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Abstract—We propose a novel method for extracting commu-
nities, i.e., dense subgraphs, embedded into a bipartite graph.
Our method is based on a technique for graph decomposition.
Decomposing a large graph into cohesive subgraphs plays an
important role in identifying community structures in social net-
work analysis. Among a lot of definitions of cohesive subgraphs,
the k-truss formed by triangles is one of the simplest cohesive
subgraphs with a good trade-df between computational #ficiency
and cliqgue approximation. This decomposition is, however, not
applicable to bipartite graphs because bipartite graphs contain
no triangles. In this paper, aquasktruss decomposition algorithm
for bipartite graphs is proposed based on the truss decomposition
algorithm for general graphs. The proposed method can be used
for analyzing the international business, such as the relationship
between clients and sales volume in a certain period, and also
analyze the social networking, such as users-topics relations in
the twitter community.
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we introduce a new notion callegliasi-truss We also develop
an dficient algorithm for bipartite graph decomposition, and
examine the scalability of it with real-world bipartite data.

Organization Section Il introduces some related works
about community extraction and bipartite graph analysis. Sec-
tion Il introduces basic notions used in this paper. In Sec-
tion IV, we propose theuasttruss decomposition algorithm.
The experiments verify thefiéciency of this algorithm for
graph analysis in Section V. Finally, Section VI concludes the
paper.

Il.  ReLarep Work

An interesting substructure in a graph is caltsmmunity
which is a subgraph densely connected by edges among nodes.
According to the definition by Flake et al. [4], a community
is a set of nodes in which each member has at least as many
edges connecting to members as it does to non-members. This
definition is unambiguous, and for any set of nodes, we can
determine whether it is a community or not.

In [5], [6], @ community of a grapl& = (V,E) is defined

Communities are interpreted as dense subgraphs in a givefy a subgraph containing at least arlgjue i.e., a subset
graphG. The problem of identifying communities has attractedy/” c v such that the subgraph @induced by’ is a complete

much attention recently due to the increased interest in studyyraph. Generally, the clique is extracted as a set of the nodes
ing various graphs with complicated structures. It helps tayjth high degrees. For this reason, the nodes with relatively
analyze graph structures, and mining useful information fromower degrees are liable to be ignored, and are not so much
graphs. Various techniques of data mining have been proposggective for uniformly sparse graphs. Moreover, the problem
for approaching graph analysis problems fronffetent as-  of finding maximal cliques is computationally hard. Thus,
peCtS. Therefore, we focus on this framework of Commur"tyin the last decade, severdfieient a|gorithms to finctluasi.

discovery, and apply it to an attractive domain of data, sucfyjiques, instead of exact cliques, have been proposed.

as social networks. . . . . .
The quasiclique is a relaxation notion of clique, for

In this research, we consider the problem of extractingexample, on the density [7] or the degree [8], [9]. However,

communities in a bipartite graph using the notion tofss
which is a dense structure in a graph. Originally, thessis

the problem of finding thesquasicliques remains NP-hard.
Moreover, it may be diicult to capture the entire structure of

defined as a dense subgraph composed of triangles, i.e., cliquésmmunities in a graph since these subgraphs may substan-

with three nodes, in a graph [1], and ttress decomposition

algorithm for extracting hierarchical dense subgraphs based on

truss structures is proposed [2].

tially overlap, or be completely be separated.

To address theseftlculties, a definition of dense subgraph
called k-core has been proposed. It is defined as a maximal

On the other hand, a bipartite graph is a common structureonnected subgraph among all of its nodes with higher degree
for modeling relations between two classes of objects, and ihank in G. Besides, the truss decomposition algorithm has
found in many real-world data sets such as user-item relationseen proposed: given a gra@h thek-truss ofG is the largest
in an online shop. The truss decomposition is not applicable tsubgraph ofG in which any edge is contained in at leakt (
bipartite graphs since any bipartite graphs include no triangles. 2) triangles within the subgraph [10]. The problem of truss

To expand the notion dfussto the class of bipartite graphs,

Copyright (c) IARIA, 2013.  ISBN: 978-1-61208-311-7

decomposition is to find ak-trusses wheré > 3.

76



IMMM 2013 : The Third International Conference on Advances in Information Mining and Management

While the problem of finding the densest subgraph is NPwherek > 2, denoted a3 so thatvec Er,, sufe, Ty) > (k—2).
hard, there is anficient polynomial algorithm for thé&-truss  The task of truss decomposition @ is to find all trusses in
detection. From the point of view of the clique approximation,G where 2< k < kmax. The kmax denotes the maximum truss
the k-truss is better thak-core [11], [12], which is a well- number of any edge ils. The truss number of an edge
known subgraph for community discovery. For the problemin G is defined asmaxk: e € Er,}, denoted byg(e). From
of finding all k-trusses in a graph, i.e., truss decompositionthe definition of truss number, another definitikitlass that
problem, an ficient in-memory algorithm [1] and twg/@-  denoted bydy, defined age: e€ Eg, ¢(€) = k}. Relatively, the
efficient algorithms [2] have been presented to handle massivetruss can be obtained from the set of ed§gs= Uj>k®;.
networks, and thefBciency of truss decomposition has been
proved. =TT T -~

Many interesting relations are represented by bipartite e ’ Sso .
graphs such as user-item relations in an online shop. Recently, ,
we have proposed an algorithm for enumerating triangles ina  ,*
bipartite graph [3]. In this paper, we improve it, and propose /

a newquasttruss decomposition algorithm. Our algorithm is 9t ’ \ 1

based on the following fundamental algorithms for bipartite 1 < *T1S8 # Voo

graphs. \ 1 )

N 1 3-truss ¢,

One is for testing bipartiteness to examine whether a graph AN % ‘7,

is a bipartite or not [13]. The main idea of testing bipartiteness AR g

algorithm is to assign every node with a certain color in order SN S —- --"_-"

to distinguish the color of its parent in a preorder traverse. Tesm——m-c -

This provides a two-colored spanning tree which consists of
the edges connecting nodes to their parents. However, some
nodes may be not colored properly. In the case of depth-first ] N ]
search, one of the two endpoints of every non-tree edge is Fig. 1illustrates thé-truss decomposition of a given graph
another endpoint’s ancestor. These pairs of nodes héfeeatit ~ G. The edges are contained irffidrent number of triangles in
colors when non-tree edges are found. An odd-cycle can be. The 2-classb; is the set of edgeswith sup(€) =0. The 3-
formed by the path from ancestor to descendant within thé&lass®s is the set of edges witbup(e) =1, i.e., fore=(xy),
incorrect colored edges together. With such an evidence, tHgere exist at least one nodesuch that ,2),(y,2) € Eg. The
graph is not bipartite. Every edge should be colored properlg-class is analogous.

if the algorithm is terminated without detecting any odd-cycle
of this type. It returns a bipartite graph with color.

Fig. 1. lllustration of the 2-, 3-, and 4-truss decomposition

From the k-classes k-trusses ofG can be obtained as
follows. The 2-trussT, is simply G itself. The 3-trussTs is

Another one is the matching algorithm on bipartite graph.the subgraph formed by the edge getu ®,U ®s, etc. It can
Matching in a graplG = (V,E) is a subset of such that no be verified that each edge @f is contained in at least—2
two edges share a common node. A node is matched if it igiangles for 2< k< 5. Thek-trusses represent the hierarchical
an endpoint of one of the edges in the matching. Matchingtructures ofG at different level of granularity.
problem is easier to solve by using bipartite graph than non-
bipartite graph in many cases, such as the popular Hopcrofo
Karp algorithm [14] for maximum cardinality matching which
working correctly only with bipartite graphs.

On the other hand, there are many relations represented
bipartite graphs, which are equivalent to transaction data.
However, as shown in Fig. 2, bipartite graph contains no
triangle due to the definition: the node set is divided into two
disjoint subsetd/1,V, such that no edgeu(v) (ue Vi,ve V,)

lll. Basic NotioN is defined. Thus, we propose an extended version of the truss
hdecomposition for bipartite graphs in the following section.

A triangle is one of the fundamental structures of grap . X . !
‘Ie\low, we prepare some important notions in our algorithm.

that represents the smallest non-trivial clique. Indeed, th
triangle plays an important role in graph analysis, especially Given a bipartite graptG = (V1 U Vs, E), the algorithm
in the computation of clustering ctigient, the triangular transformsG to G’ = (V4 UV, EUFE’) such thatE’ = {(u,V) |
connectivity and transitivity ratio in massive networks. Threey,ve Vy,u# v, andx e Vs, is adjacent tau, V).

nodes in a triangle are fully connected by three edges formed ) o )

by nodes{vi,Vs,vs} that either directed edge or undirected We call€ € E’ the special edgeFor two distinct adjacent

edge, denoted as follows: edges, & € E in G, there exists a triangle with a special edge
€ € E’ in G’. With more triangles sharing a unique special edge
T123={(V1,V2), (V2,V3), (V1,V3)} € in G’, a dense subgraph i@ is expected to be identified.

. . . . .We introduce a novel notion of dense subgraph in bipartite
The notion of truss is defined by such triangles embedded 'Braphs, thequasiruss. Thequasitruss ofG’ is%ef?ned as E)he

a graph. For the threshokl the k-truss is a type of cohesive largest subaraoh i’ containing exactly one special edee
subgraphs that represents the largest sqbgra&h sﬂch that Co?\sequen%y IOwe obtain the gubstrucytureG)t;)y removglg
every edge is contained in at leakt(2) triangles within the ;o c fron’1 the quasitruss.

subgraph. This value is called the support of an ezlgéu,v) €
Eg, denoted bysupe). The support of an edgein G is the In the following section, we design an algorithm to extract
number of triangles iiG that containe. Thus, thek-truss ofG ~ such components from a large network data.
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node set V;

node set V,
Fig. 2. The structure of a bipartite graph Fig. 3. Generate edges in a bipartite graph
IV.  Quasi-Truss DEcOMPOSITION one generated ed@éso that a triangld s = {(2,3), (3,),(2,1)}

is formed. At the same time, the edgg, also contained in

another triangle G, the triangleTs, = {(1, 2),(2,h), (1,h)} for
Conceptually, the definition ofjuasttruss is similar with  nodev;, also their common neighbor node. Thus, the four nodes

k-truss. In a given bipartite grap8, clearly, G contains no  v», v3, V4 andv; can be considered as 2-trusses for both two

triangle. Then we define special edggs= E' among nodes generated edge®,; ande;, are contained in two triangles. In

included in V1 or V, exclusively. Initially, every node in another situation, the nodes andv, have only one common

both two node sets of the bipartite graghwill be visited.  neighbor nodeh that the generated edgg, is contained in

Determine whether any two adjacent nodes in the same nodmly one triangle. The subgraph that contains three neges

set sharing one common neighbor node in another node set @s andv,, can be considered as 1-truss. The nodes in the same

not. Then, the connectivity occurs between these two nodesode set such as the nodgsandvs do not connected by any

and connected by a special edge, denote@ déthese two edge€ as they do not have any common neighbor node in

nodes have one common neighbor node in another node samother node set.

of G. More formally, a special edge’ = (x,y) is defined

for x,y € V1 if there existsze V, such that X,2),(y,2) € E.

After generating all special edges the structure of original B. Decomposition algorithm

bipartite graph is transformed ®" = (V1UV2, EUE).

A. Quasi-truss

Quasitruss decomposition algorithm is summarized in
In this definition, an edge’ = (vj, ) is generated inG  algorithm 1.

so thatv;, v € V; have a common neighbor nodge V,. The .

edgee is denoted ag| wherei,ke V; ande, ¢ E. The special We _emp_loy the hash taple to store and__sort the ;pemal

edgee is essential to form a triangle in bipartite graphThe ~ €dge€’ in this Improvedquas,|-truss decomposmc,)n algorithm

number of common neighbor nodes of edgés simply equal Initialize the hash table oE’, denoted aas{E’], and the

to the number of triangles which contain the edge The triangle set, de_noted asb. The graph traverse begins from

common neighbor nodes @ belong to the node set which Nodev. A special edgee], is generated to connect any two

does not contain two endpoints ef. All of the trianglesT ~ nodesv; andv directly connect tov. Then,T = {v,vj,w]} can
belong to the bipartite grapB. be formed inG after this process. A is contained in at

) o ) least one triangle wher® = 1. All of € € E’ is stored in
According to the definition, th&-truss is the trusses of the hasiE’], and sorted hierarchically. A common neighbor
reconstructedG’ where Q > 0. Here, theQ indicates the node of ane’ represents a vertex of a triangle. For any two
hierarchy ofquasttruss in order to distinguish frork-truss.  nodes in the same node set connected bg athe number of
Thus, the maximunguasttruss of G can be defined as the their common neighbor nodes is equivalent to the number of
special edgee’ contained in maximal number of triangles in triangles contains the/. ThehasHE’] only stores each unique
G. edge€ instead of storing all triangles in an array [3]. The

When Q = 1, thequasitruss is simplyG itself since one memory usage can be significantly reduced. Moreover, pointer

edgee’ is contained in one triangle exactly. We suppose ¢hat is adopted to point to the common neighbor nodes of each
has only one neighbor nodgin another node set. Then, three €. To extract the maximunguasttruss represents the largest
nodes form a triangld@;j = {(vi.v;), (v, Vi) (vi. i)} which is a community, it was essential that countedlthe total number of
1-truss subgraph fag, contained in one triangle exactly. This €°Mmon neighbor nodes of eaehin haslE’], and output the

; e o ; € with maximal number of common neighbor nodes. Next, the
differs from the definition ok-truss decomposition algorithm. ; . ; . "
P 9 € in hasiE’] is removed iteratively based on the number of its

Fig. 3 illustrates the generation of edgein a given bipar- common neighbor nodes. For example,éanvill be removed
tite graphG. There are two types of edges: the original existedrom hasHE’] if the € has less than five common neighbor
edgese € E which is in solid line, and the generated edgenodes, or in other words, a# is contained in less than five
€ € E’ which are illustrated by the dotted line. For instance,triangles whereQ = 5. Finally, enumerate all triangles which
two nodesv, and vs that are in the same node set have asatisfy the parameter. These enumerated triangles represent the
common neighbor node then,v, andvz will be connected by dense subgraphs @& in different hierarchy.
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Algorithm 1 Quasi-Truss Decomposition Algorithm

g = queue for graph traverse
Q = input threshold of hierarchy of trusses
E’ := the edge set contains all special edfje
hasHE’] := the hash table oE’
T = a set of triangles irG
e numy) := number of nodes belong to a

Require: G = (V1UV,, E), Q =1,2,3,4...m
Ensure: T within Q hierarchy

1: init hasjE’] = ¢, T = ¢;

2: for all v e (V1UV,) do
v.mark= 0
4:  g.enqueueg);
5. while not g.empty()do
6: v = ¢.dequeue()
7 v.mark = 1;
8
9

if veev,vj)nev,vg) then
€ = (vj, W) generated,

hasHE’] = hasiE’] Uhask[egk]
11: end if
12: T = Tu{v,vj,w}
13:  end while
14: for Q=1tomdo
15: for all € ehasHE’] do
16: if numy) € €<Q then
17: removee from hasHE’]
18: end if
19: end for
20. end for
21: end for

22: output T containse’ within Q hierarchy

V. EXPERIMENT AND EvALUATION

We observed the performance of the proposed method via cmuSame

of them corresponded to a certain topic, and recorded the rela-
tionship between keywords and news documents. BigitiRec
andMovielLenswvere two datasets released from the framework
of Information Heterogeneity and Fusion in Recommender
Systems. ThéletRecrecorded the relationship between online
users and artistsusics fromLast.fm online music system
2011. TheMovieLensdataset contained anonymous ratings by
MovieLens users toward a certain number of movies in 2000.

Matrix blocking proposed in [16] was a community detec-
tion technique based on the connectivity occurence among all
nodes inG. Oppositely, the proposed algorithm in this paper
was designed to decompose a bipartite graph, and identify
the subgraphs within f@ierent hierarchy. Therefore, in these
experiments, we mainly observed three aspects for evaluating
the proposed algorithm. First, we stated the total number
of triangles which included all special edges Second,
we observed the time cost for enumerating all triangles in
each bipartite graph. Finally, the largest community structure
represented by the maximuguasitruss was extracted from
each bipartite graph.

B. Experimental results

Table Il shows the experimental results by using the five
datasets. TheF®indicates the total number of triangles formed
in each given bipartite graph. The next column shows the
time cost for triangles’ forming. The results Qinax Clearly
indicates the maximajuastitruss in each bipartite graph. The
maximalquasitruss represents the largest communities in each
given bipartite graph.

a succession of experiments in this section. The experimenta
results evaluated thdfectiveness of thquasttruss algorithm.

All of the experiments were done on a machine with the
Inter i7 2.3GHz CPU, 8GB RAM, and the version 4.1.2 of

C compiler in Mac OS 10.8.3.

A. Data characteristics
Five real-world graph datasets withfidirent sizes were

TABLE II. STATISTICS OF EXPERIMENTAL RESULTS
File name H#T size(kb) | time(in sec.)| Qmax
cmuDjf 61,638 874 0.374 238
174,363 | 2,458 0.78 390
i cmuSim | 1,838,827 27,471 7.207 112
HetRac 945,043 | 15,020 6.739 351
MovieLens| 63,271 891 0.453 223

The running time increased linearly with the increasing
number of triangles. Meanwhile, the number of edgesE’

also increased. But it was worth to notice that the number of
edgese’ € E’ did not equal to the total number of triangles for

used in these experiments. Table | indicates the features &N edgee’ was contained in more than one triangles.
In the third column of Table I, we observed the maximal

the datasets|Vi| and |Vo| indicated the number of nodes of
each node-set in these given bipartite grapBsshowed the
number of edges in each dataset.

quasttruss for each given dataset. According to the definition
of quasttruss, the subgraph witQmax represented the largest
community in which a unique edge’ was contained in

maximal number of triangles. Thus, the subgraph vithax

TABLE I. FEATURES OF DATASETS
File name | [Vq] Vo |E]| size(kb)
cmuDjf | 3,000| 5,932 | 263,325 32.1
cmuSame| 3,000| 7,666 | 185,680 46.6
cmuSim | 3,000 10,083| 288,989 260
HetRec | 9,372| 6,257 26,232 259
MovieLens| 3,706 | 6,040 | 1,000,209| 40.1

triangles. Meanwhile, the value ofQmax

was the densest subgraph, since it represented the core of a
given graph. In this experimentQmax-truss were extracted
from the givenG by adopting a technique which was similar

to the Top-Down approach of truss decompositiconcluded

in [2]. Thought observing the experiment results, the maximum
quasttruss of G also increased with the total number of
was difficult to

estimate. However, the result of datasetuSimwas an ex-

The three datasetsmuDjf, cmuSameand cmuSimwere

ception although this dataset contained the maximal number of

chosen from 20 newsgroups datasets, which were also referédangles compared with results of other datasets. The value of
in [16]. They were collections of newsgroup documents. EaciQmax 0f cmuSindataset was the smallest. This result illustrated
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that the connectivity among all nodes in bath and V-, of G
had a significant impact on the density of subgraphs.

VL.

We implc_amented the algorithm fcquasit_russ_, which was
Another reasonable evaluation strategy was to observe tte Novel notion of dense subgraph in a bipartite graph intro-
density of subgraphs. Bipartite graph had a special structurduced in [3]. This notion was an expanded versiork-ofuss
differs from ordinary graphic structures. Therefore, it wasdecomposition [2]. An gective algorithm was also introduced
necessary to observe the extracted dense subgraphs separaf®fyduastruss decomposition in a bipartite graph. We verified

Table 11l concluded the features of each maximguasitruss.  theé scalability of our algorithm by experiments on real-world
datasets. The results showed a significafieativeness on

CONCLUSION

TABLE Ill.  FEATURES OF MAXIMUM QUASI-TRUSS decomposing a bipartite graph based on triangle structure.

, i We plan to research the theoritical proof for the density
File name | node | edge| size(kb) | #T evaluation of bipartite graph by adopting theasitruss de-
cmuDff | 240 | 477 | 2.95 | 238 composition algorithm, and time complexity for dense sub-
cmuSame| 392 | 781 | 5.27 | 390 graph extraction as the future perspective. Furthermore, as one
cmuSim | 114 | 225 | 1.54 | 112 of triangle’s properties, the research of clusteringfiioient
HetRac | 353 | 703 | 3.88 | 351 of a bipartite graph is available to analyze the connectivity
MovieLens| 225 | 447 2.58 | 223 situation.
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