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Abstract—We propose a novel method for extracting commu-
nities, i.e., dense subgraphs, embedded into a bipartite graph.
Our method is based on a technique for graph decomposition.
Decomposing a large graph into cohesive subgraphs plays an
important role in identifying community structures in social net-
work analysis. Among a lot of definitions of cohesive subgraphs,
the k-truss formed by triangles is one of the simplest cohesive
subgraphs with a good trade-off between computational efficiency
and clique approximation. This decomposition is, however, not
applicable to bipartite graphs because bipartite graphs contain
no triangles. In this paper, aquasi-truss decomposition algorithm
for bipartite graphs is proposed based on the truss decomposition
algorithm for general graphs. The proposed method can be used
for analyzing the international business, such as the relationship
between clients and sales volume in a certain period, and also
analyze the social networking, such as users-topics relations in
the twitter community.

Keywords—bipartite graph, triangle, truss decomposition, dense
subgraph, community discovery.

I. Introduction

Communities are interpreted as dense subgraphs in a given
graphG. The problem of identifying communities has attracted
much attention recently due to the increased interest in study-
ing various graphs with complicated structures. It helps to
analyze graph structures, and mining useful information from
graphs. Various techniques of data mining have been proposed
for approaching graph analysis problems from different as-
pects. Therefore, we focus on this framework of community
discovery, and apply it to an attractive domain of data, such
as social networks.

In this research, we consider the problem of extracting
communities in a bipartite graph using the notion oftruss,
which is a dense structure in a graph. Originally, thetruss is
defined as a dense subgraph composed of triangles, i.e., cliques
with three nodes, in a graph [1], and thetruss decomposition
algorithm for extracting hierarchical dense subgraphs based on
truss structures is proposed [2].

On the other hand, a bipartite graph is a common structure
for modeling relations between two classes of objects, and is
found in many real-world data sets such as user-item relations
in an online shop. The truss decomposition is not applicable to
bipartite graphs since any bipartite graphs include no triangles.
To expand the notion oftruss to the class of bipartite graphs,

we introduce a new notion calledquasi-truss. We also develop
an efficient algorithm for bipartite graph decomposition, and
examine the scalability of it with real-world bipartite data.

Organization: Section II introduces some related works
about community extraction and bipartite graph analysis. Sec-
tion III introduces basic notions used in this paper. In Sec-
tion IV, we propose thequasi-truss decomposition algorithm.
The experiments verify the efficiency of this algorithm for
graph analysis in Section V. Finally, Section VI concludes the
paper.

II. RelatedWork

An interesting substructure in a graph is calledcommunity,
which is a subgraph densely connected by edges among nodes.
According to the definition by Flake et al. [4], a community
is a set of nodes in which each member has at least as many
edges connecting to members as it does to non-members. This
definition is unambiguous, and for any set of nodes, we can
determine whether it is a community or not.

In [5], [6], a community of a graphG = (V,E) is defined
as a subgraph containing at least oneclique, i.e., a subset
V′ ⊆V such that the subgraph inG induced byV′ is a complete
graph. Generally, the clique is extracted as a set of the nodes
with high degrees. For this reason, the nodes with relatively
lower degrees are liable to be ignored, and are not so much
effective for uniformly sparse graphs. Moreover, the problem
of finding maximal cliques is computationally hard. Thus,
in the last decade, several efficient algorithms to findquasi-
cliques, instead of exact cliques, have been proposed.

The quasi-clique is a relaxation notion of clique, for
example, on the density [7] or the degree [8], [9]. However,
the problem of finding thesequasi-cliques remains NP-hard.
Moreover, it may be difficult to capture the entire structure of
communities in a graph since these subgraphs may substan-
tially overlap, or be completely be separated.

To address these difficulties, a definition of dense subgraph
called k-core has been proposed. It is defined as a maximal
connected subgraph among all of its nodes with higher degree
than k in G. Besides, the truss decomposition algorithm has
been proposed: given a graphG, thek-truss ofG is the largest
subgraph ofG in which any edge is contained in at least (k
- 2) triangles within the subgraph [10]. The problem of truss
decomposition is to find allk-trusses wherek≥ 3.
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While the problem of finding the densest subgraph is NP-
hard, there is an efficient polynomial algorithm for thek-truss
detection. From the point of view of the clique approximation,
the k-truss is better thank-core [11], [12], which is a well-
known subgraph for community discovery. For the problem
of finding all k-trusses in a graph, i.e., truss decomposition
problem, an efficient in-memory algorithm [1] and two I/O-
efficient algorithms [2] have been presented to handle massive
networks, and the efficiency of truss decomposition has been
proved.

Many interesting relations are represented by bipartite
graphs such as user-item relations in an online shop. Recently,
we have proposed an algorithm for enumerating triangles in a
bipartite graph [3]. In this paper, we improve it, and propose
a newquasi-truss decomposition algorithm. Our algorithm is
based on the following fundamental algorithms for bipartite
graphs.

One is for testing bipartiteness to examine whether a graph
is a bipartite or not [13]. The main idea of testing bipartiteness
algorithm is to assign every node with a certain color in order
to distinguish the color of its parent in a preorder traverse.
This provides a two-colored spanning tree which consists of
the edges connecting nodes to their parents. However, some
nodes may be not colored properly. In the case of depth-first
search, one of the two endpoints of every non-tree edge is
another endpoint’s ancestor. These pairs of nodes have different
colors when non-tree edges are found. An odd-cycle can be
formed by the path from ancestor to descendant within the
incorrect colored edges together. With such an evidence, the
graph is not bipartite. Every edge should be colored properly
if the algorithm is terminated without detecting any odd-cycle
of this type. It returns a bipartite graph with color.

Another one is the matching algorithm on bipartite graph.
Matching in a graphG = (V,E) is a subset ofE such that no
two edges share a common node. A node is matched if it is
an endpoint of one of the edges in the matching. Matching
problem is easier to solve by using bipartite graph than non-
bipartite graph in many cases, such as the popular Hopcroft-
Karp algorithm [14] for maximum cardinality matching which
working correctly only with bipartite graphs.

III. Basic Notion

A triangle is one of the fundamental structures of graph
that represents the smallest non-trivial clique. Indeed, the
triangle plays an important role in graph analysis, especially
in the computation of clustering coefficient, the triangular
connectivity and transitivity ratio in massive networks. Three
nodes in a triangle are fully connected by three edges formed
by nodes{v1,v2,v3} that either directed edge or undirected
edge, denoted as follows:

T123= {(v1,v2), (v2,v3), (v1,v3)}

The notion of truss is defined by such triangles embedded in
a graph. For the thresholdk, the k-truss is a type of cohesive
subgraphs that represents the largest subgraph ofG such that
every edge is contained in at least (k−2) triangles within the
subgraph. This value is called the support of an edgee= (u,v) ∈
EG, denoted bysup(e). The support of an edgee in G is the
number of triangles inG that containe. Thus, thek-truss ofG

wherek≥ 2, denoted asTk so that∀e∈ETk, sup(e,Tk)≥ (k−2).
The task of truss decomposition inG is to find all trusses in
G where 2≤ k ≤ kmax. The kmax denotes the maximum truss
number of any edge inG. The truss number of an edgee
in G is defined asmax{k : e ∈ ETk}, denoted byϕ(e). From
the definition of truss number, another definitionk-class that
denoted byΦk, defined as{e : e∈ EG,ϕ(e) = k}. Relatively, the
k-truss can be obtained from the set of edgesETk = ∪i≥kΦi .

Fig. 1. Illustration of the 2-, 3-, and 4-truss decomposition

Fig. 1 illustrates thek-truss decomposition of a given graph
G. The edges are contained in different number of triangles in
G. The 2-classΦ2 is the set of edgese with sup(e) = 0. The 3-
classΦ3 is the set of edges withsup(e) = 1, i.e., fore= (x,y),
there exist at least one nodez such that (x,z), (y,z) ∈ EG. The
4-class is analogous.

From the k-classes,k-trusses ofG can be obtained as
follows. The 2-trussT2 is simply G itself. The 3-trussT3 is
the subgraph formed by the edge setΦ3∪Φ4∪Φ5, etc. It can
be verified that each edge ofTk is contained in at leastk−2
triangles for 2≤ k≤ 5. Thek-trusses represent the hierarchical
structures ofG at different level of granularity.

On the other hand, there are many relations represented
by bipartite graphs, which are equivalent to transaction data.
However, as shown in Fig. 2, bipartite graph contains no
triangle due to the definition: the node set is divided into two
disjoint subsetsV1,V2 such that no edge (u,v) (u ∈ V1,v ∈ V2)
is defined. Thus, we propose an extended version of the truss
decomposition for bipartite graphs in the following section.
Now, we prepare some important notions in our algorithm.

Given a bipartite graphG = (V1 ∪ V2,E), the algorithm
transformsG to G′ = (V1∪V2,E∪E′) such thatE′ = {(u,v) |
u,v ∈ V1,u, v, and x ∈ V2 is adjacent tou,v}.

We call e′ ∈ E′ the special edge. For two distinct adjacent
edgese1,e2 ∈ E in G, there exists a triangle with a special edge
e′ ∈E′ in G′. With more triangles sharing a unique special edge
e′ in G′, a dense subgraph inG is expected to be identified.
We introduce a novel notion of dense subgraph in bipartite
graphs, thequasi-truss. Thequasi-truss ofG′ is defined as the
largest subgraph inG′ containing exactly one special edgee′.
Consequently, we obtain the substructure ofG by removing
all e′ ∈ E′ from thequasi-truss.

In the following section, we design an algorithm to extract
such components from a large network data.
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node set V1

node set V2
Fig. 2. The structure of a bipartite graph

IV. Quasi-Truss Decomposition

A. Quasi-truss

Conceptually, the definition ofquasi-truss is similar with
k-truss. In a given bipartite graphG, clearly, G contains no
triangle. Then we define special edgese′ ∈ E′ among nodes
included in V1 or V2 exclusively. Initially, every node in
both two node sets of the bipartite graphG will be visited.
Determine whether any two adjacent nodes in the same node
set sharing one common neighbor node in another node set or
not. Then, the connectivity occurs between these two nodes,
and connected by a special edge, denoted ase′ if these two
nodes have one common neighbor node in another node set
of G. More formally, a special edgee′ = (x,y) is defined
for x,y ∈ V1 if there existsz ∈ V2 such that (x,z), (y,z) ∈ E.
After generating all special edgese′, the structure of original
bipartite graph is transformed toG′ = (V1∪V2,E∪E′).

In this definition, an edgee′ = (vi ,vk) is generated inG
so thatvi ,vk ∈ V1 have a common neighbor nodev j ∈ V2. The
edgee′ is denoted ase′ik wherei,k∈V1 ande′ik < E. The special
edgee′ is essential to form a triangle in bipartite graphG. The
number of common neighbor nodes of edgee′ is simply equal
to the number of triangles which contain the edgee′. The
common neighbor nodes ofe′ belong to the node set which
does not contain two endpoints ofe′. All of the trianglesT
belong to the bipartite graphG.

According to the definition, theQ-truss is the trusses of
reconstructedG′ where Q > 0. Here, theQ indicates the
hierarchy ofquasi-truss in order to distinguish fromk-truss.
Thus, the maximumquasi-truss of G can be defined as the
special edgee′ contained in maximal number of triangles in
G.

When Q = 1, thequasi-truss is simplyG itself since one
edgee′ is contained in one triangle exactly. We suppose thate′ik
has only one neighbor nodevi in another node set. Then, three
nodes form a triangleTi jk = {(vi ,v j), (v j ,vk), (vi ,vk)} which is a
1-truss subgraph fore′ik contained in one triangle exactly. This
differs from the definition ofk-truss decomposition algorithm.

Fig. 3 illustrates the generation of edgee′ in a given bipar-
tite graphG. There are two types of edges: the original existed
edgese ∈ E which is in solid line, and the generated edge
e′ ∈ E′ which are illustrated by the dotted line. For instance,
two nodesv2 and v3 that are in the same node set have a
common neighbor nodei, then,v2 andv3 will be connected by

Fig. 3. Generate edges in a bipartite graph

one generated edgee′ so that a triangleT23i = {(2,3), (3, i), (2, i)}
is formed. At the same time, the edgee′23 also contained in
another triangle inG, the triangleT23h= {(1,2), (2,h), (1,h)} for
nodevh also their common neighbor node. Thus, the four nodes
v2, v3, vh and vi can be considered as 2-trusses for both two
generated edgese′23 ande′hi are contained in two triangles. In
another situation, the nodesv1 andv2 have only one common
neighbor nodeh that the generated edgee′12 is contained in
only one triangle. The subgraph that contains three nodesv1,
v2 andvh can be considered as 1-truss. The nodes in the same
node set such as the nodesv4 andv5 do not connected by any
edgee′ as they do not have any common neighbor node in
another node set.

B. Decomposition algorithm

Quasi-truss decomposition algorithm is summarized in
algorithm 1.

We employ the hash table to store and sort the special
edgee′ in this improvedquasi-truss decomposition algorithm.
Initialize the hash table ofE′, denoted ashash[E′], and the
triangle set, denoted asT. The graph traverse begins from
node v. A special edgee′jk is generated to connect any two
nodesv j andvk directly connect tov. Then,T = {v,v j ,vk} can
be formed inG after this process. Ane′ is contained in at
least one triangle whereQ = 1. All of e′ ∈ E′ is stored in
the hash[E′], and sorted hierarchically. A common neighbor
node of ane′ represents a vertex of a triangle. For any two
nodes in the same node set connected by ane′, the number of
their common neighbor nodes is equivalent to the number of
triangles contains thee′. Thehash[E′] only stores each unique
edgee′ instead of storing all triangles in an array [3]. The
memory usage can be significantly reduced. Moreover, pointer
is adopted to point to the common neighbor nodes of each
e′. To extract the maximumquasi-truss represents the largest
community, it was essential that counted the total number of
common neighbor nodes of eache′ in hash[E′], and output the
e′ with maximal number of common neighbor nodes. Next, the
e′ in hash[E′] is removed iteratively based on the number of its
common neighbor nodes. For example, ane′ will be removed
from hash[E′] if the e′ has less than five common neighbor
nodes, or in other words, ane′ is contained in less than five
triangles whereQ = 5. Finally, enumerate all triangles which
satisfy the parameter. These enumerated triangles represent the
dense subgraphs ofG in different hierarchy.
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Algorithm 1 Quasi-Truss Decomposition Algorithm
• q B queue for graph traverse
• Q B input threshold of hierarchy of trusses
• E′ B the edge set contains all special edgee′

• hash[E′] B the hash table ofE′

• T B a set of triangles inG
• num(v) B number of nodes belong to ane′

Require: G = (V1∪V2, E), Q = 1,2,3,4....m
Ensure: T within Q hierarchy

1: init hash[E′] = ϕ, T = ϕ;
2: for all v ∈ (V1∪V2) do
3: v.mark= 0
4: q.enqueue(v0);
5: while not q.empty()do
6: v = q.dequeue()
7: v.mark= 1;
8: if v ∈ e(v,v j)∩e(v,vk) then
9: e′ = (v j , vk) generated;

10: hash[E′] = hash[E′]∪hash[e′jk]
11: end if
12: T = T ∪{v,v j ,vk}
13: end while
14: for Q = 1 to m do
15: for all e′ ∈ hash[E′] do
16: if num(v) ∈ e′<Q then
17: removee′ from hash[E′]
18: end if
19: end for
20: end for
21: end for
22: outputT containse′ within Q hierarchy

V. Experiment and Evaluation

We observed the performance of the proposed method via
a succession of experiments in this section. The experimental
results evaluated the effectiveness of thequasi-truss algorithm.
All of the experiments were done on a machine with the
Inter i7 2.3GHz CPU, 8GB RAM, and the version 4.1.2 of
C compiler in Mac OS 10.8.3.

A. Data characteristics

Five real-world graph datasets with different sizes were
used in these experiments. Table I indicates the features of
the datasets.|V1| and |V2| indicated the number of nodes of
each node-set in these given bipartite graphs.|E| showed the
number of edges in each dataset.

TABLE I. Features of datasets

File name |V1| |V2| |E| size(kb)
cmuDiff 3,000 5,932 263,325 32.1
cmuSame 3,000 7,666 185,680 46.6
cmuSim 3,000 10,083 288,989 260
HetRec 9,372 6,257 26,232 259

MovieLens 3,706 6,040 1,000,209 40.1

The three datasetscmuDiff, cmuSameand cmuSimwere
chosen from 20 newsgroups datasets, which were also refered
in [16]. They were collections of newsgroup documents. Each

of them corresponded to a certain topic, and recorded the rela-
tionship between keywords and news documents. BothHetRec
andMovieLenswere two datasets released from the framework
of Information Heterogeneity and Fusion in Recommender
Systems. TheHetRecrecorded the relationship between online
users and artists/musics fromLast.fm online music systemin
2011. TheMovieLensdataset contained anonymous ratings by
MovieLens users toward a certain number of movies in 2000.

Matrix blocking proposed in [16] was a community detec-
tion technique based on the connectivity occurence among all
nodes inG. Oppositely, the proposed algorithm in this paper
was designed to decompose a bipartite graph, and identify
the subgraphs within different hierarchy. Therefore, in these
experiments, we mainly observed three aspects for evaluating
the proposed algorithm. First, we stated the total number
of triangles which included all special edgese′. Second,
we observed the time cost for enumerating all triangles in
each bipartite graph. Finally, the largest community structure
represented by the maximumquasi-truss was extracted from
each bipartite graph.

B. Experimental results

Table II shows the experimental results by using the five
datasets. The #T indicates the total number of triangles formed
in each given bipartite graph. The next column shows the
time cost for triangles’ forming. The results ofQmax clearly
indicates the maximalquasi-truss in each bipartite graph. The
maximalquasi-truss represents the largest communities in each
given bipartite graph.

TABLE II. Statistics of experimental results

File name #T size(kb) time(in sec.) Qmax
cmuDiff 61,638 874 0.374 238
cmuSame 174,363 2,458 0.78 390
cmuSim 1,838,827 27,471 7.207 112
HetRac 945,043 15,020 6.739 351

MovieLens 63,271 891 0.453 223

The running time increased linearly with the increasing
number of triangles. Meanwhile, the number of edgese′ ∈ E′

also increased. But it was worth to notice that the number of
edgese′ ∈ E′ did not equal to the total number of triangles for
an edgee′ was contained in more than one triangles.

In the third column of Table II, we observed the maximal
quasi-truss for each given dataset. According to the definition
of quasi-truss, the subgraph withQmax represented the largest
community in which a unique edgee’ was contained in
maximal number of triangles. Thus, the subgraph withQmax
was the densest subgraph, since it represented the core of a
given graph. In this experiment, “Qmax”-truss were extracted
from the givenG by adopting a technique which was similar
to the Top-Down approach of truss decompositionconcluded
in [2]. Thought observing the experiment results, the maximum
quasi-truss of G also increased with the total number of
triangles. Meanwhile, the value of “Qmax” was difficult to
estimate. However, the result of datasetcmuSimwas an ex-
ception although this dataset contained the maximal number of
triangles compared with results of other datasets. The value of
Qmax of cmuSimdataset was the smallest. This result illustrated
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that the connectivity among all nodes in bothV1 andV2 of G
had a significant impact on the density of subgraphs.

Another reasonable evaluation strategy was to observe the
density of subgraphs. Bipartite graph had a special structure
differs from ordinary graphic structures. Therefore, it was
necessary to observe the extracted dense subgraphs separately.
Table III concluded the features of each maximumquasi-truss.

TABLE III. F eatures of maximum quasi-truss

File name node edge size(kb) #T
cmuDiff 240 477 2.95 238
cmuSame 392 781 5.27 390
cmuSim 114 225 1.54 112
HetRac 353 703 3.88 351

MovieLens 225 447 2.58 223

The node and edge indicated the number of nodes and
the number of edges in each dense subgraph respectively.
The size was the total amount of subgraphs defined as
(|V1| ∪ |V2|, |e| ∪ |e′|). The #T indicated the number of triangles
anchored in each dense subgraphs. In the case of bipartite
graph, a subgraph had the density one if and only if it was
a biclique according to the concluded definition in [16]. The
definition of density for bipartite graph in [16] cannot be
adopted directly to estimate the density ofquasi-trusses in a
bipartite graph for it was based on triangular structure. Thus,
we simply addressed the amount ratio that compaired the size
of dense subgraphs with their matrix graphs containing all
triangles. Moreover, we also compaired the number of triangles
of the dense subgraps with their matrix graphs containing all
triangles in order to observe the ratio of number of triangles.
Then, analyzed the relationship between the amount ratio and
the ratio of the number of triangles based on the statistic results
shown as Fig. 4.

Fig. 4. Relationhsip between size and the number of triangles

Each point in the red graph illustrated the percentage of the
amount of the largest subgraphs in each bipartite graph. Each
point in the blue graph illustrated the percentage of the number
of triangles of the largest subgraphs in each bipartite graph.
From Fig. 4, the amount of the dense subgraphs increased
linearly with the number of triangles anchored in the dense
subgraphs. These statistical results also proved the previous
experimental results in Table II.

VI. Conclusion

We implemented the algorithm forquasi-truss, which was
a novel notion of dense subgraph in a bipartite graph intro-
duced in [3]. This notion was an expanded version ofk-truss
decomposition [2]. An effective algorithm was also introduced
for quasi-truss decomposition in a bipartite graph. We verified
the scalability of our algorithm by experiments on real-world
datasets. The results showed a significant effectiveness on
decomposing a bipartite graph based on triangle structure.

We plan to research the theoritical proof for the density
evaluation of bipartite graph by adopting thequasi-truss de-
composition algorithm, and time complexity for dense sub-
graph extraction as the future perspective. Furthermore, as one
of triangle’s properties, the research of clustering coefficient
of a bipartite graph is available to analyze the connectivity
situation.
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