
Collaborative Cloud-based Application-level Intrusion Detection and Prevention

Omar Iraqi∗†, Meryeme Ayache∗, and Hanan El Bakkali∗
∗Rabat-IT Center, ENSIAS, Mohammed V University, Rabat, Morocco

†School of Science and Engineering, Al Akhawayn University, Ifrane, Morocco
Email: o.iraqi@aui.ma, meryeme.ayache@um5s.net.ma, h.elbakkali@um5s.net.ma

Abstract—The recent years have witnessed an increasing
number of coordinated and large-scale attacks. This comes at
no surprise as data processing, transfer and storage have got
and continue to be faster and cheaper. A standalone Intrusion
Detection System (IDS) may only be exposed to a narrow
subset of such attacks, which could be too insignificant to
raise suspicion. In contrast, a Collaborative Intrusion Detection
System (CIDS) leverages collaboration among its members across
multiple networks and organizations. In this work, we extend our
Application-level Unsupervised Outlier-based Intrusion Detection
and Prevention framework by leveraging the benefits of CIDSs.
More specifically, we design a collaborative intrusion detection
architecture made of three levels: the organization level, the
domain level and the overarching root level. This hierarchical
architecture combined with streaming and clustering offers
very good privacy, scalability, accuracy and resilience tradeoffs.
Moreover, the adoption of the cloud as a cost-effective and elastic
platform allows us to handle big data generated by millions of
applications as alarm streams. We also specify a lightweight Ap-
plication Alarm Message Exchange Format (A2MEF) to support
collaboration among the different stakeholders. Finally, we design
a reputation-based alarm correlation algorithm that manages the
iterative and bidirectional relationship between the reputation of
involved parties and the accuracy of their reported alarms.

Keywords—Collaborative Intrusion Detection; Application-level
Intrusion Detection; Hierarchical Architecture; Alarm Correlation;
Cloud Computing; Big Data.

I. INTRODUCTION

With the ever growing and affordable processing power
and network bandwidth, coordinated and large-scale attacks
are steadily prevailing. For example, adequately-equipped at-
tackers may launch Internet-wide scans, discover and infect
vulnerable systems to finally use them in Distributed Denial
of Service (DDoS) attacks worldwide. A standalone IDS may
only be exposed to a narrow subset of such attacks, which
could be too insignificant to raise suspicion [1]. In contrast,
a Collaborative Intrusion Detection System (CIDS) leverages
collaboration among its members, which may spread over
multiple networks or even different organizations. This global,
cross-network and cross-organizational approach does not only
reduce false negatives, but it also reduces false positives
thanks to alarm correlation and filtering [1]. Moreover, CIDSs
improve overall performance while reducing the overhead on
each node thanks to load sharing [2].

In this work, we extend our Application-level Unsupervised
Outlier-based Intrusion Detection and Prevention framework
[3] by leveraging the benefits of CIDSs. In our initial frame-
work, methods to be instrumented are selected statically/man-
ually by the application owner. Indeed, when applying our

framework to immunize a target application [3], the owner has
to explicitly specify methods or entire packages to intercept,
monitor and analyze using unsupervised outlier detection.
Such a choice may not be well-informed or may even be arbi-
trary. Some irrelevant methods may be instrumented, incurring
an unjustified overhead, while other pertinent methods may be
missed, causing some critical intrusions to go undetected.

Therefore, we aim at empowering our application-level
intrusion detection and prevention framework to make well-
informed, risk-based and adaptive decisions about methods to
(un)instrument. Risk identification, or at least threat identifi-
cation, shall be supported through collaboration. Peer appli-
cations (instances of the same application running in different
nodes and different organizations eventually) would start by
instrumenting seed methods that can be downloaded from the
collaborative system, manually selected by the node owner,
or even based on information gathered from external sources,
such as Computer Emergency Response Teams (CERTs) and
security advisories. Then, as an application instance detects an
intrusion at the level of a method, related information propa-
gates through the collaborative system, ultimately making the
other instances activate the monitoring of that method. Peer
applications may be further narrowed under communities and
alliances based on the geopolitical context, business sector,
causes and interests, as well as other criteria to be defined.
Once these communities are designated, their application
instances shall be considered as community members. This
allows our initial framework to evolve from empowering
applications with immunity like the human body, to providing
them with a sense of belonging like in human societies.

This work makes the following contributions:

• A collaborative cloud-based framework for application-
level intrusion detection

• A hierarchical architecture for collaborative application-
level intrusion detection

• An application alarm message exchange format
• A reputation-based alarm correlation algorithm

This paper is organized as follows. Section II reviews the
related work in terms of application-level intrusion detection
and collaborative intrusion detection, as well as collaboration-
specific threats and countermeasures. Section III describes
our Collaborative Cloud-based Application-level Intrusion De-
tection framework in terms of architecture, alarm exchange
format and alarm correlation algorithm. Finally, we conclude
our paper by stating future work and direction.

63Copyright (c) IARIA, 2019. ISBN: 978-1-61208-719-1

ICWMC 2019 : The Fifteenth International Conference on Wireless and Mobile Communications

II. RELATED WORK

A. Application-level Intrusion Detection

This work leverages and extends our Application-level Un-
supervised Outlier-based Intrusion Detection and Prevention
framework [3]. The ultimate goal is to empower software
applications with artificial immunity against cyber attacks.
We contributed to the fulfillment of such a goal by allowing
applications themselves to play a central and active role in
the intrusion detection and response processes. While tra-
ditional network and host intrusion detection systems have
access to raw strings and bytes through I/O operations only,
our framework allows tracking application domain objects
all along the processing lifecycle. Thanks to unsupervised
learning, our framework leverages the application business
context and learns from production data, without creating any
training burden on the application owner. Moreover, as our
framework uses runtime application instrumentation, it incurs
no additional cost on the application provider.

More specifically, we built a fine-grained and rich-feature
application behavioral model that gets down to the method
level and its invocation context. We consider the call stack as
a key indicator of such a context. Indeed, under different call
stacks, the same method may take completely different sets of
inputs, follow different control flows, and yield different sets
of outputs. Unsurprisingly, the call stack is extensively used in
the current work. As a matter of fact, the main purpose of the
collaborative framework proposed in this paper is to identify,
prioritize and share call stacks to monitor per application.

Other approaches to application intrusion detection have
been proposed. A useful review is given by [3] - Table 1.
It classifies and compares different works in terms of what
data is collected, who collects it, from where it is collected,
when it is collected and how it is analyzed.

B. Collaborative Intrusion Detection

The main artifacts related to CIDSs are challenges and
requirements, architecture, analysis target, technique and time-
line, shared information and interoperability.

1) Challenges / Requirements: While collaborative intru-
sion detection offers several benefits, it also introduces several
challenges, which drive the main requirements of CIDSs.
These are privacy, scalability, accuracy, resilience and incen-
tive [4]. As explained below, these requirements are oftentimes
conflicting, e.g., privacy and scalability vs. accuracy.

1) Privacy: as the collaborating members need to share
information with each other, privacy becomes a concern.
While secure channels can protect shared data from
eavesdropping by external parties, sensitive information
may still be divulged to other CIDS members. Therefore,
shared data shall be carefully specified in order to abide
by the security policy, legal obligations and contractual
agreements of involved parties.

2) Scalability: collaboration creates a network overhead
that depends on the amount of exchanged data, as well as

the number of nodes. The adopted architecture too has
a direct impact on scalability. For example, in a cen-
tralized architecture, central servers may be overloaded,
affecting system scalability. However, in a distributed /
P2P architecture, higher scalability is supported as nodes
play a symmetric role, but network overhead grows
quadratically with the number of nodes [4].

3) Accuracy: while collaboration is supposed to enhance in-
trusion detection accuracy, hiding some data to preserve
privacy or reducing it to support scalability may have a
negative impact on accuracy. Moreover, in distributed /
P2P architectures where higher scalability is supported,
accuracy is negatively impacted as no member holds
complete knowledge about the system [4]. Therefore,
tradeoffs between data privacy and system scalability
versus detection accuracy shall be made depending on
organizational priorities and operational constraints.

4) Robustness / Resilience: attacks against CIDSs may
have disastrous consequences since protected networks,
systems and applications become directly exposed to
subsequent threats. This is why CIDSs shall avoid single
points of failure (SPoF) and be resilient to both external
and internal attacks [1]. These are described below along
with corresponding state of the art countermeasures,
such as membership, trust and reputation management.

5) Incentive: why would an organization join a CIDS?
Why would it offer its processing power and network
bandwidth, and maybe sacrifice its privacy in the name
of collaboration? Organizations have mainly two in-
centives: coercion incentive and benefit incentive [4].
Coercion incentive means that nodes have no choice
to ”survive” but collaborate. This could be due for
instance to their insufficient processing power or their
incapacity to detect intrusions without external help. As
opposed to coercion incentive, benefit incentive means
that members are encouraged to join the collaborative
sytem and if they do, they will gain benefits from the
CIDS. More specifically, these are ”merit-based”, which
means that higher contributions lead to higher benefits.

2) Architecture: A CIDS is made of monitoring units,
correlation units and decision units [4]. A monitoring unit
gathers data locally and, depending on the node capability and
design choices, may partially or fully process it. Raw, partially
processed or fully processed data is then passed over to a
correlation unit. This latter is what really characterizes CIDSs.
It communicates with other correlation units and exchanges
security-relevant information with them according to a proto-
col, such as the Intrusion Detection Exchange Protocol (IDXP)
[5] or a common data exchange format, such as the Intrusion
Detection Message Exchange Format (IDMEF) [6]. Finally,
the decision unit collects and processes shared information to
make a decision. Where these units are deployed and how they
integrate with each other depend on the adopted architecture.
Tradeoffs made in fulfilling the requirements stated above lead
to different architectures. In addition to the aforementioned

64Copyright (c) IARIA, 2019. ISBN: 978-1-61208-719-1

ICWMC 2019 : The Fifteenth International Conference on Wireless and Mobile Communications

centralized and distributed / P2P architectures, a hierarchical
architecture is also suggested and used [1] [4].

1) Centralized architecture: whereby a central server col-
lects and analyzes information shared by monitoring
nodes. The central server hosts the unique decision unit
along with a correlation unit. As mentioned earlier,
centralized architectures promote intrusion detection ac-
curacy since there is a central decision unit to which
all shared information converge. However, the central
server creates a Single Point of Failure (SPoF) and a
bottleneck against scalability [1] [4].

2) Distributed / P2P architecture: whereby all nodes of the
CIDS play a symmetric role. Hence, each and every
node hosts a monitoring unit, a correlation unit and
a decision unit. As previously mentioned, a peer-to-
peer architecture does not suffer from any SPoF, scales
to increasing numbers of nodes, but at the expense of
intrusion detection accuracy. To avoid overloading the
underlying network by peer-to-peer traffic, peer selection
criteria need to be defined in order to narrow the number
of peers that each node communicates with.

3) Hierarchical architecture: whereby a compromise be-
tween the centralized and the distributed architectures
is sought. To this end, the centralized architecture is
enhanced by inserting additional (tree / hierarchical)
layers between monitoring nodes and the root central
server. Thanks to these layers, monitoring nodes com-
municate with the central server via their parents. These
may gather and aggregate information shared by their
children, before sharing it with their own parents. At
higher levels, in addition to communicating with their
parents, nodes may also communicate peer-to-peer.

Table I summarizes the architecture support for privacy, scala-
bility, accuracy and resilience requirements. Incentive has not
been included as it is not directly affected by the architecture.

TABLE I. ARCHITECTURE SUPPORT FOR REQUIREMENTS

Architecture Privacy Scalability Accuracy Resilience
Centralized
Distributed
Hierarchical

3) Analysis: This is the core process in intrusion detection.
It targets specific data and processes it using a specific
technique in a specific timeline.

1) Target – what data is analyzed: network packets, system
logs, other host data, or application-level data.

2) Technique – how data is analyzed: signature-based or
anomaly-based: (semi-)supervised, unsupervised.

3) Timeline – when data is analyzed: offline or online.

4) Shared Information: Collaboration units may share raw,
partially processed or fully processed data [4] depending on
node resources and capabilities, as well as design choices.

1) Raw data: whereby low-capability nodes send gathered
data ”as is” to higher-capability nodes. This practice af-
fects data privacy and causes a higher network overhead.

2) Partially processed data: whereby capable nodes perform
some data preprocessing, filtering, and/or compression in
addition to sensitive data hiding. These practices reduce
network traffic and strive to preserve data privacy.

3) Processed data: whereby nodes perform full data pro-
cessing and analysis to identify intrusions locally and
send corresponding alarms to other nodes for further
correlation and/or final decision.

5) Interoperability: An underlying collaboration mecha-
nism needs to be defined and implemented at the level of CIDS
nodes. This mechanism can be a communication protocol, such
as the Intrusion Detection Exchange Protocol (IDXP) [5], a
data exchange format, such as the Intrusion Detection Message
Exchange Format (IDMEF) [6] or even a collaboration frame-
work, such as JXTA, Pastry, Scribe, GNUnet and FreeNet.

6) Taxonomy: A detailed taxonomy of research-oriented
and commercial CIDSs based on their architecture, as well as
their support for privacy, scalability, accuracy and resilience
requirements is given by [1] - Table III and by [4] - Table
VII. An equally useful taxonomy of CIDSs based on their
analysis target and timeliness, architecture, shared information
and interoperability is given by [4] - Table IV.

C. Collaboration-specific Threats and Countermeasures

While IDSs are subject to DDoS and mimicry attacks
in general, we focus here on attacks that specifically target
the collaboration aspect of CIDSs. First, we will identify
collaboration-specific threats, as well as their compensating
baseline controls in terms of trust/reputation management and
shared information protection. Then, we will describe popular
attacks against these baselines and their countermeasures.

1) Collaboration-specific Threats and Baseline Controls:
These can affect the confidentiality, as well as the integrity of
shared information, hence exposing the CIDS and protected
systems to a host of risks. Confidentiality-related threats take
advantage of shared information to divulge sensitive data to
attackers. Examples include exposing monitors location and
target like networks, systems, applications and data, as well
as their vulnerabilities. Integrity-related threats can be sum-
marized as having rogue or compromised nodes ”telling lies”
or ”not saying the whole truth” when sharing information, in
addition to malicious parties tampering with such information
in transit. Examples include nodes spreading fake alerts and/or
selectively forwarding received information. In particular, a
so-called Sybil attack – named after the famous dissociative
identity disorder case and book – consists of using an army
of pseudonymous nodes to influence CIDS decisions [7].

To address confidentiality-related attacks, information hid-
ing, e.g. hashing, is needed. As far as integrity-related attacks
are concerned, trust/reputation management has been intro-
duced. It consists of managing a trust/reputation value for each

65Copyright (c) IARIA, 2019. ISBN: 978-1-61208-719-1

ICWMC 2019 : The Fifteenth International Conference on Wireless and Mobile Communications

node, as well as to identify, penalize and ultimately kick off
rogue and compromised nodes. Trust/reputation management
requires node identification and authentication. Moreover,
Sybil attacks can only be addressed through a certification
authority (CA), which scrutinizes and validates nodes [7].

2) Attacks against Trust/Reputation Management and
Countermeasures: Trust/reputation management can be com-
promised by several attacks. A so-called Betrayal attack con-
sists of compromising a trusted node and using it to expose the
confidentiality and/or integrity of the CIDS. A variant called
Sleeper attack uses a rogue node that spends an initial period
faking a normal behavior to gain a higher trust/reputation value
before exploiting it against the CIDS. The Newcomer attack
tries to make the CIDS ”forget” about the bad reputation of a
rogue node by joining it again under a new, clean identity.

To counteract these attacks, several enhancements have been
suggested. More specifically, the impact of both Betrayal and
Sleeper attacks can be reduced through fast degradation of
trust against nodes that exhibit a malicious behavior, while
the Newcomer attack can be controlled through a probation
period for newcomers. Table II summarizes attacks against
trust/reputation management and their countermeasures.

TABLE II. ATTACKS VS. COUNTERMEASURES

Attack Trust/Reputation Management
Sybil CA
Betrayal / Sleeper Fast degradation of trust
Newcomer CA, Probation period

D. Cloud-based Intrusion Detection

Cloud computing provides organizations with computing re-
sources featuring easy deployment, connectivity, configuration
and scalability. There are three cloud service delivery models
and IDS cloud deployment differs from one model to another.

• Software as a Service: in SaaS users merely depend upon
their providers to deploy their services. Hence, the SaaS
cloud provider is responsible of deploying the IDSs. In
this case, the users may only get some logs or configure
some cosutoms monitoring alerts.

• Platform as a Service: in PaaS, IDSs are deployed outside
applications by the cloud service provider. However, users
can configure their applications and platforms to log out
onto a central location to be used by a central IDS.

• Infrastructure as a Service: this delivery model is more
flexible in term of IDS deployment. In fact, the IDS can
be deployed at several levels in the IaaS cloud layer: the
virtual machine, the hypervisor and the network.

As listed and compared in table III, we can classify the
deployment of IDSs in the cloud into five categories:

• In-Guest agent based approach, which consists of de-
ploying the IDS at the Virtual Machine (VM) level. The
advantage of this approach is that it does not require any
modification of the hypervisor and runs as an application
in a tenant VM, which is configured and controlled by

the tenant. Moreover, the IDS has a good visibility of
the monitored VM. Hence, it can perform deep scanning
of packets leaving or entering the VMs and can perform
host audit log analysis, system call analysis and program
analysis of the VMs. One limitation of this approach is
that it fails to detect collaborative attacks.

• In-VMM agent based approach, which consists of deploy-
ing the IDS at the hypervisor level in IaaS environments.
The hypervisor acts like a central location for intrusion
detection. In fact, it can monitor both the hypervisor
and data traveling between the hypervisor and the virtual
machine (for any VMM attacks). However, just like the
In-Guest agent based approach, the In-VMM agent based
approach fails too in detecting collaborative attacks.

• Network-monitor based approach, which allows monitor-
ing the network traffic between VMs and the host ma-
chine and between VMs themselves. IDSs are deployed at
network points, such as the core switch or other network
switches. However, this approach yields a poor visibility
of the monitored VMs and can not detect host-based
anomalies, such as VM escapes, rootkits, viruses, worms
and collaborative network attacks.

• Collaborative agent based approach, which places IDS
components at different locations, such as at the VM,
VMM or network points. These components collaborate
to detect various attacks including collaborative attacks.

• Distributed approach, which runs IDS instances over
tenant VMs (TVMs) on a Cloud Compute Server but are
controlled by a Cloud Controller Server (CCS).

TABLE III. INTRUSION DETECTION SYSTEMS IN THE CLOUD

References Year IDS Method IDS Type
Lee et al. [8] 2011 In-Guest Agent (A) Anomaly-based
McGee [9] 2013 In-Guest Agent (A) Prevision-based
Shi et al. [10] 2016 In-VMM Agent (B) Anomaly-based
Maiero et al.[11] 2011 In-VMM Agent (B) Intrusion-based
Chiba et al. [12] 2018 Net. Monitor (C) Anomaly-based
Bharadwaja et al. [13] 2011 Collab. Agent (D) Anomaly-based
Lo et al. [14] 2010 Collab. Agent (D) Attack-based
Gupta et al. [15] 2014 Disributed (E) Attack-based

E. Comparison of our Framework with Existing CIDSs

As opposed to existing CIDSs that use either the client-
server model or the peer to peer model for synchronous
and tightly-coupled communication, we adopt a hierarchical
architecture that leverages cloud-based, clustered, and bro-
kered streaming for asynchronous, loosely-coupled and scal-
able communication. Another unique aspect of our framework
is the integration of social, news and security advisories
feeds to enhance collaboration. We also define a lightweight
JSON message exchange format to share alarms as fully
processed data among nodes hidden behind brokers, hence
avoiding sensitive information leakage. Finally, we design an
alarm correlation algorithm that manages the iterative and
bidirectional relationship between the reputation of involved
parties and the accuracy of their reported alarms.

66Copyright (c) IARIA, 2019. ISBN: 978-1-61208-719-1

ICWMC 2019 : The Fifteenth International Conference on Wireless and Mobile Communications

III. OUR COLLABORATIVE CLOUD-BASED
APPLICATION-LEVEL INTRUSION DETECTION

A. Collaborative Cloud-based Intrusion Detection Architec-
ture

As shown in Figure 1, we adopt a hierarchical collaborative
intrusion detection architecture leveraging the cloud. The
choice of a hierarchical architecture is motivated by the pri-
vacy, scalability, accuracy and resilience tradeoffs it offers in
comparison with the centralized and distributed architectures.
Moreover, the cloud is a key element in our architecture thanks
to its cost-effectiveness, elasticity and capacity to handle alarm
streams generated by millions of applications as big data.

In the proposed architecture, organizations can have their
applications running on premise or in the cloud. These appli-
cations are instrumented to dynamically (un)select methods for
raw data extraction and secure streaming to the organization-
level Kafka cluster through Kafka Streams API. These data
streams are continuously consumed by the Organization-level
Application Intrusion Detection Nodes (OAIDNs). These are
managed by Kafka Streams API as a group/cluster (OAIDC)
and implement our unsupervised, application-level intrusion
detection framework [3]. Moreover, we distribute the load
among the OAIDNs while making sure each OAIDN receives
a coherent and complete stream. To this end, we create a single
Kafka topic for all applications, with a separate partition for
each call stack of each selected method within each monitored
application. This way, the whole stream of data extracted from
a method call in a given call stack will be processed by
the same OAIDN. Other streams may be assigned to other
OAIDNs in the cluster for load sharing.

Intrusions detected at the level of an organization are
streamed as alarms to the domain-level correlation and deci-
sion cluster (DCDC) through the domain-level Kafka cluster.
We would like to underscore that while alarms are shared with
the DCDC, applications remain hidden behind the OAIDC.
Without using other offline techniques like social engineer-
ing, it is not possible to reveal which application generated
which alarm. As previously mentioned, to defend against
Sybil attacks, the organization-level intrusion detection cluster
needs to present a trusted certificate to the DCDC. With its
broader cross-organizational view, the DCDC is responsible
for correlating alarms generated by all organizations under its
domain. Here again, we define a single Kafka topic and we
partition it based on the application identifier. Then, the DCDC
propagates the aggregated scores to higher levels up to the
Root Correlation and Decision Cluster (RCDC) for decision
making and information sharing with other CIDS branches.
Moreover, the DCDC may make decisions at its own level
and share related alarms with organizations under its domain.

Finally, the DCDC may leverage news, social and security
advisories feeds to augment correlated data with geopolitical
and cyber trends. Here, we consider authoritative security ad-
visories, such as the National Vulnerability Database (NVD),
as well as feeds from trusted security product vendors. We

also consider other general-purpose feeds, such as news and
social feeds from sources that are not necessarily trusted.
Nevertheless, such sources can bring valuable information
timely. AI and text mining techniques shall be applied to filter
corresponding feeds and extract meaningful information.

B. Application Alarm Message Exchange Format

We define an Application Alarm Message Exchange Format
(A2MEF) that maps a list of alarms to an application. A2MEF
is specified as a lightweight JSON object whose schema is
exhibited in Listing 1. The app property consists of SHA-512
hash of the application software ID (SWID) in compliance
with the ISO/IEC 19770-2 standard. According to this stan-
dard, the SWID specifies the software name, edition, version
and publisher in XML format [16]. The alarms property is an
array of alarms described each by the method and specific call
stack that raised it. It is worth mentioning that the app property
may be omitted if it can be inferred from the queue to/from
which the alarm message is streamed, e.g., Kafka stream
topic or partition. The same format can be used to propagate
information upward the hierarchy for alarm correlation and
decision making, as well as downward the hierarchy for alarm
feedback and response. In the latter case, the alarms array shall
represent an ordered list of correlated alarms.

{
"$schema": "http://json-schema.org/schema#",
"title": "Application Alarms",
"type": "object",
"properties": {
"app": {

"type": "string",
"description": "SHA-512 hash of the ISO/IEC 19

770-2 SWID"
},
"alarms": {

"type": "array",
"description": "Alarms bound to app",
"items": {

"type": object,
"properties": {

"method": {
"type": "string",
"description": "Fully qualified method

name"
},
"callstack": {
"type": "string",
"description": "SHA-512 hash of the

call stack"
}

}
}

}
}

}

Listing 1. JSON Schema of A2MEF

C. Reputaion-based Alarm Correlation

We aim here at designing a correlation algorithm that, given
a stream of alarms reported by different parties, emits an
ordered list of methods and call stacks per application. This

67Copyright (c) IARIA, 2019. ISBN: 978-1-61208-719-1

ICWMC 2019 : The Fifteenth International Conference on Wireless and Mobile Communications

Fig. 1. Collaborative Cloud-based Intrusion Detection Architecture

list can be used by concerned/subscribed parties to prioritize
and optimize their application monitoring. Our algorithm shall
manage the bidirectional relationship between the reputation
of each party and its reported alarms. Indeed, while reputation
shall be based on the accuracy of reported alarms, it shall also
reflect on the correlation weight of these alarms.

We could base our alarm correlation on a score aggrega-
tion technique from the Multiple Attribute Decision Making
(MADM) field. As an example, the spectral method [17] could
be a good starting point. We would model our call stacks as
candidates that are scored or ranked by our parties, considered
in this context as sources of information, voters or judges. This
requires specifying a score for each alarm or at least a rank

from which a score can be derived. It would be a good fit
for our application-level unsupervised outlier-based intrusion
detection framework [3] as it already provides such a score.

However, MADM methods suppose that every judge pro-
vides a score for every candidate. Other improved methods
alleviate this constraint, but still require a minimum overlap
between candidates scored by different judges [18]. Since
in our case we may have thousands of applications with
thousands of call stacks to score by thousands of judges,
finding those minimum overlaps would not be guaranteed, or
at least not in a linear time. Moreover, each aggregated score
must be continually recomputed as new alarms are received.
Therefore, we had to design a new correlation method.

68Copyright (c) IARIA, 2019. ISBN: 978-1-61208-719-1

ICWMC 2019 : The Fifteenth International Conference on Wireless and Mobile Communications

For a given application with an internal identifier (aid)
mapped to the SHA-512 of its SWID, we consider a matrix
Aaid

c,p that represents the alarms received from p parties about
c call stacks. So Aaid

ij reflects alarms reported by party j about
call stack i. Aaid evolves through time with the alarm input
stream. Part of Aaid evolution, p and c are supposed to grow
as new parties related to the given application join the system
or alarms about new call stacks are reported. We also consider
a Raid

p,1 vector that represents the reputation of the p parties and
evolves through time depending on the accuracy of alarms
reported by each party about the given application. Finally,
we consider a vector Said

c,1 that represents the scores of the c
call stacks. Based on these scores, call stacks are sorted before
being sent back to the p parties. For simplicity, Aaid

c,p, Raid
p,1 and

Said
c,1 will be referred to as A, R, S respectively.

As shown in Algorithm 1, we create three observers: O1,
O2 and O3. O1 is an event observer that updates S and
R for each predefined number of received alarms. O1 also
sends the updated ordered list of call stacks (SortedCS) to
concerned parties. O2 is a stream observer that updates A for
every received alarm. O3 is a time observer that updates A
periodically to take account of aging.

1) Reputation and Score Manager: Our method is based on
an iterative, bidirectional, never-ending relationship between
the reputation of parties and the accuracy of their reported
alarms. Lines 10 and 11 of Algorithm 1 reflect such a
relationship. Each element of S, representing the score of a call
stack, is computed as a weighted sum of reported alarms. The
weights reflect the reputation of parties that have reported these
alarms (A x R). The other parties will be naturally excluded
from giving any judgement as their corresponding A cells are
null. Likewise, each element of R, reflecting the reputation of a
party, is computed as a weighted sum of reported alarms. The
weights are the scores of call stacks that have been reported
by these parties (AT x S). The intuition here is that the more
a party reports about a higher-score call stack, the higher its
reputation will be. Nevertheless, there is a pitfall that could
be exploited by parties to easily acquire a good reputation.
Indeed, as ordered lists of call stacks are published to all
subscribers, any party could just ”vote on the winner(s)” by
echoing top-ranked call stacks back to the system. This will
be addressed in the next subsection. Otherwise, our method
allows parties to join or leave at any time, as well as to report
or not alarms about any call stack at their own discretion.

2) Alarm Observer: The alarm observer is responsible
for initializing A, R and S elements, as well as continually
updating A elements. As shown on line 18 of Algorithm 1,
whenever a new party joins the system, the alarm observer sets
its reputation to 1. Similarly, whenever an alarm is reported
about a call stack for the first time, it sets the score of the
call stack to 1 as shown on lines 25 of Algorithm 1. It also
sets the alarm cells of the same call stack to 0, except for the
current alarm cell that is set to 1 as shown on lines 28 and
30 of Algorithm 1 respectively. Line 35 is the most important
line of the alarm observer. It determines how an A cell gets

Algorithm 1 Reputaion-based Alarm Correlation

1: A← [][]
2: R← []
3: S← []
4: SortedCS← []
5: c← 0
6: p← 0
7: changed← false
8: procedure REPUTATION AND SCORE MANAGER: O1
9: if changed then

10: S← A x R
11: R← AT x S
12: SortedCS← Sort call stacks based on S
13: if SortedCS has changed since last time then
14: encapsulate SortedCS as A2MEF and stream
15: changed← false
16: procedure ALARM OBSERVER: O2(callstack, party)
17: if new party then
18: R[p]← 1
19: bindParty(party, p)
20: pi← p
21: p← p + 1
22: else
23: pi← getPartyIndex(party)
24: if new callstack then
25: S[c]← 1
26: for index in 0..p-1 do
27: if index != pi then
28: A[c][index]← 0
29: else
30: A[c][index]← 1
31: bindCallStack(callstack, c)
32: c← c + 1
33: else
34: ci← getCallStackIndex(callstack)
35: A[ci][pi]← A[ci][pi] + 1/S[ci]
36: changed← true
37: procedure TIME OBSERVER: O3(agingFactor)
38: A← agingFactor . A

updated when the corresponding call stack has already been
reported, either by the same party or other parties. The idea
here is to favor ”breaking news”. An alarm about a call stack
whose score is already high does not ”help much”. This is why
we update the cell by adding a component as a decreasing
function of the call stack score (1/S[ci]). More importantly,
this addresses the shortcoming highlighted in the previous
section. Echoing top-ranked call stacks back to the system
will not help parties grow their reputation any faster.

3) Time Observer: The past is important, but the present
is more relevant. While learning from previous events, live
information should be given a higher weight. The time ob-
server fulfills this objective by introducing an aging factor. By

69Copyright (c) IARIA, 2019. ISBN: 978-1-61208-719-1

ICWMC 2019 : The Fifteenth International Conference on Wireless and Mobile Communications

multiplying A by an agingFactor on line 38 of Algorithm 1,
we increase the relative effect of live updates by the alarm
observer. It also reflects on R and S when they are updated by
the reputation and score manager. The agingFactor is to be
tuned through experiments. A typical value would be 0.8.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented our framework for Collabo-
rative Cloud-based Application-level Intrusion Detection and
Prevention, which extends our Application-level Unsupervised
Outlier-based Intrusion Detection and Prevention framework
by leveraging the benefits of CIDSs. We designed a collabo-
rative intrusion detection architecture made of three levels: the
organization level, the domain level and the overarching root
level. This hierarchical architecture combined with streaming
and clustering offers very good privacy, scalability, accuracy
and resilience tradeoffs. Moreover, the adoption of the cloud
as a cost-effective and elastic platform allows to handle big
data generated by millions of applications as alarm streams.

We also specified a lightweight Application Alarm Message
Exchange Format (A2MEF) to support collaboration among
the different stakeholders. Finally, we designed a reputation-
based alarm correlation algorithm that, given a stream of
alarms reported by different parties, emits an ordered list of
methods and specific call stacks per application. This list can
be used by concerned parties to optimize their application
monitoring. Our algorithm manages an iterative, bidirectional,
never-ending relationship between the reputation of parties and
the accuracy of their reported alarms. It also aims at coping
with known attacks against CIDSs.

We have started the implementation of our framework in
order to evaluate its effectiveness and efficiency. This will
allow us to fine tune the proposed architecture, the mes-
sage exchange format, as well as the alarm correlation algo-
rithm. We are faced with two main challenges: dynamically
(un)instrumenting application methods without creating an
unacceptable overhead, as well as using the right AI techniques
and tools to mine the unstructured social and news feeds.

REFERENCES

[1] E. Vasilomanolakis, S. Karuppayah, M. Muhlhauser, and
M. Fischer, “Taxonomy and survey of collaborative intru-
sion detection,” ACM Computing Surveys, vol. 47, no. 55,
pp. 1–33, 2015.

[2] C. V. Zhou, C. Leckie, and S. Karunasekera, “A sur-
vey of coordinated attacks and collaborative intrusion
detection,” Computers and Security, vol. 29, pp. 124–
140, 2010.

[3] O. Iraqi and H. E. Bakkali, “Application-level unsuper-
vised outlier-based intrusion detection and prevention,”
Security and Communication Networks, 2019.

[4] G. Meng, Y. Liu, J. Zhang, A. Pokluda, and R. Boutaba,
“Collaborative security: A survey and taxonomy,” ACM
Computing Surveys, vol. 48, no. 1, pp. 1–42, 2015.

[5] B. S. Feinstein and G. A. Matthews, “The intrusion detec-
tion exchange protocol (idxp),” The Internet Engineering
Task Force (IETF), 2007.

[6] H. Debar, D. A. Curry, and B. S. Feinstein, “The intru-
sion detection message exchange format (idmef),” The
Internet Engineering Task Force (IETF), 2007.

[7] J. R. Douceur, “The sybil attack,” in Revised Papers
from the First International Workshop on Peer-to-Peer
Systems, IPTPS ’01, (London, UK, UK), pp. 251–260,
Springer-Verlag, 2002.

[8] J. Lee, M. Park, J. Eom, and T. Chung, “Multi-level intru-
sion detection system and log management in cloud com-
puting,” in 13th International Conference on Advanced
Communication Technology (ICACT2011), pp. 552–555,
Feb 2011.

[9] W. G. McGee, “System and method for intelligent co-
ordination of host and guest intrusion prevention in
virtualized environment,” May 14 2013. US Patent
8,443,440.

[10] J. Shi, Y. Yang, and C. Tang, “Hardware assisted hyper-
visor introspection,” SpringerPlus, vol. 5, no. 1, p. 647,
2016.

[11] C. Maiero and M. Miculan, “Unobservable intrusion de-
tection based on call traces in paravirtualized systems,” in
Proceedings of the International Conference on Security
and Cryptography, pp. 300–306, IEEE, 2011.

[12] Z. Chiba, N. Abghour, K. Moussaid, A. El Omri, and
M. Rida, “Novel network ids in cloud environment based
on optimized bp neural network using genetic algorithm,”
in Proceedings of the 3rd International Conference on
Smart City Applications, p. 26, ACM, 2018.

[13] S. Bharadwaja, W. Sun, M. Niamat, and F. Shen, “Col-
labra: a xen hypervisor based collaborative intrusion de-
tection system,” in 2011 Eighth International Conference
on Information Technology: New Generations, pp. 695–
700, IEEE, 2011.

[14] C. C. Lo, C. C. Huang, and J. Ku, “A cooperative
intrusion detection system framework for cloud comput-
ing networks,” in 2010 39th International Conference
on Parallel Processing Workshops, pp. 280–284, IEEE,
2010.

[15] S. Gupta and P. Kumar, “System cum program-
wide lightweight malicious program execution detec-
tion scheme for cloud,” Information Security Journal: A
Global Perspective, vol. 23, no. 3, pp. 86–99, 2014.

[16] “ISO/IEC 19770-2:2015 - Software Identification Tag,”
tech. rep., ISO/IEC, 2015.

[17] M. Xiao and Y. Wang, “Score aggregation via spectral
method,” in Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-
17, pp. 451–457, 2017.

[18] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, “Rank
aggregation methods for the web,” in Proceedings of
the 10th International Conference on World Wide Web,
WWW ’01, (New York, NY, USA), pp. 613–622, ACM,
2001.

70Copyright (c) IARIA, 2019. ISBN: 978-1-61208-719-1

ICWMC 2019 : The Fifteenth International Conference on Wireless and Mobile Communications

