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Abstract—In this paper, we developed a flexible service model
for the minimum service time called Minimum-Conway-Maxwell-
Poisson-exponential distribution, denoted by MINCOMPE dis-
tribution, with the service rate dependent on the state of the
system including the idle period. This distribution is a new
approach where it is possible to look only at the service and
capture variations of the system. In addition, this distribution
is to model the dependency between the interarrival and service
times. The MINCOMPE distribution contains submodels, such as
Minimum-geometric-exponential, Minimum-Poisson-exponential
and Minimum-Bernoulli-exponential, which express variations
of the system. The properties of the proposed distribution
are discussed, including formal proof of its probability density
function and explicit algebraic formulas for their reliability
and moments. The parameter estimation is based on the usual
maximum likelihood method. Simulated and real data are shown
to illustrate the applicability of the model.

Keywords:Conway-Maxwell-Poisson distribution; MIN-
COMPE distribution; minimum service time.

I. INTRODUCTION

In this paper, we studied a specific system where the
interarrival times are the same as the service times. In this
system, there is a dependency between the interarrival and
service times where the service is attached to the arrival.
Hence, when the service finishes another customer arrives
in the system and enters into the service directly. When the
number of customers increases, the service becomes faster
and the interarrival time decreases. Therefore, it is necessary
to have an adjustement mechanism in order to restablish the
balance of the system. The possible adjustments are to change
the service rate and/or the opening of new service channels.

We proposed a distribution that describe this sys-
tem which we called Minimum-Conway-Maxwell-Poisson-
exponential distribution, denoted by MINCOMPE distribution,
with service rate dependening on the state of the system.
The MINCOMPE distribution contains various submodels,
which can be obtained by varying the pressure parameter,
such as, Minimum-geometric-exponential, Minimum-Poisson-
exponential and Minimum-Bernoulli-exponential. This sub-
models capture the oscillations of the system due to the

increase of the number of curtomers.

The MINCOMPE distribution was obtained using a com-
pound of two distributions, the Conway-Maxwell-Poisson for
the number of customers, denoted by COM-Poisson, and the
exponential distribution for the interarrival time. The main
goal was to observe the minimum interarrival times when the
number of customers in the system is unknown.

It is necessary to consider the following system for the
compound; a single server where the service time is expo-
nential distributed and the mean depends on the system state
and is given by µm = mφµ, where the number of customers
is indicated by m. The degree to which the service rate is
affected by the system state is indicated by φ and it is called
pressure parameter; the arrivals in the system occur at random;
the interarrival times are exponentially distributed with mean λ;
the customers are served on a First-Come-First-Served (FCFS).

It is generally believed that, the usual queue model has
the service rate independent of the system state however,
it is a special case when φ = 0 so that µm = µ for all m.
Moreover, when φ = 1 the service rate is directly proportional
to the system state and the opening of new service channels.
When φ values are greater than one, the service rate is more
proportional to an increase in work.

In other words, the pressure parameter is a defense mech-
anism when there is a backlog of work. An increase in effort
on the part of the server is an obvious source of increase in
service rate.

Moreover, ”the Poisson arrivals see Time Averages prop-
erty, denoted by PASTA, was used, meaning when arrivals are
Poisson, the fraction of arrivals who find a process in some
state (busy or idle) is equal to the fraction of time the process
is in that state”, this property is described in [1].

In the literature, there are few references to be considered
compound and state dependent service rate. We would like to
mention the modeling studies: Jongbloed and Koole [2] studied
a call center as a queueing model with Poisson arrivals having
an unknown varying arrival rate. Srikanth and Manjunath
[3] analyze queueing models where the joint density of the
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interarrival time and the service time were described by a
mixture of joint densities.

This paper has been organized as follows. In Section A,
we presented the MINCOMPE distribution and some of its
properties for minimum interarrival time or minimum service
time.

In Section B, we derived the expressions for the probability
density function, and r-th raw moments of the MINCOMPE
distribution.

In Section C, we described the maximum likelihood es-
timation of the parameters of the model and demonstrated
some numerical results with simulation and real data. Finally,
Section II contains final remarks.

A. The Distribution for Minimum Service Time

The process can be described as follows. Let be M a ran-
dom variable denoting the number of customers in the system,
m = 0,1,2 . . ., with COM-Poisson distribution described in [4]
and [5], with probability mass function (pmf) expressed as

Pm(M = m;ρ,φ) =
1

[Z(ρ,φ)]
ρm

(m!)φ
,m = 0, . . . (1)

where Z(ρ,φ) = ∑
∞
j=0 = ρ j

( j!)φ is normalizing constant, ρ is
traffic intensity with ρ < 1 and φ ∈ (−∞,∞). The stability
condition ρ = λ/µ < 1 means that the arrival rate λ must be
less than the service rate µ.

”Note that, the COM-Poisson distribution is undefined
when ρ≥ 1, φ = 0. Extending φ to its two extremities, the
COM-Poisson distribution in (1) can be seen as a continuous
bridge between the geometric (φ = 0, with 0 < ρ < 1), the
Poisson (φ = 1) and Bernoulli (φ→∞) distributions. This dis-
tribution is overdispersed when φ ∈ [0,1) and underdispersion
when φ ∈ (1,∞)” described in [4].

We assumed that the interarrival times and the service
times follow the exponential distribution. Let Yi, i = 1,2, . . .
be random variables denoting interarrival times exponentially
distributed with mean λ and given by

f (yi;λ) = λe−λyi . (2)

Most queueing models assume that interarrival times are
statistically independent of the service times. However, such
an assumption is not always valid. It is also important to take in
consideration the possibility of the arrivals of customers being
attached to the service as a control of the flow of customers or
queue control models. If that is the case, customers will arrive
in the system when a services finish. In other words there is no
difference between the interarrival time and the service time.

In this paper, we are interested in observing only the
minimum interarrival times or minimum service time as this
represents how fast the system works and it is given by Y

Y = min[Y1, . . .Ym], (3)

considering that this is a crucial fact in order to stablish
customer loyaty.

Considering the dependence between interarrival times and
service times, we derived the distribution of the minimum

interarrival or minimum service time given by a compound
COM-Poisson distribution for the number of customer and
exponential distribution for service time. Therefore, if Yi and
M are densities given by (2) and (1) respectively, the minimum
service time distribution is given by

fY (y,θ) =
λ

Z(ρ,φ)

∞

∑
m=1

m
ρme−mλy

(m!)φ
,y > 0, (4)

where θ = (ρ,λ,φ)T . In addition, (4) can be rewritten in the
form

fY (y,θ) =
λZ1(ρe−λy,φ)

Z(ρ,φ)
E(M1), (5)

where M1 ∼COM−Poisson(ρe−λy,φ).

In addition Z1(ρ,φ) = ∑
∞
j=0 = (ρeλy) j

( j!)φ is normalizing con-

stant and E(M1) = ρeλyd logZ1(ρe−λy,φ)/dρ.

Therefore, the random variable Y has an MINCOMPE
distribution if the cumulative distribution function takes the
form

FY (y;θ) = 1− Z1(ρe−λy,φ)

Z(ρ,φ)
. (6)

We rewritten (4) using the misture of exponential distribution
and it is given by

fY (y,θ) =
∞

∑
m=0

vm fE(y,mλ), (7)

where fEY (y,θ) denotes the exponential distribution function
with parameter λ and the coefficient vm was represented by
COM-Poisson probabilities given by

vm = vm(ρ,φ) = Pm(M = m;ρ;φ)

=
1

Z(ρ,φ)
mρm

(m!)φ
. (8)

where ∑
∞
m=0 vm = 1. Therefore, (6) can be rewritten and

takes the form

FY (y;θ) = 1−
∞

∑
m=0

vme−mλy. (9)

The moments of the MINCOMPE distribution can be immedi-
ately obtained as linear functions of the exponential moments
as

E(Y r) = λ
−r

Γ(r+1)
∞

∑
m=1

vmm−r. (10)

In (11), the reliability function is shown

WY (y,θ) =
Z1(ρe−λy,φ)

Z(ρ,φ)
. (11)

Thus, reliability function is the probability of no failures in
the interval [0,y] or equivalently, the probability to observe
the service time after y time.

When the number of the arrival of customers in the system
increases consequentely the interarrival times decrease. Due
to this fact, there is a continiously pressure on the server to
attend the high demand of work. Therefore, the system has
an adjustement mechanism in order to restablish the balance
of the system. In this case, the possible adjustements are to
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change the service rate and/or open new service channels.
These adjustements are captured according to the variations
in the pressure parameter and described by corollaries below.

Corollary 1: When φ = 0, the MINCOMPE distribution
becames the Minimum-geometric-exponential distribution, de-
noted by MINGE distribution, for the minimum service time.
The COM-Poisson is reduced to a geometric distribution and
the service rate is independent of the system state. Therefore,
the server is not accelerated and it is not stressed with
the arrival of the customers. It is not necessary to do an
adjustement in the system.

Therefore, the MINGE distribution is given by

fY (y,θ) =
λe−λy(1−ρ)

(1−ρe−λy)2 . (12)

The reliability function is obtained by

WY (y,θ) =
(1−ρ)e−λy

(1− e−λyρ)
. (13)

When φ = 0 in (10) the raw moments of Y is obtained and it
is given by

E(Y r) = λ
−r

Γ(r+1)(1−ρ)
∞

∑
m=0

m−1

∑
k=0

ρ
m(k)−r. (14)

Corollary 2: When the pressure parameter assumed φ = 1,
the MINCOMPE distribution is reduced to the Minimum-
Poisson-exponential distribution, denoted by MINPE distri-
bution, for the minimum service time. The COM-Poisson is
reduced to a Poisson distribution and the service rate is directly
proportional to the system state and the server is acceler-
ated. The adjustements mechanisms in order to restablish the
balance of the system are opening of new service channel
proportional to the number of customers and increase the
service rate.

When φ = 1 in (4) we obtained the MINPE distribution and it
is given by

fY (y,θ) =
λρe−ρ−λy+ρe−λy

(1− e−ρ)
y > 0. (15)

The reliability function is given by

WY (y,θ) =
eρe−λy

(eρ)
. (16)

When φ = 1 in (10) the raw moments of Y is obtained and
it is given by

E(Y r) = λ
−r

Γ(r+1)e−ρ
∞

∑
m=0

ρ
m(m!)−r. (17)

Corollary 3: When φ → ∞, the MINCOMPE was con-
verted to Minimum-Bernoulli-exponential distribution, denoted
by MINBE, for the minimum service time. The COM-Poisson
is reduced to a Bernoulli distribution and the service rate
is dependent of the system state. The server is accelerated,
consequently the service rate increased.

If the random variable Y was defined as (3), replacing φ→ ∞

in (4) and it is given by

fY (y,θ) =
ρλe−λy

(1+ρ)
. (18)

Therefore, the reliability function was presented by

WY (y,θ) =
1+ρe−λy

(1+ρ)
. (19)

The raw moment of the exponential distribution was given
by

E(Y r) = λ
−r

Γ(r+1)
ρ

(1+ρ)
. (20)

B. Maximum Likelihood Estimation

The maximum likelihood estimation is considered the log-
likelihood MINCOMPE distribution in (5) can be written as

`(θ,y) = −n logZ(ρ,φ)+
n

∑
i=1

log(Z1(ρe−λyi ,φ))

+
n

∑
i=0

logE[M1] (21)

where θ = (ρ,λ,φ)T .

Denoted by Zθi and Zθi
1 first derivatives of Z and Z1 with

aspect to any parameter θi of the MINCOMPE distribution.
The components of the unit score function U = (Uρ,Uλ,Uφ)

T

is given by

Uρ =−n
Zρ

Z
+

n

∑
i=0

Zρ

1
Z1

+
n

∑
i=0

E[M1]
φ

E[M1]
, (22)

and

Uλ =
n

∑
i=0

Zλ
1

Z1
+

n

∑
i=0

E[M1]
λ

E[M1]
, (23)

and

Uφ =−n
Zφ

Z
+

n

∑
i=0

Zφ

1
Z1

+
n

∑
i=0

E[M1]
ρ

E[M1]
. (24)

The numerical computation of the above moments can be
easily performed in software packages such as R and Matlab.
Numerical maximization of the log-likelihood function is per-
formed with the RS method [6] in the gamlss package. These
methods were discussed in detail in [7], and [4].

We show the log-likelihood functions for other models in
corollaries below.

Corollary 4:

Where φ= 0, the minimum service time had MINGE distribution
and the log-likelihood function is accorded by

`(ρ,λ) = nλ−
n

∑
i=0

λy+n logλ(1−ρ)

− 2
n

∑
i=0

log(1−ρe−λyi). (25)
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Corollary 5: Where φ = 1, the minimum service time has
MINPE distribution and the log-likelihood function is given
by

`(ρ,λ) = n log(ρλ)−nρ−
n

∑
i=0

λyi

+ ρ

n

∑
i=0

eλyi −n log(1− eρ). (26)

Corollary 6: Where φ→∞, the minimum service time has
MINBE distribution and the log-likelihood function is given by

`(ρ,λ) = n logλρ−
n

∑
i=1

λyi−n log(1+ρ). (27)

C. Numerical Results

The numerical results are important to describe the behav-
ior of the model and its applicability in different situations.
We presented three pieces of data: the simulated data and two
real data; data from a Brazilian supermarket checkout and data
from the access to a website.

1) Simulation: For the simulated data, we have chosen
M/M/1 model [8]. The aim was to look for the data where few
customers remained in the queue. This particular set of data
was then used to test the new distribution when the pressure
parameter took the value φ= 0. In this case, the system was not
accelerated and the service rate was independent of the state
of the system. Therefore, the M/M/1 model was simulated
with the intensive traffic ρ = 0.9 with the arrival rate 0.9.
We have stablished 1,000 arrivals as the ending point of the
simulation. The proposal was to adjust the empirical models
and it was based on the comparison between the observed and
predicted values. The simplest way to make this comparison
is graphically, which consists of comparing the reliability
function to the Kaplan-Meier estimator. Thus, Figure 1 shows
the behavior of the MINGE distribution it is compared with the
Kaplan Meier estimates [9] for the simulated data with ρ= 0.9.
Clearly, the MINGE distribution yields a close concordance
with the Kaplan-Meier estimates.

2) Real Data:

• To begin with,the express checkout in the supermarket
real data was analyzed. It is often felt that, the
minimum service time is one of the key points in order
to establish customer loyalty. Therefore, supermarkets
use a variety of methods to reduce the service time at
checkouts. The most traditional method for example,
is the express lines. In the express lines the amount
of items which customers can bring to an express
checkout counter is limited. When analysing the su-
permarket checkouts, a particular express checkout
presented a similar behavior of the system studied;
the service was very fast and many customers entered
directely into the service. The remaining number of
customers in the queue was insignificant. We have
used this data to test the MINGE distribution. The
Kolmogorov-Smirnov test was used to prove that
the interarrival times and the service times presented
an exponential distributions. A total sample of 85
customers were observed with intensity traffic ρ =

0.816 where the mean service was 1.12 minutes. The
MINGE distribution was used when the service was
independent of the state of the system. The server was
able to absorve all the works and it was not necessary
to adjust the system. Figure 2 shows the MINGE
distribution and the Kaplan-Meier estimates. Indeed,
the MINGE distribution has a close concordance with
the Kaplan-Meier estimates. The maximum likelihood
estimates are given by ρ̂ = 0.876, λ̂ = 0.90 minutes
and the mean E(Y ) = 1.908 minutes.

• Finally, we analysed accesses to the website ”Ten-
dencias Profissionais” [10]. A survey with 26 ques-
tions was alocated on this website. Data collection
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Figure 1: Kaplan-Meier estimates and reliability function W (y)
for ρ = 0.9.
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Figure 2: Kaplan-Meier estimates and reliability function
WY (y) for ρ̂ = 0.876.
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started on 20 October, 2010 and it was available for
20 days. As a general rule, the internet allows the
rapid dissemination of information. The survey was
distributed through social networks and 1,000 emails
were sent to the main communication agencies in
Brazil. On the website ”Tendencias Profissionais”, the
arrival time of customers was registered. A sequence
of the arrival time was observed. The suitability of
the exponential distribution was tested for interarrival
times (Y ). The Kolmogorov-Smirnov test was used,
therefore Dmax < Dα

n was obtained and Dmax = 0.114
and Dα

n = 0.122 was the critical value. Moreover, the
suitability of the Poisson model for the number of
customers (M) was tested. A new test for the Poisson
distribution [8]. The new test takes into account the
non-homogeneity of the process as well as the under-
dispertion of data. Therefore, the new test in which
Tnew = 4∑

i=1
n=20(λi− λ̄)2 = 0.011, where λi is the arrival

rate per day and λ̄ is the average arrival rate of 20
days of observation. If Tnew > χ2

n−1,1−α
, the hypothesis

H0M ∼ Poisson(λ) is rejected. In this case, it was
obtained that Tnew = 0.10 < χ2

20−1,0.05, the hypothesis
H0 was rejected. Thus, the use of MINPE distribution
was justified. Figure 3 shows the MINPE distribution
and the Kaplan-Meier estimates. The MINPE distribu-
tion yields a close concordance with the Kaplan-Meier
estimates. Moreover, the mean rate for answering the
survey was 6.5 minutes and the minimum time was
1.2 minutes. In addition, the maximum likelihood
estimates were given by ρ̂ = 0.98, λ̂ = 0.449 minutes
and E(Y ) = 1.08 minutes
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Figure 3: Kaplan-Meier estimates and reliability function W (y)
for ρ̂ = 0.98.

II. FINAL REMARKS

In this paper, we proposed a distribution for the minimum
service model with service rate dependent on the state of
the system called the Minimum-Conway-Maxwell-Poisson-
exponential distribution and denoted by MINCOMPE distri-
bution. This distribution describes the service, not considering
the number of customers. In addition, there is a dependence
between interarrival times and service times. In other words,
the service is attached to the arrival and the interarrival time is
the same as the service time. Hence, when the customer arrives
in the system, he enters into the service directly. Therefore,
it is necessary to have an adjustement mechanism in order to
restablish the balance of the system. As a result, the service rate
increases and/or new channels of the service can be opened.
We studied three situations for the server. Firstly, the pressure
parameter took on the zero value, φ = 0 and in this case, the
server dit not accelerate and the service was independent from
the state of the system. Afterwards, the pressure parameter took
on the value of one, φ = 1, accelerating the server and opening
new service channels. Finally, the server increased even more
the service rate and the pressure parameter assumed the value
infinity. The MINCOMPE distribution generalizes other usual
distributions for each variation of the pressure parameter, such
as the Minimum-geometric-exponential, Minimum-Poisson-
exponential and Minimum-Bernoulli-exponential. The proper-
ties of the proposed distribution were discussed, including a
formal proof of its pdf and moments. An estimation of the
parameters was obtained by the maximum likelihood method.
In order to illustrate the model. Real and simulated data were
set as illustrations of how to fit the MINCOMPE distribution.
To conclude, we believe that the MINCOMPE distribution has
a practical approach within a service model with the state
dependent service rate. In addition, this can be applied to
various practical situations.
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