
Closed Frequent Itemset Mining over Fast Data Stream Based on Hadoop

Shan Jicheng, Liu Qingbao
Science and Technology on Information Systems Engineering Laboratory

 National University of Defense Technology
Changsha, China

email: sjcheng2007@126.com, liuqingbao@nudt.edu.cn

Abstract—Mining closed frequent itemsets provides complete
and condensed information for non-redundant association
rules generation. Online mining of closed frequent itemsets
over streaming data is one of the most important issues in
mining data streams. In this paper, we extend two types of
methods to MapReduce platform to mine closed frequent
itemset over fast data streams. Experiments show that both
methods have performance improvement with more mapper
nodes and the vertical format data method has higher speed to
process fast data streams.

Keywords- data stream; closed frequent itemsets; mapreduce.

I. INTRODUCTION
Frequent itemset mining has been an important research

issue for many years in data mining community. With the
development of data storage and data processing, frequent
itemset mining meets new challenges and needs to be
extended. For example, Wireless Sensor Network (WSN)
can be used to monitor the traffic status and the environment
information. With time flows, the WSN will produce a large
scale of data that cannot be storaged in traditional static
database. WSN data related to time should be processed as
stream data with special methods. However, most of the data
stream mining methods face the performance problem as
they are often used on one computer which has poor
computing ability. When the stream becomes ‘bigger’ and
‘faster’, these methods have lower effect or even cannot
work.

For mining frequent itemsets in traditional transactional
database, Apriori is the most classic and most widely used
algorithm proposed by R. Agrawal and R. Srikant in 1994
[1]. The algorithm works in a multi-phase generation-and-
test framework, including the joining and pruning process to
reduce the number of candidates before scanning the
database for frequency computing. The algorithm terminates
when no more candidate itemsets can be generated. The
Apriori levelwise approach implies several scans over the
database for support counting of candidate itemsets which
affects the performance of the algorithm. To reduce the scan
overhead, some depth-first methods were proposed, of which
the Eclat (Equivalent CLASS Transformation) algorithm by
Zaki [2] and the FP-Growth algorithm by Han, Pei, Yin, and
Mao [3] are typical representatives. These algorithms use
compressed data structure to store necessary transaction

information and avoid candidate generation and levelwise
scans.

Recently, the increasing emergence of data streams has
led to the study of online mining of frequent itemsets, which
is an important technique for a wide range of emerging
applications [4], such as web search and click-stream mining,
trend analysis and fraud detection in telecommunications
data, e-business and stock market analysis, and wireless
sensor networks. Unlike mining static databases, mining data
streams poses many new challenges. Firstly, it is not realistic
to store the whole data stream in the main memory or even
the secondary storage space as the data continuously come
with no boundary. Secondly, traditional methods working on
static stored datasets by multiple scans are unrealistic, since
the streaming data is passed only once. Thirdly, stream
mining requires highly efficient real-time processing in order
to keep up with the high data arrival rate and mining results
are expected to be available within short response time. In
addition, the combinatorial explosion of itemsets exacerbates
mining frequent itemsets over streams in terms of both
memory consumption and time expense. In the past ten years,
many algorithms to mine frequent itemsets over data stream
have been proposed, like Lossy Counting [5], DSM-FI [6],
FDPM [7] , estDec [8], FP-streaming [9], estWin [10],
Moment [11], etc. These algorithms can be divided into two
categories based on the window they adopt: the landmark
window model and the sliding window model.

With the advent of Internet and the exponential growth of
data volume towards a terabyte or more, it has been more
difficult to mine them on a single sequential machine.
Researchers attempt to parallelize these frequent itemset
mining algorithms to speed up the mining of the ever-
increasing sized databases. In big data era, we need new
framework and new methods to capture and deal with
dynamic changing, high dimensional, large scale data. In
2004, Google proposed their Google File System [12] and
MapReduce [13] framework which has been successfully
used in Google search and other Google products. With
some number of ordinary computers, Google Distributed File
System solved the big data storage problem and MapReduce
framework can be used to do computing work on the big data
stored. In a MapReduce cluster, a node which schedules
tasks execution among nodes is called the master, and other
nodes are workers. MapReduce uses two phase procedure to
implement Function Programming, map and reduce. The
master is responsible for the scheduling of the map tasks and

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management

the reduce tasks which are executed by the workers after the
job is initialized. In Map phase, the map function in each
node takes the input data as <key, value> pair and outputs a
list of <key, value> pairs in different domain. Then in
Reduce phase, the reduce function in nodes takes the output
of map functions as <key, list-of-values> and outputs a
collection of values as the result. Also, the output of the
reduce function can be formatted as <key, value> pairs
which makes multiphase mapreduce iteration possible.
What’s more important, both the map and reduce functions
can be performed in parallel.

MapReduce hides the problems like fault tolerance, data
distribution and load balancing in parallelization, which
allows user to focus on the computing implementation
problem without worrying about the parallelization details.
Developers only need to write the map function to read
blocks from the distributed file system and produce a set of
intermediate <key, value> pairs. The MapReduce framework
organizes together all intermediate values related to the same
intermediate key , often with a shuffle procedure, and sends
them to the reduce function [13]. The reduce function, also
written by the user, captures an intermediate key and a set of
values for that key. Then reduce function merges together
these values to produce an aggregate result. This merging
allows users to handle lists of values that are too large to fit
in memory. Thus, MapReduce can be an efficient platform
for mining frequent itemsets from huge datasets of tera- or
peta-bytes [14][15][16][17][18].

In this paper, we consider to mining closed frequent
itemsets over data stream with sliding window model based
on the MapReduce framework. Closed frequent itemsets can
store necessary information to get complete frequent itemsets
with less storage requirement [19]. Sliding window model
pays different attention to data produced at different time so
that it can discover time-related rules which are more
important in stream application environment. Based on the
MapReduce framework, our method has higher performance
and ability to process high-velocity large-volume dynamic-
variety stream data.

The rest of this paper is organized as follows. The
preliminary knowledge is given in Section II. Section III
describes details of the two methods we extend and
implement on MapReduce platform. Experiment results are
shown and analyzed in Section IV. We conclude in Section
V.

II. PRELIMINARIES
Let be a set of items. Items may be

commodities, products, records, internet links etc. Any
subset I is called an itemset. Let be a set
of transactions within a slide window of size n denoted by
data stream. Each unique transaction ti of T is a pair <tidi, k-
itemsi> of which k-itemsi A is a set of k items. A
transaction database can list, for example, the sets of
products bought by the customers of a supermarket within a
period of time, or the sets of pages a user visited for a site in
a session. Every transaction refers to an itemset, but some
itemsets may not appear in T.

Let I A be an itemset and T a transaction database over
A. A transaction t T covers the itemset I or the itemset is
contained in transaction t if and only if I t.

The set is called the
cover of I w.r.t. T. The cover of an itemset is the index set
of transactions that cover it.

The value is called the absolute support
of I with respect to T. The value of is
called the relative support of I with respect to T. The
support of I is the number or fraction of transactions that
cover it. Sometimes is also called the (relative)
frequency of I in T.

The Frequent Itemset Mining problem can be formally
defined as:
 Given:
 - a set of items;
 - a vector of transactions over A;
 - a number such that , the

minimum support.
 Goal:
 - the set of frequent itemsets, that is, the set

.
As shown in Figure 1, all the frequent k-itemsets (k=1,2,3)

for the transaction database T left with 10 transactions are
listed right given the minimum support smin= 3. So the
frequent itemset for T is

According to the priori property, every subset of a
frequent itemset is also frequent. Thus, generation-and-test
algorithms to mine all frequent itemsets (complete frequent
itemsets) suffer from the problem of combinatorial
explosion. To solve this problem two substitute solutions
have been proposed. In the first solution, only maximal
frequent itemsets are mined. A frequent itemset is maximal
if none of its superset is frequent. The number of maximal
frequent itemsets is usually smaller than the number of
complete frequent itemsets , and we can derive all the
members of from . It is a pity that does not contain

Figure 1. A transaction database, with 10 transactions, and the

enumeration of all possible frequent itemsets using the minimum support of
smin= 3 or min = 0.3 = 30%.

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management

support information of itemsets that do not belong to .
Thus, discovering only maximal frequent itemset loses
information.

The second solution maintains enough information to get
complete frequent itemsets. It discovers all closed frequent
itemsets from the database. An itemset is closed if and only
if none of its superset has the same support as it has.
Similarly, the number of closed frequent itemsets is
smaller than that of . More importantly, we can derive

from because a frequent itemset I must be a subset of
one or more closed frequent itemset, and I’s support is equal
to the maximal support of the closed itemsets it is contained
in.

For the three kinds of frequent itemsets, , we
can get their relation which is . The maximal
and closed frequent itemsets for the example above are:

Since is smaller than with no information loss about
any frequent itemset, in this paper, we focus on the closed
frequent itemsets mining.

III. DATA STREAM MIMING ON MAPREDUCE
We designed two methods to mine high speed data

streams on Hadoop platform and to make a comparison. In
both solutions, we compress the high velocity data and split
it into basic blocks. Every single block is a basic window
unit processed by a mapper node. For the first method, we
modified the moment algorithm to fit the MapReduce
framework: as data flows in, single transactions are added to
FP-Tree structure to maintain the data information. When the
number of transactions reaches the threshold, the Closed
Enumeration Tree (CET), which will be explained in Section
IIIA, will be built for the first time. Then, the new
transaction continues to be added and old transaction is
deleted causing update of the CET. CET maintains enough
information to get the closed frequent itemsets for the data
stream at any moment. For the second method, we use
vertical format data to store the item and transaction
information. We build a matrix for basic window units.
Every item contained in the stream has a line vector which
lists all the transaction identifiers cover this item. Then, we
can build itemset following alphabet order with item’s
transaction cover vector. As computer has superiority of
vector computing, the support counting and closure
judgment will be easier. In Section V, we show the
implementation and experiment results of the two methods
on synthetic and real datasets.

A. Moment-based MapReduce mining
Moment[11] was used to update closed frequent itemsets

for sliding window incrementally. It adopted a prefix tree
structure in main memory called Closed Enumeration Tree
(CET) to maintain the itemsets selected from the sliding
window dynamically. The CET contains four node types

which were described in detail in [11]. They are Infrequent
Gateway Nodes (IGN), Unpromising Gateway Nodes (UGN),
Intermediate Nodes (IN) and Closed Nodes (CN). Figure 2
shows an example of a sliding window and its CET structure
in which dashed circle represents IGN, dashed rectangle
represents UGN, solid circle represents IN and CN is
represented by solid rectangle. From the Apriori property, all
super sets of infrequent itemset are not frequent, we can get:
IGN has no super set in the CET, child nodes of UGN cannot
be CN so that we do not need to maintain child nodes of
UGN. CET only needs to store small part of the itemsets still
being able to get accurate results.

When a new transaction arrives, Moment explores nodes
related to the transaction in the CET. For every node
explored, Moment increase the support count and update the
node type. In Figure 3, a new transaction T (tid 5) is added to
the sliding window. We traverse the parts of the CET that are
related to transaction T. For each related node nI , we update
its support, tid sum, and possibly its node type.

When an old transaction is to be deleted, Moment also
explores nodes related to the transaction in the CET. For
every node explored, Moment decreases the support count
and updates the node type. In Figure 4, an old transaction T
(tid 1) is deleted from the sliding window. To delete a
transaction, we also traverse the parts of the CET that is
related to the deleted transaction. For each related node nI ,
we update its support, tid sum, and possibly its node type.

For its incremental way of updating for window’s sliding,
Moment has a formally process procedure and becomes
fundamental method to mine closed frequent itemsets for
data stream.

Figure 2. The Closed Enumeration Tree Corresponding to Window #1

Figure 3. Adding a transaction

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management

Figure 4. Deleting a transaction

The MapReduce implementation of Moment M-Moment
updates the whole CET using basic window as unit. The
stream receiving modular compress the data stream to
transaction format that can be produced as the input of the
map function. A basic window was the split for a mapper
node. The mapper node mines the split unit using Moment
algorithm and send the intermediate results to reducer node.
The reducer node calls the reduce function to combine
intermediate key-value pairs to get the whole result as the
closed frequent itemsets currently for the data stream.

B. Vertical format data based MapReduce mining
Vertical format was often used in Eclat-like methods.

The transaction database was transformed to item-transaction
matrix. The matrix was built with tid-list rows. A tid-list
consists of two fields: Item and Tidset field. The Tidset for an
item ip is denoted as tidset(ip) which is a set of transaction
identifiers containing item ip. Tidset is a set structure that
makes the find(tid) and inter(tidset1,tidset2) easy to
implement and execute. Furthermore, we use an extended
prefix tree to list itemsets with support and a hash table
storing all closed frequent itemsets with their support as keys
to check a new frequent itemset is closed or not.

In the following, we discuss the related algorithms to
deal with window moving [20]. All the algorithms have the
same input parameters (nI, N, s) and result in the updating of
the itemset type and the hash table. nI stands for the item to
deal with, N is the window size, and s means the relative
support threshold. Figure 5 describes the algorithm to build
the hash table. In the building algorithm, each nI has a
corresponding tidset, Tidset(I), to store the transactions
information in the current sliding window. Function Build is
a depth-first procedure. Build visits the itemsets in a
lexicographical order. In the lines 1–2 of the algorithm,
function Build is performed if nI is frequent and is not
contained by other closed frequent itemsets. Function
leftcheck uses the support of nI as a hash key to speed up the
checking. In the lines 3–5, if nI passes the checking of the
lines 1–2, Build generates all possible children of nI with
frequent siblings and creates their tidset by set intersect
operation of nI its frequent siblings. In the lines 6–7, Build
recursively calls itself to check each child of nI .In the lines
8–10, if there is no child of nI with the same support as nI, nI
is a closed frequent itemset and it is retained in the hash table.

Figure 5. Algorithm of Build

When continues to read transactions after the window is
full, the window slides with two operations: delete the oldest
transaction and append the new incoming transaction.

Deleting the oldest transaction is the first step of window
sliding. First of all, all items are visited to check if the
deleted transaction contains it. Then, all items in the deleted
transaction are kept and corresponding transaction id is
deleted from their tidsets. Figure 6 gives the algorithm of
deleting the oldest transaction after removing the transaction
id from the tidsets of items. In Figure 6, the function Delete
generates the prefix tree including the itemsets whose
supports are beyond s*N - 1. This is because the supports of
a set of closed frequent itemsets in previous window would
be s*N and then becomes s*N - 1 after the deletion. If nI is a
closed frequent itemset, the hash table is updated. In the lines
19 and 23, if nI is closed frequent itemset in previous
window, nI is marked as a non-closed itemset. In this case,
nI will not be retained when the function Delete is done.

Appending the incoming transaction is the second step of
window sliding. The new transaction id will be added to the
tidset of the items which are contained in the transaction.

Figure 6. Algorithm of Delete

4Copyright (c) IARIA, 2015. ISBN: 978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management

Figure 7. Algorithm of Append

Figure 7 gives the algorithm of appending a new incoming
transaction after the tidset adding. Function Append is
almost the same as Build. The only difference is in the lines
9–11. If the checked closed frequent itemsets are already in
the hash table, Append updates the hash table.

The MapReduce implementation M-vertical is similar to
the content described in Section III.A.

IV. EXPERIMENTAL RESULT
In this section, we evaluate the performance of the

MapReduce implementation of the two methods and make
comparison between them. The Java source code of the
essential version of Moment is downloaded from the open
source site www.admire-project.eu (by Maciek Jarka), and
Java source code of a method use vertical format data to
mine frequent itemsets is derived from [21]. The Hadoop
version is 1.2.1. All experiments are done on a cluster of
computers with 2GB memory and Pentium（R）Dual CPU
E2200@2.20GHz running on Ubuntu 12.04 OS. We
generate a synthetic dataset T10I4D100K from IBM data
generator [1]. The parameters are described as follows: T is
average transaction size; I is average size of maximal
potential frequent itemsets; D is the total number of
transactions. Besides, a real-world dataset Mushroom was
downloaded from FIMI Repository [22].

A. Mining with different minimum supports
In the first experiment, the minimum support threshold is

changed from 1% to 0.1%, and the size of the sliding
window is fixed to 1000 transactions.

Figure 8 shows the loading time of the first window. In
the first window, both methods need to build a prefix tree. It
can be observed that the vertical based method is faster than
M-Moment. It is because that generating candidates and
counting their supports with vector set is more efficient.

Figure 9 shows the average time to process single
transaction when window slides. It also shows that the later
method is faster for similar reason. When Moment slide the
window, the adding and deleting of transaction cause explore
of the tree structure. However, when M-vertical method
slides, the algorithm only visit items that the added or
deleted transaction contains and the updating of the hash
table is very fast.

Figure 8. Time of loading the first window with different minimum

supports

Figure 9. Average time of window sliding with different minimum

supports

Because of the vertical format data structure, it can also
be seen that the metric change extent of the latter method is
not as much as the former one.

B. Mining with different number of mappers
In this experiment, the number of mappers for the two

methods is changed from 1 to 10. The size of the basic
window is fixed to 10000 and minimum support threshold is
set to 0.1%. Figure 10 shows the total execution time to
process 100000 transactions with the two methods.

Figure 10. Total execution time with different number of mappers

5Copyright (c) IARIA, 2015. ISBN: 978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management

It can be seen that for the MapReduce Moment method
when mapper nodes increase the total time decrease a lot.
For the Mapreduce vertical method, the total execution time
also decreases a little as the number of mappers increase. But
the change is not as obvious as the M-Moment. We can
conclude that with more mapper nodes, the ability of both
methods improves.

V. CONCLUSION AND FUTURE WORK
In this paper, we extend and implement two types of

methods to do experiments on Hadoop platform to mine
closed frequent itemset over fast data streams. We firstly use
CET structure and Moment algorithms to mining. Then, we
introduce vertical format data to maintain item-transaction
information. Experiments show that vertical format data
method has higher speed and performance to process fast
data streams. Through extend implementation on Hadoop we
observed that increasing number of mappers can improve
both methods’ ability to face up with fast data streams. As
for the future work, we consider to design new methods
fitting MapReduce better and to do experiments on cluster
with more nodes to make the results more clear.

ACKNOWLEDGMENT
We thank Maciek Jarka and Sandy Moens and team for

sharing their codes online.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining

association rules,” Proc. 20th int. conf. very large data bases,
VLDB. vol. 1215, Sep. 1994, pp. 487-499.

[2] Zaki and M. Javeed, “Scalable algorithms for association
mining,” Knowledge and Data Engineering, IEEE
Transactions, Dec. 2000, pp. 372-39, doi:10.1109/69.846291.

[3] J. Han, J. Pei, and Y. Yin. “Mining frequent patterns without
candidate generation." ACM SIGMOD Record. vol. 29, May.
2000, pp. 1-12, doi:10.1145/342009.335372.

[4] M. Garofalakis, J. Gehrke, and R. Rastogi, “Querying and
mining data streams: you only get one look a tutorial,”. In
SIGMOD Conference , vol. 2002, Jun. 2002, p. 635,
doi:10.1145/564691.564794.

[5] G. S. Manku and R. Motwani, “Approximate frequency
counts over data streams,” In Proceedings of the 28th
international conference on Very Large Data Bases, Aug.
2002, pp. 346-357, doi:10.14778/2367502.2367508.

[6] H. F. Li, S. Y. Lee, and M. K. Shan, “An efficient algorithm
for mining frequent itemsets over the entire history of data
streams,” In Proc. of First International Workshop on
Knowledge Discovery in Data Streams, Sep. 2004.

[7] J. X. Yu, Z. Chong, H. Lu, and A. Zhou, “False positive or
false negative: mining frequent itemsets from high speed
transactional data streams,” In Proceedings of the Thirtieth
international conference on Very large data bases, vol. 30,
Aug. 2004, pp. 204-215.

[8] J. H. Chang and W. S. Lee, “Finding recent frequent itemsets
adaptively over online data streams,” In Proceedings of the

ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, Aug. 2003, pp. 487-492,
doi:10.1145/956750.956807.

[9] C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu, “Mining
frequent patterns in data streams at multiple time
granularities,” Next generation data mining, 2003, pp. 191-
212.

[10] J. H. Chang, and W. S. Lee, “estWin: adaptively monitoring
the recent change of frequent itemsets over online data
streams,” In Proceedings of the twelfth international
conference on Information and knowledge management, Nov.
2003, pp. 536-539, doi:10.1145/956863.956967.

[11] Y. Chi, H. Wang, P. S. Yu, and R. R. Muntz, “Moment:
Maintaining closed frequent itemsets over a stream sliding
window,” In Data Mining, 2004, ICDM'04, Fourth IEEE
International Conference on, Nov. 2004, pp. 59-66,
doi:10.1109/ICDM.2004.10084.

[12] S. Ghemawat, H. Gobioff, and S. T. Leung, “The Google file
system,” In ACM SIGOPS operating systems review , vol.
37, No. 5, Oct 2003, pp. 29-43, doi:10.1145/1165389.945450.

[13] J. Dean and S. Ghemawat, “MapReduce: simplified data
processing on large clusters,” Communications of the ACM,
Vol 51, Jan. 2008, pp. 107-113,
doi:10.1145/1327452.1327492.

[14] Z. Farzanyar, and N. Cercone, “Accelerating Frequent
Itemsets Mining on the Cloud: A MapReduce-Based
Approach,” In Data Mining Workshops (ICDMW), IEEE
13th International Conference on, Dec. 2013, pp. 592-598,
doi:10.1109/ICDMW.2013.106.

[15] Z. Farzanyar, and N. Cercone, “Efficient mining of frequent
itemsets in social network data based on MapReduce
framework,” In Proceedings of the 2013 IEEE/ACM
International Conference on Advances in Social Networks
Analysis and Mining, Aug. 2013, pp. 1183-1188,
doi:10.1145/2492517.2500301.

[16] F. Kovacs, and J. Illés, “Frequent itemset mining on hadoop,”
In Computational Cybernetics (ICCC), 2013 IEEE 9th
International Conference on, July. 2013, pp. 241-245,
doi:10.1109/ICCCyb.2013.6617596.

[17] H. Chen, T. Y. Lin, Z. Zhang, and J. Zhong, “Parallel mining
frequent patterns over big transactional data in extended
mapreduce,” In GrC , Dec. 2013, pp. 43-48,
doi:10.1109/GrC.2013.6740378.

[18] X. Wei, Y. Ma, F. Zhang, M. Liu, and W. Shen,
“Incremental FP-Growth mining strategy for dynamic
threshold value and database based on MapReduce,” In
Computer Supported Cooperative Work in Design (CSCWD),
Proceedings of the 2014 IEEE 18th International Conference
on, May 2014, pp. 271-276,
doi:10.1109/CSCWD.2014.6846854.

[19] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal,
“Discovering frequent closed itemsets for association rules,”
In Database Theory—ICDT’99 , vol. 1540, Jan. 1999, pp.
398-416, doi:10.1007/3-540-49257-7_25.

[20] H. F. Li, C. C. Ho, and S. Y. Lee, “Incremental updates of
closed frequent itemsets over continuous data streams,”
Expert Systems with Applications, vol. 36, Mar. 2009, pp.
2451-2458, doi:10.1016/j.eswa.2007.12.054.

[21] S. Moens, E. Aksehirli, and B. Goethals, “Frequent itemset
mining for big data,” In Big Data, 2013 IEEE International
Conference on, Oct. 2013, pp. 111-118,
doi:10.1109/BigData.2013.6691742.

[22] Frequent Itemset Implantation Repository(FIMI),
http://fimi.cs.helsinki.fi/,[retrieved: May, 2015].

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management

	I. Introduction
	II. Preliminaries
	III. Data stream miming on MapReduce
	A. Moment-based MapReduce mining
	B. Vertical format data based MapReduce mining

	IV. Experimental Result
	A. Mining with different minimum supports
	B. Mining with different number of mappers

	V. Conclusion And Future WORK
	Acknowledgment
	References

