
Network Traffic Prediction for Load Balancing in Cloud Access Point Controller 

 

 

Zhifei Zhang, Shilei Cheng 

School of Computer and Information Technology 

Beijing Jiaotong University 

Beijing, China 

zhfzhang@bjtu.edu.cn 

 

 

 

 

Jingpeng Tang, Abraham Teng 

Department of Computer Science 

Utah Valley University 

Orem, Utah, USA 

jtang@uvu.edu 

 

Damian Lampl, Kendall Nygard 

Department of Computer Science 

North Dakota State University 

Fargo, ND, USA 

kendall.nygard@ndsu.edu 

 

 
Abstract— In cluster cloud access controller (AC) solutions, 

load balancing algorithms typically consider the number of 

access points (APs), the number of users, the network traffic at 

the ACs, as well as central processing unit (CPU) and memory 

usage. However, because the network traffic has bursts and the 

user traffic on APs is unbalanced, it is not enough to consider 

only these factors. We report on the development of new traffic 

prediction models and their use in load balancing algorithms. 

The methods are evaluated with simulation experiments using 

MATLAB and CLOUDSIM. The methods utilize phase space 

reconstruction sequencing of the user network traffic. The 

result is improved load balancing efficiency when compared 

with alternative existing approaches. 

Keywords- cloud controller; wireless access point; load 

balancing; network traffic prediction. 

I.  INTRODUCTION 

Traditional load balancing algorithms are usually divided 
into static load balancing algorithms [1] and dynamic load 
balancing algorithms [2] according to their strategy. Static 
load balancing algorithms do not consider the runtime 
operating state of each node in the cluster, but allocates the 
load of each node with a predetermined load balancing 
strategy based on its processing capacity. Dynamic load 
balancing algorithms monitor and collect information on the 
load of each node, such as CPU utilization, storage, memory 
and bandwidth utilization, in order to calculate the load 
balancing weight of each node in real time, and then 
distribute the traffic to corresponding nodes. Popular static 
load balancing algorithms include random balancing, 
polling, hash target address, and source address hash [3]. 
Dynamic load balancing algorithms include least connection, 
weighted least connection scheduling, weighted polling and 
minimum response time [4]. In addition to the classical 
algorithms, heuristic optimization algorithms, such as genetic 
algorithms [5], ant colony optimization [6][7], simulated 

annealing [8] and particle swarm optimization algorithms 
[9], are also used for scheduling problems. 

In the conventional AC-AP architecture, AC is the most 
important equipment since it manages the AP’s 
configuration, controls the station’s access authentication 
and even forwards the station’s packets centrally. With the 
progress of cloud technology, many companies have released 
Control and Provisioning of Wireless Access Points 
(CAPWAP) protocol-based cloud AC management systems. 
Examples include Ruckus, Relay2 and Google, and some 
domestic enterprises have also released cloud AC 
management systems. With the dramatic increase of AP, 
clustered cloud ACs (called AC pools) have become 
necessary to obtain performance requirements and unified 
resource management. Therefore, delivering an incoming AP 
to its proper cloud AC has become increasingly important in 
clustered cloud AC systems. 

Our proposed load balancing strategy works as follows. 
First, the user traffic prediction model is set up and the user 
traffic is predicted based on its partially similar 
characteristics. Then, the incoming AP’s load is predicted 
based on the user’s traffic predictions. Finally, the incoming 
AP is distributed to a target cloud AC based on the AP’s load 
predictions by the load balancer. 

The rest of paper is organized as follows. Section II 
presents the wireless user traffic characteristics.  Section III 
specifies the user traffic prediction model and its features. 
Section IV proposes the load balancing algorithm. Section V 
simulates and evaluates the performance of our proposed 
algorithm. The paper concludes with section VI. 

II. RELATED WORK 

Research on wireless user traffic typically involves 
obtaining its regular pattern through analysis of the user 
traffic data. It is known that the user traffic has self-
similarity, periodicity [10] and burst characteristics [11]. 
Most studies on the characteristics of wireless user traffic 
take the statistical data for analyzing during a certain period 
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Figure 1.  Traffic of 140 Aps for 7 days 

 

of time. In [12][13], based on the statistical result of the user 
number and user network traffic, it is proved that the user 
number and user network traffic of an AP has partial 
similarity with a period measured in days. 

According to the CAPWAP protocol used in centralized 
forwarding mode, AP control packets and data packets are 
forwarded to the AC through a CAPWAP tunnel. In [14], it 
is proved that the CPU utilization and memory usage 
increases rapidly in centralized forwarding mode, while 
remaining almost constant in local forwarding mode when 
the number of AP and the number of users remains 
unchanged, and the user network traffic is increasing. 
Therefore, it indicates that the user traffic has no impact on 
network control messages between APs and ACs. 
Furthermore, the CPU utilization and memory usage 
increases in both the local forwarding mode and the 
centralized forwarding mode when the number of AP and 
user network traffic remains unchanged and the number of 
users is increased. As we know, there are many more data 
packets than management packets in centralized forwarding 
mode; load on cloud AC mainly depends on the user network 
traffic in centralized forwarding mode. 

As shown in Figure (1), the traffic of 140 APs during 7 
days while sampling 1440 time points per day illustrates that 
the traffic varies rapidly during a day but implies a period of 
day similarity. 

Because network traffic has been shown to include 
attributes of self-similarity, periodicity and burst, a Poisson 
model is not suitable to describe the characteristics of the 
network traffic. Moving average models predict a result 
based on the historical average and require smaller storage 
space as well as less calculation compared to other models. 
Weighted moving average methods give different weights to 
history data, so the predicted value obtained may go awry 
since the user traffic is partial-similar data. An exponential 
smoothing model is a time-series forecasting method based 
on the moving average method and includes the single 
exponential smoothing, second-order exponential smoothing, 
and cubic exponential smoothing models. Exponential 
smoothing models are simple and practical with the potential 
to reach a high predictive accuracy in some cases. 

Artificial neural networks are suitable for large-scale data 
because of their memorizing, calculating, learning and other 

intelligent features. Therefore, the neural network prediction 
method can be used to describe the non-linear characteristics 
of network traffic and exhibits better performance than 
autoregressive (AR), autoregressive moving average 
(ARMA) [15] and other linear network prediction methods. 
Specifically, since the neural network can remember the 
variation of network traffic during the training process, 
which results in less effect on the forecast value of the 
number of prediction steps, it is suitable for long-term 
prediction. The autoregressive integrated moving average 
(ARIMA) model for network traffic prediction gives a bigger 
error prediction deviation because of its multiple difference 
on non-stationary time series, which makes the 
characteristics of network traffic disappear. Furthermore, due 
to the long time required for its prediction algorithm, the 
ARIMA model cannot guarantee the required performance 
necessary for real-time network traffic forecasting. In this 
paper, we focus on wireless user network traffic prediction 
by the moving average model, exponential smoothing model 
[16] and back propagation (BP) neural network model [17], 
and select the suitable AC network traffic prediction model 
by comparing the prediction results of these three models. 

In the centralized forwarding mode, the traffic will be 
forwarded to the AC after the AP successfully accesses the 
AC, which requires a load balancing strategy to not only 
consider the current load of the AC, but also take into 
account the long period load prediction. In consequence, we 
take the prediction as the AC’s load after a long time 
prediction for user network traffic. 

III. USER TRAFFIC PREDICTION MODEL 

In this paper, due to the user network traffic periodic 
partial similar characteristics, the user network traffic time 
series phase space is reconstructed according to Takens’ 
embedding theorem [18], and the reconstructed series are 
used to predict the user network traffic of the next day. 

Given the user network traffic time series as:  

 

with the total sequence length being N*T , The reconstructed 
sequences of the same time each day: 

  

forms T reconstruction sequences set: 

  

In consequence, modeling the network traffic by secondary 
exponential smoothing as following: 

 

 
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TABLE I.           SQUARED ERROR OF DIFFERENT MODEL 

Average 

AP 

Number 

per Day 

Moving 

Average 

Model 

SSE(1015) 

Second 

Exponential 

Model SSE(1015) 

BP neural 

network model 

SSE(1015) 

1 0.027 0.028 0.278 

2 0.114 0.118 0.492 

3 0.145 0.123 0.614 

4 0.252 0.234 0.797 

5 0.348 0.370 1.080 

6 2.215 1.637 2.623 

7 2.226 1.657 3.754 

8 2.418 1.728 8.305 

9 2.454 1.722 12.32 

10 2.492 1.795 14.19 

 

Cloud 
AC1

Cloud 
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Cloud 
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AP1
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AC Load 
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Figure 2.  AC Load Balancing Model 

TABLE II.           SECOND EXPONENTIAL SMOOTHING MODEL WITH 

CONSTANT AND DYNAMIC EXPONENT 

 Fixed Exponent Dynamic Exponent 

SSE(1013) 2.5674 1.0156 

 

where n is the time index of a day and N is the day index, 

 is the single exponential smoothing value of Nth day 

nth time slot,  is the second exponential smoothing 

value of Nth day nth time,  is the Smoothness index where 
0< <1. 

 

 

where ，  are intermediate variables. 

And the network traffic prediction of AC for the next day is: 

 

The user network traffic sequence  based on the 
moving average, second exponential smoothing, and BP 
neural network models are modeled and predicted 

respectively. We take  sample data per day and 
calculate the squared error for different models. Given the 

prediction value to be  and the real value to be , 

the sum of squared error on the day is [19] 

  

The prediction results in Table (1) show that the moving 
average and second exponential smoothing models have 
similar sum of squared errors when the AP number is small.  

The second exponential smoothing model has the smallest 
sum of squared error among the three models and is 
therefore more suitable for wireless user network traffic 
prediction, although all of their sum of squared errors 
increase when the AP number increases. On the other hand, 
the exponential smoothing model takes less execution time 
than the BP neural network model, and the moving average 
model has the shortest execution time. After taking into 
account the practical application, the exponential smoothing 
models and moving average models both meet the time 
requirements for our AC-AP architecture. In conclusion, the 
second exponential smoothing model is used to predict the 
user network traffic when correcting the load balancing 
algorithm. 

For the second exponential smoothing models, the 
smoothness index α is an important factor in algorithm 
prediction precision. In addition, the greater value of α 
results in a faster model prediction process. Usually, the 
smoothness index α is a constant determined by experience 
when the network traffic is predicted by second exponential 
smoothing models. However, it is very hard to set α by 
experience on the case of AC-AP architecture because the 
connection time and order is unknown, and the network 
traffic for each user on the AP is different. Therefore, in this 
paper, a dynamic exponential smoothing [20] model is used 
to dynamically adjust the smoothness index α in order to 
decrease prediction deviation. 

The user network traffic in time nth of one day may vary 
sharply compared to its historical data because of the 
traffic’s periodical and burst characteristics. In addition, the 
value of the exponent α is constantly adjusted based on the 
smallest network traffic deviation. Experiments for fixed 
index and dynamic index exponential smoothing models are 
shown in Table (2). 

IV. THE PROPOSED ALGORITHM 

As shown in Figure (2), there are m cloud ACs 
 and k APs . The AC load 

balancer relays an AP’s packet to a cloud AC and vice versa. 
To simplify the algorithm, it is assumed that the each AP-AC 
tunnel has the same quality and the same configuration for 
every AP. 

For cluster cloud ACs set: 

 
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TABLE III.      LOAD EUCLIDEAN DISTANCE FOR ALTERNATIVE  
ALGORITHMS 

Euclidean 

Distance 

Traffic 

Prediction 

& AP 

Number 

Algorithm 

AP 

Number 

Algorithm 

Current 

Traffic 

Load  

Algorithm 

Current 

Traffic & 

AP 

Number 

Algorithm 

 
(106) 

2.7477 2.8207 2.8409 2.8083 

 
(106) 

2.8292 2.7969 2.7960 2.8272 

 
(106) 

2.8603 2.8997 2.8251 2.8269 

Summary 
(106) 

8.4372 8.5173 8.4620 8.4625 

 

Let AC nodes have the same configuration,  
represents the mean user network traffic of cloud . The 
sum of all cloud AC’s mean user network traffic gives as: 

  

and  represents the current AP number managed by 

cloud  , therefore, the sum of AP managed by all cloud 
AC’s gives as: 

  

Let the weight coefficient be , where 0< <1. Given =0.5 
defines the weighted traffic load  of  as: 

 

Finally, the minimum traffic load among 
cluster cloud AC set is: 

 

V. SIMULATION AND EVALUATIONS 

This section presents the simulation setup and 
evaluations using MATLAB and CLOUDSIM simulation 
tools. The wireless user network traffic prediction and the 
process for APs accessing ACs is simulated by MATLAB, 
while the process time of cloud AC is simulated by 
CLOUDSIM after APs access ACs successfully. 

Euclidean distance is widely used in the sequence 
similarity research [21]. The Euclidean distance between 
sequence  and sequence 

 is given as: 

  

A. MATLAB Simulation 

Based on 140 APs 14 days of experimental data, the 
process for AP accessing 3 ACs is simulated through the 
traffic prediction & AP number algorithm, AP number only 
algorithm, current traffic load algorithm, and current traffic 
& AP number algorithm respectively. 

After all the AP access the 3 cloud ACs system 
successfully, the traffic sequence is taken from each AC for 
1440 sample data points per day. The similarity of traffic 
sequence is indicated by their Euclidean distance  
which reflects the load balancing among cluster cloud ACs. 

Let be the load sequence of 
 respectively, the average Euclidean 

distance for a 100 times simulations is shown in Table (3). 
A smaller Euclidean distance indicates a higher 

similarity. The sum Euclidean distance of the traffic 
prediction & AP number algorithm is 0.94%, 0.30% and 
0.30% smaller compared to the AP number algorithm, 
current traffic load algorithm, and current traffic & AP 
number algorithm respectively. Therefore, the traffic 
prediction & AP number algorithm is more efficient for 
cluster cloud ACs load balancing algorithm. 

B. CLOUDSIM Simulation 

After all the AP access the 3 cloud ACs system 
successfully with the load balancing algorithm through the 
traffic prediction & AP number algorithm, AP number only 
algorithm, current traffic load algorithm, and current traffic 
& AP number algorithm respectively, the traffic sequence is 
taken from each AC for 1440 sample data points per day. 
The process time is simulated through CLOUDSIM and the 
Euclidean distance for the process time sequence is 
calculated to evaluate the different load balancing 
algorithms’ efficiencies. 

In this simulation, one broker and three virtual hosts with 
node id 1, 2 and 3 are created with simulation parameters as 
MIPS = 250, RAM = 512MB, bandwidth = 1000Mbps and 
the image space size =10000MB. The broker takes the load 
of AC obtained from the MATLAB simulation and delivers 
the traffic to different virtual host which represents the cloud 
AC. 

Let T1, T2 and T3 be the process time sequence of AC1, 
AC2 and AC3 respectively. The average Euclidean distance 
for a 5 times simulations is illustrated in Table (4). 

As before, a smaller Euclidean distance means higher 
similarity. The sum Euclidean distance of the traffic 

prediction & AP number algorithm is 1.8%、0.32%、0.17% 

smaller compared to the AP number algorithm, current 
traffic load algorithm, and current traffic & AP number 
algorithm respectively. Therefore, the process time 
simulation by CLOUDSIM gives a result similar to the load 
simulation of MATLAB, and the traffic prediction & AP 
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TABLE IV.      PROCESS TIME EUCLIDEAN DISTANCE FOR DIFFERENT  
ALGORITHMS 

Process 

Time 

Euclidean 

Distance 

Traffic 

Prediction 

& AP 

Number 

Algorithm 

AP 

Number 

Algorithm 

Current 

Traffic 

Load 

Algorithm 

Current 

Traffic & 

AP Number 

Algorithm 

 
(106) 

2.0236 2.0856 2.0741 2.0473 

 
(106) 

2.0547 2.0652 2.0434 2.0591 

 
(106) 

2.0774 2.1206 2.0582 2.0597 

Total 

(106) 
6.1557 6.2714 6.1757 6.1661 

 

number algorithm is more efficient for cluster cloud ACs 
load balancing. 

To sum up, in the centralized forwarding mode, since the 
user network traffic in AC has similarity with a period of a 
day, it is feasible to predict the user traffic and take the 
prediction into account for cluster cloud ACs load balancing. 
The resultant traffic prediction & AP number algorithm 
gives a better result among cluster cloud ACs load balancing 
algorithms. 

VI. CONCLUSIONS 

In this work, the load balancing strategy is studied for 
APs accessing cluster cloud ACs. The similarity of wireless 
user network traffic is researched and a prediction algorithm 
is proposed to forecast the network traffic. The algorithm 
efficiency is compared with their load and process time 
Euclidean distance using simulation with MATLAB and 
CLOUDSIM. The simulations show that the second 
exponential smoothing model is more suitable for wireless 
user traffic prediction and the traffic prediction & AP 
number algorithm is more efficient among cluster cloud ACs 
load balancing algorithms. 
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