forbes,

2008. [Online]. Available: http://www.forbes.com/2008/02/17/web-

application-cloud-tech-intel-cx_ag_0219cloud.html. [Accessed: 09-

May-2014].

[3] V. Strauss, “Student privacy concerns grow over ‘data in a cloud,’”

The Washington Post, 2014. [Online]. Available:

http://www.washingtonpost.com/blogs/answer-

sheet/wp/2014/01/03/student-privacy-concerns-grow-over-data-in-a-

cloud/. [Accessed: 09-May-2014].

[4] ISACA, “Cloud Computing: Business Benefits With Security,

Governance and Assurance Perspectives,” 2009.

[5] K. P. N. Puttaswamy, C. Kruegel, and B. Y. Zhao, “Silverline:

Toward Data Confidentiality in Storage-intensive Cloud

Applications,” in Proceedings of the 2Nd ACM Symposium on Cloud

Computing, 2011, pp. 10:1–10:13.

[6] V. P. Lijo and S. Kalady, “Cloud Computing Privacy Issues and

User-Centric Solution,” in Computer Information Systems – Analysis

and Technologies, vol. 245, N. Chaki and A. Cortesi, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2011, pp. 449–451.

[7] J. C. Muñoz, G. Tamura, N. M. Villegas, and H. A. Müller,

“Surprise: User-controlled Granular Privacy and Security for

Personal Data in SmarterContext,” in Proceedings of the 2012

Conference of the Center for Advanced Studies on Collaborative
Research, 2012, pp. 131–145.

[8] S. Ruj, M. Stojmenovic, and A. Nayak, “Privacy Preserving Access

Control with Authentication for Securing Data in Clouds,” in

Proceedings of the 2012 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (Ccgrid 2012), 2012, pp.

556–563.

[9] A. Behl and K. Behl, “An analysis of cloud computing security

issues,” in Information and Communication Technologies (WICT),

2012 World Congress on, 2012, pp. 109–114.

[10] S. Pearson, M. C. Mont, L. Chen, and A. Reed, “End-to-End Policy-

Based Encryption and Management of Data in the Cloud,” in Cloud

Computing Technology and Science (CloudCom), 2011 IEEE Third
International Conference on, 2011, pp. 764–771.

[11] R. Karim, C. Ding, and A. Miri, “An End-to-End QoS Mapping

Approach for Cloud Service Selection,” in Services (SERVICES),

2013 IEEE Ninth World Congress on, 2013, pp. 341–348.

[12] R. Koch, D. Holzapfel, and G. Dreo Rodosek, “Data control in social

networks,” 2011 5th Int. Conf. Netw. Syst. Secur., pp. 274–279, Sep.

2011.

[13] Secomba GmbH, “Technical overview - How Boxcryptor works,”

2014. [Online]. Available:

https://www.boxcryptor.com/en/technical-overview. [Accessed: 09-

May-2014].

[14] J. Xu, E.-C. Chang, and J. Zhou, “Weak Leakage-Resilient Client-

side Deduplication of Encrypted Data in Cloud Storage Categories

and Subject Descriptors,” in Proceedings of the 8th ACM SIGSAC

symposium on Information, computer and communications security -
ASIA CCS ’13, 2013, no. 2, pp. 195–206.

[15] A. Kapadia, “A Case (Study) For Usability in Secure Email

Communication,” IEEE Secur. Priv. Mag., vol. 5, no. 2, pp. 80–84,

Mar. 2007.

[16] BITKOM, “Mehr Sicherheit durch Verschlüsselung,” BITKOM

Presseinfo Verschluesselung 19 12 2013 (German), 2013. [Online].

Available:

http://www.bitkom.org/files/dochttp://www.bitkom.org/files/docume

nts/Verschlsselung.jpg. [Accessed: 09-May-2014].

[17] H. C. A. van Tilborg and S. Jajodia, Encyclopedia of Cryptography

and Security. Boston, MA: Springer US, 2011.

[18] N. P. (BRIS) Smart, “ECRYPT II Yearly Report on Algorithms and

Keysizes (2011-2012),” 2012.

[19] A. Biryukov and J. Großschädl, “Cryptanalysis of the Full AES

Using GPU-Like Special-Purpose Hardware,” Fundam.

Informaticae, vol. 114, no. 3–4, pp. 221–237, Aug. 2012.

[20] Campaign Monitor, “Email Client Popularity.” [Online]. Available:

http://www.campaignmonitor.com/resources/will-it-work/email-

clients/. [Accessed: 09-May-2014].

[21] A. Gupta, S. Dutta, and V. Mangla, “Malware Attacks on

Smartphones and Their Classification Based Detection,” in

Contemporary Computing, S. Aluru, S. Bandyopadhyay, U. V.

Catalyurek, D. P. Dubhashi, P. H. Jones, M. Parashar, and B.

Schmidt, Eds. Springer Berlin Heidelberg, 2011, pp. 242–253.

[22] M. La Polla, F. Martinelli, and D. Sgandurra, “A Survey on Security

for Mobile Devices,” Commun. Surv. Tutorials, IEEE, vol. 15, no. 1,

pp. 446–471, 2013.

173Copyright (c) IARIA, 2014. ISBN: 978-1-61208-347-6

ICWMC 2014 : The Tenth International Conference on Wireless and Mobile Communications

