
A Robust Distributed Notch Filtering Algorithm for Frequency Estimation

Over Sensor Networks

Wael Bazzi

Electrical and Computer Engineering Department
American University in Dubai

Dubai, UAE
Email: wbazzi@aud.edu

Amir Rastegarnia, Azam Khalili, Mahtab Bahrami

Department of Electrical Engineering
Malayer University

Malayer, Iran
Email: {rastegarnia,khalili,bahrami }@malayeru.ac.ir

Abstract—In this paper, we consider the distributed frequency
estimation problem where nodes of a network collaborate with
each other to estimate the frequency of a single-frequency
signal from measurements corrupted by impulsive noise. In the
proposed algorithm, we reduce the impulsive noise effect by using
the maximum correntropy criteria (MCC). The MCC is a robust
optimality criterion for non-Gaussian signal processing. In the
proposed algorithm, each node employs an adaptive notch filter
to filter the input noisy measurements. The nodes collaborate
with each other to optimize a cost function (given in terms of
the MCC) in such a way that the filter output resembles as
closely as possible, the desired signal. To derive the algorithm,
we first formulate the distributed frequency estimation problem
in terms of the MCC. Next, we use the iterative gradient ascent
approach in our solution. The developed approach will be referred
to as the diffusion notch filter-MCC (dNF-MCC) algorithm.
The effectiveness of the proposed algorithm is demonstrated by
computer simulations.

Keywords–Adaptive networks; frequency estimation; diffusion;
notch filter.

I. I NTRODUCTION

The frequency estimation problem appears in many prac-
tical applications, such as biomedical engineering, power sys-
tems, radar detection, source localization, and speech pro-
cessing [1]. Several methods have been introduced in the
literature for frequency estimation and tracking. In the absence
of measurement noise, Pronys method can be applied [2].
For noisy environments, different algorithms such as linear
prediction (LP) methods have been developed [3]. When SNR
is low and limited (short data length) is available, the principal
eigenvector (PE) method is a proper solution [4]. For the men-
tioned case, the total least squares (TLS) method can provide
better frequency estimation performance [5]. Adaptive notch
filtering based methods are also developed for the frequency
estimation problem to track the time-varying frequencies.

All mentioned methods have been developed for single
processing node. However, in many practical applications, such
as radar, power systems, sensor networks we need to solve
frequency estimation problems in a fully distributed manner.
Recently, distributed estimation has become an important topic
in signal processing research due to the developments in
wireless networking and computer and sensor technologies.
Several useful distributed solutions for the estimation problem
have been developed, such as consensus strategies [6]–[8],

adaptive networks (i.e., incremental strategies and diffusion
strategies). It has been shown in [9] that adaptive networks are
more stable than consensus networks and they provide better
steady-state error performance. In this paper, we focus on an
adaptive network based solution.

We adopt the term adaptive networks from [10] to refer to
a collection of nodes that interact with each other and function
as a single adaptive entity that is able to track statistical
variations of data in real-time. The two major classes of adap-
tive networks are incremental strategy [11]–[14] and diffusion
strategy [15]–[19]. Comparing the two, incremental algorithms
require less communication among nodes of the networks
while diffusion algorithms are scalable and more robust to link
and node failure. In general, diffusion based algorithms consist
of two steps including the adaptation step, where the node
updates the weight estimate using local measurement data, and
the combination step where the information from the neighbors
are aggregated. Based on the order of these two steps, diffusion
algorithms can be categorized into two classes known as the
Combine-then-Adapt and Adapt-then-Combine (ATC).

In [20], a diffusion LMS algorithm for frequency estima-
tion over sensor networks have been introduced. Although the
algorithm works well in noisy environments, as we will show
in this paper, it performs poorly when the data are disturbed
by impulsive noises. To address this issue, we need to move
beyond mean squared error (MSE) and exploit higher order
moments of the error. To this end, we propose a new ATC
diffusion algorithm which relies on the maximum correntropy
criteria. MCC is a robust optimality criterion for non-Gaussian
signal processing and has recently been successfully applied
in adaptive filtering [21]–[23]. In the proposed algorithm,
each node employs an adaptive notch filter to filter the input
noisy measurements and generate the output signal. The nodes
collaborate with each other to optimize a cost function (given
in terms of the MCC) in such a way that the filter output
resembles as closely as possible, the desired signal. To derive
the proposed algorithm, we first formulate the distributed
frequency estimation problem in terms of the MCC. Then,
we resort to iterative gradient ascent approach to solve it and
derive the proposed algorithm, which will be referred to as
the diffusion notch filter-MCC (dNF-MCC) algorithm. We also
present simulation results to show the effectiveness of the new
proposed algorithm.

The remainder of this paper is organized as follows. Section
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Figure 1. Pole-zero plot for the IIR notch filter with transfer function (2).

II briefly reviews the notch filter and the maximum correntropy
criteria. In Section III, the proposed algorithm is introduced.
In Section IV, we present simulation results to verify our
theoretical analysis, and we conclude in Section V.

II. PRELIMINARY KNOWLEDGE

To make the paper self-contained, in this section, we
introduce the notch filter and maximum correntropy criteria.

A. Notch Filter

The transfer function for anM order IIR can be expressed
as

H(z) =

M∑
i=0

aiz
−i

P∑
i=0

biz−i

=

M∏
i=1

(z − zi)

P∏
i=1

(z − pi)
(1)

where in (1){zi}, i = 1, 2, · · · ,M and{pi}, i = 1, 2, · · · , P
denote the zeros and poles ofH(z) respectively. AsH(z)
reaches zero at{zi} and infinity at{pi}, then we can obtain the
transfer function of a notch filter with desired properties, by the
appropriate placement of poles and zeros. In [24], the transfer
function for a notch filter has been introduced as follows

H(z) =
Y (z)
X(z)

=
1 + θz−1 + z−2

1 + ρθz−1 + ρ2z−2
(2)

where θ = −2 cos(ω0T ) (T is the sampling period used to
generate a discrete-time sinusoidal signal from a continuous
time signal) and0 � ρ < 1. The idea is to place constrained
pole-zero pairs with their angles equal toω0 relative to the
horizontal axis on the pole-zero plot [24] (See Figure 1).
Taking the inverseZ transform of (2), we can obtain the input-
output relation for the notch filter as

y(n) = −ρθy(n−1)−ρ2y(n−2])+x(n)+θx(n−1)+x(n−2)
(3)

In this paper, we consider the given notch filter model in (2)
to develop our proposed algorithm.

B. Maximum Correntropy Criteria

For two scalar random variablesX andY the Correntropy
is defined by [21]

Cσ(X, Y ) , E [κσ(X − Y )]
= κσ(x− y)fX,Y (x, y)dxdy (4)

whereκσ(·) is a shift-invariant Mercer kernel, with the kernel
width σ > 0 and fX,Y (x, y) denotes the joint probability
distribution function ofX andY . The most widely used kernel

in correntropy is the complex Gaussian kernel which is given
by

κσ(ζ) =
1√
2πσ

exp
(
−|ζ|2

2σ2

)
(5)

Comparing correntropy with MSE, we note that Correntropy
is a local similarity measure, whereas MSE is global; meaning
that all the samples in the joint space contribute appreciably
to the value of the similarity metric, while the locality of
correntropy means that the value is primarily dictated by the
kernel function along thex = y line. Thus, we can use the
localization provided by the kernel width to reduce the effects
of outliers in the measured data. Note that the metrics, such
as MSE that rely only on the second order moment can easily
get biased in such conditions.

Remark 1. It must be noted that in practice, the joint pdf
fX,Y (x, y) is unknown and only finite number of samples
{xt, yt}, t = 1, 2, . . . , L from X and Y are available. Thus,
a sample estimator for correntropy can be defined as

Ĉσ(X, Y ) =
1
L

L∑
t=1

κσ(xt − yt)2 (6)

Remark 2. In general, a larger kernel size makes a kernel-
based algorithm less robust to the outliers, while a smaller
kernel size makes the algorithm stall. Note that asσ →∞ the
MCC approximately becomes equivalent to the MSE criterion.

III. PROPOSEDALGORITHM

We consider a connected sensor network withN sensors
(nodes) and denote it by a setN = {1, 2, · · · , N}. We denote
byNk the neighborhood nodes of nodek where, by definition,
we havek ∈ Nk. The network is deployed to estimate the
frequency of a sinusoidal signals(t) = A sin(ω0t+φ) through
the collected measurements by its nodes. We can assume that at
any discrete time instantn, the observed discrete measurement
by the node can be expressed by

xk(n) = Ak sin(ω0nT + φk) + εk(n) (7)

whereAk andφk are the amplitude and initial phase respec-
tively and εk(n) denotes the observation noise term which is
modelled as zeros mean Gaussian with varianceσ2

ε,k. Note that
the input-output relation for the notch filter embedded in node
k is given by

yk(n) = −ρθk(n)yk(n− 1)− ρ2yk(n− 2)
+ xk(n) + θk(n)xk(n− 1) + xk(n− 2) (8)

whereθk(n) denotes the local estimate ofθ at time instantn
at nodek. We can estimateθ at every node by an adaptive
filter algorithm as follows: at time instantn, every nodek
usesxk(n) as the filter input and updatesθk(n) to generate
the outputyk(n) such that as time evolves,θk(n) converges to
−2 cos(ω0T ). To this end, we need to consider a suitable cost
function. Using the MCC, we can formulate the estimation of
parameterθ as the following optimization problem:

argmax
θk(n)

J(θk(n)) (9)
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with

J(θk(n)) = J0

N∑
k=1

n∑
m=n−L+1

exp

(
−(dk(n)− yk(n))2

2σ2

)
(10)

whereJ0 = 1
Lσ
√

2π
. Note that onceθk(n) → −2 cos(ω0T ), the

notch filter will reject the single-frequency signalsin(ω0nT +
φk), so the desired output isdk(n) = 0. Hence, the cost
function in (10) will change to

J(θk(n)) =
1

σ
√

2π

N∑
k=1

exp
(
−y2

k(n)
2σ2

)
(11)

Obviously the cost function in (11) can be expressed by the
following equivalent form

J(θk(n)) =
N∑

k=1

Jk(θk(n)) (12)

where

Jk(θk(n)) =
1

σ
√

2π
exp

(
−y2

k(n)
2σ2

)
(13)

Problems of the form in (11) can be solved by diffusion
adaptive networks. The general adapt-then-combine (ATC)
diffusion strategy solution for (11) is given by

φk(n) = θk(n− 1) + µ (∇θJk(θk(n− 1)))

θk(n) =
N∑

`=1

c`kφ`(n) (14)

where φk(n) denotes an intermediate estimate at nodek,
µ > 0 is the step-size parameter and∇θ denotes the gradient
J(θk(n−1) with respect toθk(n−1). Moreover, nonnegative
coefficientsc`k satisfy the following conditions

c`k = 0, ` /∈ Nk
N∑

k=1

c`k = 1 k ∈ Nk
(15)

Substitutingyk(n) in (11) and taking the gradient with respect
to θk(n− 1) yields

∇θJk(θk(n− 1)) =
−yk(n)√

2πσ3

(
− ρyk(n− 1)

+ xk(n− 1)
)

exp
(
−y2

k(n)
2σ2

)
(16)

Replacing (16) in (14) gives the update equation for our
proposed algorithm as follows

φk(n) = θk(n− 1)

− µ√
2πσ3

yk(n)
(
−ρyk(n− 1) + xk(n− 1)

)
× exp

(
−y2

k(n)
2σ2

)
θk(n) =

N∑
`=1

c`kφ`(n) (17)

The pseudo code for the proposed algorithm is given in
Algorithm 1.
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Figure 2. The network topology.

IV. SIMULATION RESULTS

In this section, we present the simulation results to show
the effectiveness of the proposed algorithm. To this end, we
consider a network withN = 15 nodes as shown in Figure
2. The frequency of the sinusoidal signal isω0 = 100 and
the sampling rate is 600 Hz. So, the observed signal by every
nodek can be expressed as

xk(n) = sin(2π100nT + φk) + εk(n) (18)

where φk is selected randomly for every node. To generate
the impulsive noise at nodek, we can assume that the
measurement noise term is given by

εk(n) = gk,1(n) + bk(n)gk,2(n) (19)

wheregk,1(n) andgk,2(n) are independent, zero mean Gaus-
sian noise with variancesσ2

g,1 andσ2
g,2, respectively, andbk(n)

is a switch sequence of ones and zeros which is modeled as
an independent and identically distributed Bernoulli random
process with occurrence probabilitiesprob(bk(n) = 1) = pr .
Note that the variance ofgk,2(n) is chosen to be very much
larger than that ofgk,1(n) so that whenbk(n) = 1, a large
amplitude impulse is generated. In our simulations we set
σ2

g,1 = 0.001, σ2
g,2 = 5000σ2

g,1and pr = 0.02. For the notch
filter, we setρ = 0.95. For the given algorithm in [20], we
select the step-size as 0.01, while for the proposed algorithm
we setµ = 0.2 and kernel sizeσ = 1.5. Note that these
parameters are selected for the mentioned algorithms such that
when the observation noise is Gaussian, their performance
is similar. In Figure 3, the learning curves, in terms of the
network mean-square deviation (MSD) metric, for both algo-
rithms are presented. Note that the network MSD is defined
as

MSD ,
1
N

lim
n→∞

E
[
|θk(n)− θ|2

]
From Figure 3, we can see that the proposed algorithm
achieves lower steady-state MSD than the dNF-LMS algo-
rithm. The stead-state frequency for nodek = 4 for both
algorithms are plotted in Figure 4, where it is clear that the
proposed algorithm provided more robust estimates than those
of the dNF-LMS algorithm.

V. CONCLUSIONS

In this paper, we proposed a diffusion MCC-based notch
filtering algorithm for the distributed frequency estimation
problem. We resorted to iterative gradient ascent approach to
derive the proposed algorithm. Simulation results showed that
the proposed algorithm outperforms the available dNF-LMS
algorithm when data are corrupted by impulsive noise.
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Algorithm 1 Proposed Distributed Stackelberg Algorithm

1: Initialization
2: for n = 3, 4, · · · do
3: For k ∈ Nk initialize θk(1), θk(2),θk(3), µ
4: Adaptation
5: Every node updatesφk(n) asφk(n) = θk(n− 1)− µ√

2πσ3 yk(n) (−ρyk(n− 1) + xk(n− 1)) exp
(
−y2

k(n)
2σ2

)
6: Combination

7: Every node updatesθk(n) asθk(n) =
N∑̀
=1

c`kφ`(n)

8: end for
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Figure 3. The network MSD learning curves for dNF-LMS and the proposed
algorithm.
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Figure 4. steady-state frequency estimations for dNF-LMS and the proposed
algorithm.
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