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Abstract—Mining closed frequent itemsets provides complete 
and condensed information for non-redundant association 
rules generation. Online mining of closed frequent itemsets 
over streaming data is one of the most important issues in 
mining data streams. In this paper, we extend two types of 
methods to MapReduce platform to mine closed frequent 
itemset over fast data streams. Experiments show that both 
methods have performance improvement with more mapper 
nodes and the vertical format data method has higher speed to 
process fast data streams. 
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I.  INTRODUCTION 
Frequent itemset mining has been an important research 

issue for many years in data mining community. With the 
development of data storage and data processing, frequent 
itemset mining meets new challenges and needs to be 
extended. For example, Wireless Sensor Network (WSN) 
can be used to monitor the traffic status and the environment 
information. With time flows, the WSN will produce a large 
scale of data that cannot be storaged in traditional static 
database. WSN data related to time should be processed as 
stream data with special methods. However, most of the data 
stream mining methods face the performance problem as 
they are often used on one computer which has poor 
computing ability. When the stream becomes ‘bigger’ and 
‘faster’, these methods have lower effect or even cannot 
work. 

For mining frequent itemsets in traditional transactional 
database, Apriori is the most classic and most widely used 
algorithm proposed by R. Agrawal and R. Srikant in 1994 
[1]. The algorithm works in a multi-phase generation-and-
test framework, including the joining and pruning process to 
reduce the number of candidates before scanning the 
database for frequency computing. The algorithm terminates 
when no more candidate itemsets can be generated. The 
Apriori levelwise approach implies several scans over the 
database for support counting of candidate itemsets which 
affects the performance of the algorithm. To reduce the scan 
overhead, some depth-first methods were proposed, of which 
the Eclat (Equivalent CLASS Transformation) algorithm by 
Zaki [2] and the FP-Growth algorithm by Han, Pei, Yin, and 
Mao [3] are typical representatives. These algorithms use 
compressed data structure to store necessary transaction 

information and avoid candidate generation and levelwise 
scans. 

Recently, the increasing emergence of data streams has 
led to the study of online mining of frequent itemsets, which 
is an important technique for a wide range of emerging 
applications [4], such as web search and click-stream mining, 
trend analysis and fraud detection in telecommunications 
data, e-business and stock market analysis, and wireless 
sensor networks. Unlike mining static databases, mining data 
streams poses many new challenges. Firstly, it is not realistic 
to store the whole data stream in the main memory or even 
the secondary storage space as the data continuously come 
with no boundary. Secondly, traditional methods working on 
static stored datasets by multiple scans are unrealistic, since 
the streaming data is passed only once. Thirdly, stream 
mining requires highly efficient real-time processing in order 
to keep up with the high data arrival rate and mining results 
are expected to be available within short response time. In 
addition, the combinatorial explosion of itemsets exacerbates 
mining frequent itemsets over streams in terms of both 
memory consumption and time expense. In the past ten years, 
many algorithms to mine frequent itemsets over data stream 
have been proposed, like Lossy Counting [5], DSM-FI [6], 
FDPM [7] , estDec [8], FP-streaming [9], estWin [10], 
Moment [11], etc. These algorithms can be divided into two 
categories based on the window they adopt: the landmark 
window model and the sliding window model. 

With the advent of Internet and the exponential growth of 
data volume towards a terabyte or more, it has been more 
difficult to mine them on a single sequential machine. 
Researchers attempt to parallelize these frequent itemset 
mining algorithms to speed up the mining of the ever-
increasing sized databases. In big data era, we need new 
framework and new methods to capture and deal with 
dynamic changing, high dimensional, large scale data. In 
2004, Google proposed their Google File System [12] and 
MapReduce [13] framework which has been successfully 
used in Google search and other Google products. With 
some number of ordinary computers, Google Distributed File 
System solved the big data storage problem and MapReduce 
framework can be used to do computing work on the big data 
stored. In a MapReduce cluster, a node which schedules 
tasks execution among nodes is called the master, and other 
nodes are workers. MapReduce uses two phase procedure to 
implement Function Programming, map and reduce. The 
master is responsible for the scheduling of the map tasks and 

1Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management



the reduce tasks which are executed by the workers after the 
job is initialized. In Map phase, the map function in each 
node takes the input data as <key, value> pair and outputs a 
list of <key, value> pairs in different domain. Then in 
Reduce phase, the reduce function in nodes takes the output 
of map functions as <key, list-of-values> and outputs a 
collection of values as the result. Also, the output of the 
reduce function can be formatted as <key, value> pairs 
which makes multiphase mapreduce iteration possible. 
What’s more important, both the map and reduce functions 
can be performed in parallel. 

MapReduce hides the problems like fault tolerance, data 
distribution and load balancing in parallelization, which 
allows user to focus on the computing implementation 
problem without worrying about the parallelization details. 
Developers only need to write the map function to read 
blocks from the distributed file system and produce a set of 
intermediate <key, value> pairs. The MapReduce framework 
organizes together all intermediate values related to the same 
intermediate key , often with a shuffle procedure, and sends 
them to the reduce function [13]. The reduce function, also 
written by the user, captures an intermediate key and a set of 
values for that key. Then reduce function merges together 
these values to produce an aggregate result. This merging 
allows users to handle lists of values that are too large to fit 
in memory. Thus, MapReduce can be an efficient platform 
for mining frequent itemsets from huge datasets of tera- or 
peta-bytes [14][15][16][17][18]. 

In this paper, we consider to mining closed frequent 
itemsets over data stream with sliding window model based 
on the MapReduce framework. Closed frequent itemsets can 
store necessary information to get complete frequent itemsets 
with less storage requirement [19]. Sliding window model 
pays different attention to data produced at different time so 
that it can discover time-related rules which are more 
important in stream application environment. Based on the 
MapReduce framework, our method has higher performance 
and ability to process high-velocity large-volume dynamic-
variety stream data. 

The rest of this paper is organized as follows. The 
preliminary knowledge is given in Section II. Section III 
describes details of the two methods we extend and 
implement on MapReduce platform. Experiment results are 
shown and analyzed in Section IV. We conclude in Section 
V. 

II. PRELIMINARIES 
Let  be a set of items. Items may be 

commodities, products, records, internet links etc. Any 
subset I  is called an itemset. Let  be a set 
of transactions within a slide window of size n denoted by 
data stream. Each unique transaction ti of T is a pair <tidi, k-
itemsi> of which k-itemsi A is a set of k items. A 
transaction database can list, for example, the sets of 
products bought by the customers of a supermarket within a 
period of time, or the sets of pages a user visited for a site in 
a session. Every transaction refers to an itemset, but some 
itemsets may not appear in T. 

Let I A be an itemset and T a transaction database over 
A. A transaction t T covers the itemset I or the itemset is 
contained in transaction t if and only if I t. 

The set  is called the 
cover of I w.r.t. T. The cover of an itemset is the index set 
of transactions that cover it. 

The value  is called the absolute support 
of I with respect to T. The value of  is 
called the relative support of I with respect to T. The 
support of I is the number or fraction of transactions that 
cover it. Sometimes  is also called the (relative) 
frequency of I in T. 

The Frequent Itemset Mining problem can be formally 
defined as: 
 Given: 
 - a set  of items; 
 - a vector  of transactions over A; 
 - a number  such that , the 

minimum support. 
 Goal: 
 - the set of frequent itemsets, that is, the set 

. 
As shown in Figure 1, all the frequent k-itemsets (k=1,2,3) 

for the transaction database T left with 10 transactions are 
listed right given the minimum support smin= 3. So the 
frequent itemset for T is 

 
 

According to the priori property, every subset of a 
frequent itemset is also frequent. Thus, generation-and-test 
algorithms to mine all frequent itemsets (complete frequent 
itemsets) suffer from the problem of combinatorial 
explosion. To solve this problem two substitute solutions 
have been proposed. In the first solution, only maximal 
frequent itemsets are mined. A frequent itemset is maximal 
if none of its superset is frequent. The number of maximal 
frequent itemsets  is usually smaller than the number of 
complete frequent itemsets , and we can derive all the 
members of  from . It is a pity that  does not contain 

 
Figure 1. A transaction database, with 10 transactions, and the 

enumeration of all possible frequent itemsets using the minimum support of 
smin= 3 or min = 0.3 = 30%. 
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support information of itemsets that do not belong to . 
Thus, discovering only maximal frequent itemset loses 
information. 

The second solution maintains enough information to get 
complete frequent itemsets. It discovers all closed frequent 
itemsets from the database. An itemset is closed if and only 
if none of its superset has the same support as it has. 
Similarly, the number of closed frequent itemsets  is 
smaller than that of . More importantly, we can derive 

from  because a frequent itemset I must be a subset of 
one or more closed frequent itemset, and I’s support is equal 
to the maximal support of the closed itemsets it is contained 
in. 

For the three kinds of frequent itemsets, , we 
can get their relation which is . The maximal 
and closed frequent itemsets for the example above are: 

 
 

 
 

Since is smaller than  with no information loss about 
any frequent itemset, in this paper, we focus on the closed 
frequent itemsets mining. 

III. DATA STREAM MIMING ON MAPREDUCE 
We designed two methods to mine high speed data 

streams on Hadoop platform and to make a comparison. In 
both solutions, we compress the high velocity data and split 
it into basic blocks. Every single block is a basic window 
unit processed by a mapper node. For the first method, we 
modified the moment algorithm to fit the MapReduce 
framework: as data flows in, single transactions are added to 
FP-Tree structure to maintain the data information. When the 
number of transactions reaches the threshold, the Closed 
Enumeration Tree (CET), which will be explained in Section 
IIIA, will be built for the first time. Then, the new 
transaction continues to be added and old transaction is 
deleted causing update of the CET. CET maintains enough 
information to get the closed frequent itemsets for the data 
stream at any moment. For the second method, we use 
vertical format data to store the item and transaction 
information. We build a matrix for basic window units. 
Every item contained in the stream has a line vector which 
lists all the transaction identifiers cover this item. Then, we 
can build itemset following alphabet order with item’s 
transaction cover vector. As computer has superiority of 
vector computing, the support counting and closure 
judgment will be easier. In Section V, we show the 
implementation and experiment results of the two methods 
on synthetic and real datasets. 

A. Moment-based MapReduce mining 
Moment[11] was used to update closed frequent itemsets 

for sliding window incrementally. It adopted a prefix tree 
structure in main memory called Closed Enumeration Tree 
(CET) to maintain the itemsets selected from the sliding 
window dynamically. The CET contains four node types 

which were described in detail in [11]. They are Infrequent 
Gateway Nodes (IGN), Unpromising Gateway Nodes (UGN), 
Intermediate Nodes (IN) and Closed Nodes (CN). Figure 2 
shows an example of a sliding window and its CET structure 
in which dashed circle represents IGN, dashed rectangle 
represents UGN, solid circle represents IN and CN is 
represented by solid rectangle. From the Apriori property, all 
super sets of infrequent itemset are not frequent, we can get: 
IGN has no super set in the CET, child nodes of UGN cannot 
be CN so that we do not need to maintain child nodes of 
UGN. CET only needs to store small part of the itemsets still 
being able to get accurate results. 

When a new transaction arrives, Moment explores nodes 
related to the transaction in the CET. For every node 
explored, Moment increase the support count and update the 
node type. In Figure 3, a new transaction T (tid 5) is added to 
the sliding window. We traverse the parts of the CET that are 
related to transaction T. For each related node nI , we update 
its support, tid sum, and possibly its node type. 

When an old transaction is to be deleted, Moment also 
explores nodes related to the transaction in the CET. For 
every node explored, Moment decreases the support count 
and updates the node type. In Figure 4, an old transaction T 
(tid 1) is deleted from the sliding window. To delete a 
transaction, we also traverse the parts of the CET that is 
related to the deleted transaction. For each related node nI , 
we update its support, tid sum, and possibly its node type. 

For its incremental way of updating for window’s sliding, 
Moment has a formally process procedure and becomes 
fundamental method to mine closed frequent itemsets for 
data stream. 

 
Figure 2. The Closed Enumeration Tree Corresponding to Window #1 

 
Figure 3. Adding a transaction 
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Figure 4. Deleting a transaction 

The MapReduce implementation of Moment M-Moment 
updates the whole CET using basic window as unit. The 
stream receiving modular compress the data stream to 
transaction format that can be produced as the input of the 
map function. A basic window was the split for a mapper 
node. The mapper node mines the split unit using Moment 
algorithm and send the intermediate results to reducer node. 
The reducer node calls the reduce function to combine 
intermediate key-value pairs to get the whole result as the 
closed frequent itemsets currently for the data stream. 

B. Vertical format data based MapReduce mining 
Vertical format was often used in Eclat-like methods. 

The transaction database was transformed to item-transaction 
matrix. The matrix was built with tid-list rows. A tid-list 
consists of two fields: Item and Tidset field. The Tidset for an 
item ip is denoted as tidset(ip) which is a set of transaction 
identifiers containing item ip. Tidset is a set structure that 
makes the find(tid) and inter(tidset1,tidset2) easy to 
implement and execute. Furthermore, we use an extended 
prefix tree to list itemsets with support and a hash table 
storing all closed frequent itemsets with their support as keys 
to check a new frequent itemset is closed or not. 

In the following, we discuss the related algorithms to 
deal with window moving [20]. All the algorithms have the 
same input parameters (nI, N, s) and result in the updating of 
the itemset type and the hash table. nI stands for the item to 
deal with, N is the window size, and s means the relative 
support threshold. Figure 5 describes the algorithm to build 
the hash table. In the building algorithm, each nI has a 
corresponding tidset, Tidset(I), to store the transactions 
information in the current sliding window. Function Build is 
a depth-first procedure. Build visits the itemsets in a 
lexicographical order. In the lines 1–2 of the algorithm, 
function Build is performed if nI is frequent and is not 
contained by other closed frequent itemsets. Function 
leftcheck uses the support of nI as a hash key to speed up the 
checking. In the lines 3–5, if nI passes the checking of the 
lines 1–2, Build generates all possible children of nI with 
frequent siblings and creates their tidset by set intersect 
operation of nI its frequent siblings. In the lines 6–7, Build 
recursively calls itself to check each child of nI .In the lines 
8–10, if there is no child of nI with the same support as nI, nI 
is a closed frequent itemset and it is retained in the hash table.  

 
Figure 5. Algorithm of Build 

When continues to read transactions after the window is 
full, the window slides with two operations: delete the oldest 
transaction and append the new incoming transaction.  

Deleting the oldest transaction is the first step of window 
sliding. First of all, all items are visited to check if the 
deleted transaction contains it. Then, all items in the deleted 
transaction are kept and corresponding transaction id is 
deleted from their tidsets. Figure 6 gives the algorithm of 
deleting the oldest transaction after removing the transaction 
id from the tidsets of items. In Figure 6, the function Delete 
generates the prefix tree including the itemsets whose 
supports are beyond s*N - 1. This is because the supports of 
a set of closed frequent itemsets in previous window would 
be s*N and then becomes s*N - 1 after the deletion. If nI  is a 
closed frequent itemset, the hash table is updated. In the lines 
19 and 23, if nI  is closed frequent itemset in previous 
window, nI  is marked as a non-closed itemset. In this case, 
nI  will not be retained when the function Delete is done.  

Appending the incoming transaction is the second step of 
window sliding. The new transaction id will be added to the 
tidset of the items which are contained in the transaction. 

 
Figure 6. Algorithm of Delete  

4Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-415-2

IMMM 2015 : The Fifth International Conference on Advances in Information Mining and Management



 
Figure 7. Algorithm of Append 

Figure 7 gives the algorithm of appending a new incoming 
transaction after the tidset adding. Function Append is 
almost the same as Build. The only difference is in the lines 
9–11. If the checked closed frequent itemsets are already in 
the hash table, Append updates the hash table. 

The MapReduce implementation M-vertical is similar to 
the content described in Section III.A. 

IV. EXPERIMENTAL RESULT 
In this section, we evaluate the performance of the 

MapReduce implementation of the two methods and make 
comparison between them. The Java source code of the 
essential version of Moment is downloaded from the open 
source site www.admire-project.eu (by Maciek Jarka), and 
Java source code of a method use vertical format data to 
mine frequent itemsets is derived from [21]. The Hadoop 
version is 1.2.1. All experiments are done on a cluster of 
computers with 2GB memory and Pentium（R）Dual CPU 
E2200@2.20GHz running on Ubuntu 12.04 OS. We 
generate a synthetic dataset T10I4D100K from IBM data 
generator [1]. The parameters are described as follows: T is 
average transaction size; I is average size of maximal 
potential frequent itemsets; D is the total number of 
transactions. Besides, a real-world dataset Mushroom was 
downloaded from FIMI Repository [22]. 

A. Mining with different minimum supports 
In the first experiment, the minimum support threshold is 

changed from 1% to 0.1%, and the size of the sliding 
window is fixed to 1000 transactions. 

Figure 8 shows the loading time of the first window. In 
the first window, both methods need to build a prefix tree. It 
can be observed that the vertical based method is faster than 
M-Moment. It is because that generating candidates and 
counting their supports with vector set is more efficient. 

Figure 9 shows the average time to process single 
transaction when window slides. It also shows that the later 
method is faster for similar reason. When Moment slide the 
window, the adding and deleting of transaction cause explore 
of the tree structure. However, when M-vertical method 
slides, the algorithm only visit items that the added or 
deleted transaction contains and the updating of the hash 
table is very fast. 

 
Figure 8. Time of loading the first window with different minimum 

supports 

 
Figure 9. Average time of window sliding with different minimum 

supports 

Because of the vertical format data structure, it can also 
be seen that the metric change extent of the latter method is 
not as much as the former one. 

B. Mining with different number of mappers 
In this experiment, the number of mappers for the two 

methods is changed from 1 to 10. The size of the basic 
window is fixed to 10000 and minimum support threshold is 
set to 0.1%. Figure 10 shows the total execution time to 
process 100000 transactions with the two methods.  

 
Figure 10. Total execution time with different number of mappers 
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It can be seen that for the MapReduce Moment method 
when mapper nodes increase the total time decrease a lot. 
For the Mapreduce vertical method, the total execution time 
also decreases a little as the number of mappers increase. But 
the change is not as obvious as the M-Moment. We can 
conclude that with more mapper nodes, the ability of both 
methods improves. 

V. CONCLUSION AND FUTURE WORK 
In this paper, we extend and implement two types of 

methods to do experiments on Hadoop platform to mine 
closed frequent itemset over fast data streams. We firstly use 
CET structure and Moment algorithms to mining. Then, we 
introduce vertical format data to maintain item-transaction 
information. Experiments show that vertical format data 
method has higher speed and performance to process fast 
data streams. Through extend implementation on Hadoop we 
observed that increasing number of mappers can improve 
both methods’ ability to face up with fast data streams. As 
for the future work, we consider to design new methods 
fitting MapReduce better and to do experiments on cluster 
with more nodes to make the results more clear. 
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