
Automatic KDD Data Preparation Using Multi-criteria Features

Youssef Hmamouche∗, Christian Ernst† and Alain Casali∗
∗LIF - CNRS UMR 6166, Aix Marseille Université, Marseille, France
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Abstract—We present a new approach for automatic data prepa-
ration, applicable in most Knowledge Discovery and Data Mining
systems, and using statistical features of the studied database.
First, we detect outliers using an approach based on whether
data distribution is normal or not. We outline further that, when
trying to find the most appropriate discretization method, what is
important is not the law followed by a column, but the shape of its
density function. That is why we propose an automatic choice for
finding the best discretization method based on a multi-criteria
(Entropy, Variance, Stability) analysis. Experimental evaluations
validate our approach: The very same discretization method is
never always the most appropriate.

Keywords–Data Mining; Data Preparation; Outliers; Discretiza-
tion Methods.

I. INTRODUCTION AND MOTIVATION

Data preparation can be performed according to different
method(ologie)s [1]. However, this task has not been developed
greatly in the literature: The single mining step is more often
emphasized. Moreover, it focuses most of the times on a single
parameter: discretization method [2], outlier detection [3], null
values management, etc.. Associated proposals only highlight
on their advantages comparing themselves to others. There is
no global nor automatic approach taking advantage of all of
them. But the better data are prepared, the better results will be,
and the faster mining algorithms will work. Previously in [4],
we proposed a simple but efficient approach to transform input
data into a set of intervals (also called bins, clusters, classes,
etc.). On which we apply, in a further step, specific mining
algorithms (correlation rules, etc.). The reasons that decided us
to reconsider previous works are: (i) To improve the outliers’
detection with regard to the data distribution (normal or not),
(ii) To reduce the number of input parameters, and thus (iii) To
propose an automatic choice of the best discretization method.
Finally, regarding implementation, we merge the three tasks
into a single one, and carry out experiments.

This paper is organized as follows: Section II presents
general aspects of data preparation. Section III and Section IV
are dedicated to outlier detection and to discretization methods
respectively. Each section is composed of two parts: (i) related
work, and (ii) our approach for improving it. In Section V, we
show the results of first experiments. Last Section summarizes
our contribution, and outlines some research perspectives.

II. DATA PREPARATION

Raw input data must be prepared in any Knowledge and
Discovery in Databases (KDD) system previous to the mining
step. There are two main reasons for this:
• If each value of each column is considered as a single

item, there will be a combinatorial explosion of the
search space, and thus very large reponse times;

• We cannot expect this task to be performed by hand
because manual cleaning of data is time consuming
and subject to many errors.

Generally, this step is divided into two tasks: (i) Prepro-
cessing, and (ii) Transformation(s).

A. Preprocessing

Preprocessing consists in reducing the data structure by
eliminating columns and rows of low significance [5].

a) Basic Column Elimination: Elimination of a column
can be the result of, for example in the microelectronic indus-
try, a sensor dysfunction, or the occurrence of a maintenance
step; this implies that the sensor cannot transmit its values to
the database. As a consequence, the associated column will
contain many null/default values and must then be deleted
from the input file. Elimination should be performed by using
the Maximum Null Values (MaxNV ) threshold. Furthermore,
sometimes several sensors measure the same information, what
produces identical columns in the database. In such a case, only
a single column should be kept.

b) Elimination of Concentrated Data and Outliers: We
first turn our attention to inconsistent values, such as “outliers”
in noisy columns. Detection should be performed through
another threshold (a convenient value of p when using the
standardization method, see Section III-A1). Found outliers are
eliminated by forcing their values to Null. Another technique
is to eliminate the columns that have a small standard deviation
(threshold MinStd): Since their values are almost the same,
we can assume that they do not have a significant impact on
results; but their presence pollutes the search space and reduces
response times. Similarly, the number of Distinct Values in
each column should be bounded by the minimum (MinDV )
and the maximum (MaxDV ) values allowed.

B. Transformation

c) Data Normalization: This step is optional. It trans-
lates numeric values into a set of values between 0 and 1.
Standardizing data simplifies their classification.

d) Discretization: Discrete values deal with intervals
of values, which are more concise to represent knowledge,
so that they are easier to use and also more comprehensive
than continuous values. Many discretization algorithms (see
Section IV-A) have been proposed over the years for this. The
number of used intervals (NbBins) as well as the selected
discretization method among those available are here again
parameters of the current step.
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e) Pruning step: When the occurrence frequency of
an interval is less than a given threshold (MinSup), then it is
removed from the set of bins. If no bin remains in a column,
then that column is entirely removed.

The presented thresholds/parameters are the ones we use
for data preparation. In previous works, their values were fixed
inside of a configuration file read by our software at setup. The
objective of this work is to automatically determine most of
these variables without information loss. Focus is set on outlier
and discretization management.

III. DETECTING OUTLIERS

An outlier is an atypical or erroneous value corresponding
to a false measurement, a calculation mistake, an unwritten
input, etc. Outlier detection is an uncontrolled problem
because extreme values deviate too greatly from the rest
of the data. In other words, they are associated with a
significant deviation from the other observations [3]. In
this section, we present some outlier detection methods and
focus on the detection of outliers in the case of uni-variate data.

The following notations are used to describe outliers: X is
a numeric attribute of a database relation, and is increasingly
ordered. x is an arbitrary value, Xi is the ith value, N the
size of X , σ its standard deviation, µ its mean, and s a central
tendency parameter (variance, inter-quartile range, etc.). X1

and Xn are the minimum and the maximum values of X
respectively. p is an arbitrary probability, and k is a parameter
specified by the user, or computed by the system.

A. Related Work
In this section, we summarize four of the principal uni-

variate outlier detection methods.
1) Elimination after standardizing the distribution: This is

the most conventional cleaning method [3]. It consists in taking
into account µ and σ to determine the limits beyond which
aberrant values will be eliminated. For an arbitrary distribu-
tion, the Bienaymé-Tchebyshev inequality specifies that the
probability that the absolute deviation between a variable and
its average is greater than p is less than or equal to 1

p2 :

P (

∣∣∣∣x− µσ
∣∣∣∣ ≥ p) ≤ 1

p2
(1)

The idea is to set a threshold probability as a function of µ and
σ above which we accept values as non-outliers. For example,
with p = 4.47, the probability that x, satisfying

∣∣∣x−µσ ∣∣∣ ≥ p, is
an outlier is bounded by 0.05.

2) Algebraic method: This general detection method, pre-
sented in [6], uses the relative distance of a point to the
“center” of the distribution: di =

|Xi−µ|
σ . Outliers are detected

outside of the interval [µ−kQ1, µ+kQ3], where k is generally
set between 1.5 and 3. Q1 and Q3 are the first and the third
quartiles respectively.

3) Box plot: This method, attributed to Tukey [7], does
not make any assumption on how the data are distributed.
It is based on the difference between quartiles Q1 and Q3,
and distinguishes between two categories of extreme values

determined outside the lower bound (LB) and the upper bound
(UB): {

LB = Q1 − k × (Q3 −Q1)

UB = Q3 + k × (Q3 −Q1)
(2)

4) Grubbs’ test: Grubbs’ method, presented in [8], is a
statistical test for lower or higher abnormal data. It uses the
difference between the average and the extreme values of the
sample. The test is based on the assumption that the data are
normally distributed. The maximum and minimum values are
tested, which allows one to decide if any of these values is
aberrant. The statistic used is T = max(XN−µ

σ , µ−X1

σ ). The
test is based on two hypotheses:

• Hypothesis H0: The tested value is not an outlier.
• Hypothesis H1: The tested value is an outlier.

Hypothesis H0 is rejected at significance level α if:

T >
N − 1√

n

√
β

n− 2β
(3)

where β = tα/(2n),n−2 is the quartile of order α/(2n) of the
Student distribution with n− 2 degrees of freedom.

B. An Original Method for Outlier Detection
Many existing outlier detection methods assume that the

distribution of data is normal. However, we observed that,
in reality, many samples have asymmetric and/or multimodal
distributions; the use of these methods will then have a
significant influence on the mining step. Therefore, we should
process each distribution using an appropriated method. The
considered approach consists in eliminating outliers in each
column based on the normality of data, in order to minimize
the risk of eliminating normal values.

Firstly, the Kolmogorov-Smirnov test presented in [9] is
applied in order to determine whether the distribution is normal
or not. Secondly, if the variable is normally distributed, then
the Grubbs’ test is used at a significance level of 5%. This test
gives experimentally better results than the algebraic approach.
Otherwise, the Box plot method is employed with parameter k
set to 3 in order to not to be too exhaustive toward outlier
detection. Figure 1 summarizes the process we chose for
detecting and deleting outliers.

In the previous versions of our software, we used the simple
standardization method with p set as an input parameter. With
this new approach, no input parameter remains. We obtained
moreover an improvement of 2% in the detection of true
positive or false negative outliers.

IV. DISCRETIZATION METHODS

Discretization of an attribute consists in finding NbBins
disjoint intervals that will further represent it in an efficient
way. The final objective of discretization methods is to ensure
that the mining part of the KDD process generates substantial
results. In our approach, we only employ direct discretization
methods in which NbBins must be known in advance (and
be the same for every column of the input data). NbBins
was initially a parameter fixed by the end-user. The liter-
ature proposes several formulas as an alternative (Rooks-
Carruthers, Huntsberger, Scott, etc.) for computing such a
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Figure 1. Main tests used in our outlier detection process.

number. Therefore, we switched to the Huntsberger formula,
the most fitting from a theoretical point of view [10], and given
by: 1 + 3.3× log10(N).

A. Related Work

In this section, we only highlight the final discretization
methods kept for this work. This is because the other tested
methods have not revealed themselves to be as efficient
as expected (such as Embedded Means Discretization), or
are not a worthy alternative (such as Quantiles based Dis-
cretization) to the ones presented. The methods we use are:
Equal Width Discretization (EWD), Equal Frequency-Jenks
Discretization (EFD-Jenks), AVerage and STandard deviation
based discretization (AVST), and K-Means (KMEANS). These
methods, which are unsupervised [11] and static [12], have
been widely discussed in the literature: See for example [10]
for EWD and AVST, [13] for EFD-Jenks, or [2] and [14] for
KMEANS. For these reasons, we only summarize their main
characteristics and their field of applicability in Table I.

TABLE I. SUMMARY OF THE DISCRETIZATION METHODS USED.

Method Principle Applicability

EWD This simple to implement
method creates intervals of
equal width.

The approach cannot be ap-
plied to asymmetric or multi-
modal distributions.

EFD-Jenks Jenks’ method provides
classes with, if possible, the
same number of values, while
minimizing internal variance
of intervals.

The method is effective from
all statistical points of view
but presents some complexity
in the generation of the bins.

AVST Bins are symmetrically cen-
tered around the mean and
have a width equal to the stan-
dard deviation.

Intended only for normally
distributed datasets.

KMEANS Based on the Euclidean dis-
tance, this method determines
a partition minimizing the
quadratic error between the
mean and the points of each
interval.

The disadvantage of this
method is its exponential
complexity, so computation
time can be long. It is
applicable to each form of
distribution.

Let us underline that the upper limit fixed to the number
of intervals to use is not always reached, depending on the ap-
plied discretization method. Thus, EFD-Jenks and KMEANS
generate most of the times less than NbBins bins.

Example 1: Let us consider the numeric attribute SX =
{4.04, 5.13, 5.93, 6.81, 7.42, 9.26, 15.34, 17.89, 19.42, 24.40,
25.46, 26.37}. SX contains 12 values, so by applying the
Huntsberger’s formula, if we aim to discretize this set, we
have to use 4 bins.

Table II shows the bins obtained by applying all the
discretization methods proposed in Table I. Table III shows
the number of values of SX belonging to each bin associated
to every discretization method.

TABLE II. SET OF BINS ASSOCIATED TO SAMPLE SX .

Method Bin1 Bin2 Bin3 Bin4

EWD [4.04, 9.62[ [9.62, 15.21[ [15.21, 20.79[ [20.79, 26.37]
EFD-Jenks [4.04; 5.94] ]5.94, 9.26] ]9.26, 19.42] ]19.42, 26.37]
AVST [4.04; 5.53[ [5.53, 13.65[ [13.65, 21.78[ [21.78, 26.37]
KMEANS [4.04; 6.37[ [6.37, 12.3[ [12.3, 22.95[ [22.95, 26.37]

TABLE III. POPULATION OF EACH BIN OF SAMPLE SX .

Method Bin1 Bin2 Bin3 Bin4

EWD 6 0 3 3
EFD-Jenks 3 3 3 3
AVST 2 4 4 2
KMEANS 3 3 4 2

As it is easy to understand, we cannot find two dis-
cretization methods producing the same set of bins. As a
consequence, the distribution of the values of SX is different
depending on the method used.

B. Discretization Methods and Statistical Characteristics
When attempting to find the most appropriate discretization

method for a column, what is important is not the law followed
by its distribution, but the shape of its density function. This
is why we first perform a descriptive analysis of the data
in order to characterize, and finally to classify, each column
according to normal, uniform, symmetric, antisymmetric or
multimodal distributions. This is done in order to determine
what discretization method(s) may apply. Let us underline that
the proposed tests have to be performed in the given order:

1) We use the Kernel method presented in [15] to
characterize multimodal distributions. The method
is based on estimating the density function of the
sample by building a continuous function, and then
calculating the number of peaks using its second
derivative. It involves building a continuous density
function, which allows us to approximate automati-
cally the shape of the distribution. The multimodal
distributions are those which have a number of peaks
greater than 1.

2) To characterize antisymmetric distributions in a next
step, we use the Skewness, noted γ3:

γ3 = E[(
X − µ
σ

)3] (4)

The distribution is symmetric if γ3 = 0. Practically,
this rule is too exhaustive, so we relaxed it by
imposing limits around 0 to set a fairly tolerant rule
which allows us to decide whether a distribution
is considered antisymmetric or not. The associated
method is based on a statistical test. The null hy-
pothesis is that the distribution is symmetric.
Consider the statistic: TSkew = N

6 (γ
2
3). Under the

null hypothesis, TSkew follows a law of χ2 with one
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degree of freedom. In this case, the distribution is
antisymmetric if α = 5% if TSkew > 3.8415.

3) We use then the normalized Kurtosis, noted γ2, to
measure the peakedness of the distribution or the
grouping of probability densities around the average,
compared with the normal distribution. When γ2
is close to zero, the distribution has a normalized
peakedness:

γ2 = E[(
X − µ
σ

)4]− 3 (5)

A statistical test is used again to automatically decide
whether the distribution has normalized peakedness
or not. The null hypothesis is that the distribution
has a normalized peakedness.
Consider the statistic: TKurto = N

6 (
γ2
2

4 ). Under the
null hypothesis, TKurto follows a law of χ2 with one
degree of freedom. The null hypothesis is rejected at
level of significance α = 0.05 if TKurto > 6.6349.

4) To characterize normal or uniform distributions, we
use the Kolmogorov-Smirnov test, which can be used
to compare the empirical functions of two samples if
they have the same distribution.

These four successive tests allow us to characterize the
shape of the (density function of the) distribution of every
column. Combined with the main characteristics of the dis-
cretization methods presented in the last section, we get Table
IV: This summarizes which discretization method(s) can be
invoked depending on specific column statistics.

TABLE IV. APPLICABILITY OF DISCRETIZATION METHODS
DEPENDING ON THE DISTRIBUTION’S SHAPE.

Normal Uniform Symm- Antisym- Multimodal
etric metric

EWD * * *
EFD-Jenks * * * * *
AVST *
KMEANS * * * * *

Example 2: Continuing Example 1, the Kernel Density
Estimation method [15] is used to build the density function
of sample SX (cf. Figure 2).
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Figure 2. Density function of sample SX using Kernel Density Estimation.

As we can see, the density function has two modes, is
almost symmetric and normal. Since the density function is
multimodal, we should stop at this point. But as shown in Table
IV, only EFD-Jenks and KMEANS produce interesting results
according to our proposal. For the need of this example, let
us perform the other tests. Since γ3 = −0.05, the distribution
is almost symmetric. As mentioned in (2), it depends on the
threshold fixed if we consider that the distribution is symmetric
or not. The distribution is not antisymmetric because TSkew =
0.005. The distribution is not uniform since γ2 = −1.9. As
a consequence, TKurto = 1.805, and we have to reject the
uniformity test. The Kolmogorov-Smirnov test results indicate
that the probability that the distribution follows a normal law
is 86.9% with α = 0.05. Here again, accepting or rejecting
the fact that we can consider if the distribution is normal or
not depends on the fixed threshold.

C. Multi-criteria Approach for Finding the Most Appropriate
Discretization Method

Discretization must keep the initial statistical characteris-
tics so as the homogeneity of the intervals, and reduce the size
of the final data produced. So, the discretization objectives are
many and contradictory. For this reason, we chose a multi-
criteria analysis to evaluate the available applicable methods
of discretization. We use three criteria:

• The entropy H measures the uniformity of intervals.
The higher the entropy, the more the discretization
is adequate from the viewpoint of the number of
elements in each interval:

H = −
NbBins∑
i=1

pi log2(pi) (6)

where pi is the number of points of interval i divided
by the total number of points (N ), and NbBins is the
number of intervals. The maximum of H is computed
by discretizing the attribute into NbBins intervals
with the same number of elements. In this case, H
reduces to log2(NbBins).

• The index of variance J , introduced in [10], measures
the interclass variances proportionally to the total
variance. The closer the index is to 1, the more
homogeneous the discretization is:

J = 1− Intra-intervals variance
Total variance

• Finally, the stability S corresponds to the maximum
distance between the distribution functions before and
after discretization. Let F1 and F2 be the attribute
distribution functions before and after discretization
respectively:

S = supx(
∣∣F1(x)− F2(x)

∣∣) (7)

The objective is to find solutions that present a compromise
between the various performance measures. The evaluation
of these methods should be done automatically, so we are in
the category of a priori approaches where the decision-maker
intervenes just before the evaluation process step.

Aggregation methods are among the most widely used
methods in multi-criteria analysis. The principle is to reduce
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to a unique criterion problem. In this category, the weighted
sum method involves building a unique criterion function
by associating a weight to each criterion [16][17]. This
method is limited by the choice of the weight, and requires
comparable criteria. The method of inequality constraints is
to maximize a single criterion by adding constraints to the
values of the other criteria [18]. The disadvantage of this
method is the choice of the thresholds of the added constraints.

In our case, the alternatives are the 4 methods of discretiza-
tion, and we discretize automatically columns separately, so the
implementation facility is important in our approach. Hence
the interest in using the aggregation method by reducing
it to a unique criterion problem, by choosing the method
that minimizes the Euclidean distance from the target point
(H = log2(NbBins), J = 1, S = 0).

Definition 1: Let D be an arbitrary discretization method,
and VD a measure of segmentation quality using the proposed
multi-criteria analysis:

VD =
√

(HD − log2(NbBins))2 + (JD − 1)2 + S2
D (8)

The following proposition is the main result of this article:
It indicates how we chose the most appropriate discretization
method among all the available ones.

Proposition 1: Let DM be a set of discretization methods;
the one, noted D, that minimizes VD (see equitation 8), ∀D ∈
{DM}, is the best discretization method.

Corollary 1: The most appropriate discretization method
D can be obtained as follows:

D = argmin({VD,∀D ∈ {DM}}) (9)

As a result of corollary 1, we propose the MAD (Multi-
criteria Analysis for finding the best Discretization method)
algorithm, see Figure 3.

Input: X set of numeric values to discretize, DM set of
discretization methods applicable

Output: best discretization method for X
1: for each method D ∈ DM do
2: Compute VD
3: end for
4: return argmin(V )

Figure 3. MAD: Multi-criteria Analysis for Discretization

Example 3: Continuing Example 1, Table V shows the
evaluation results for all the discretization methods at disposal.
Let us underline that for the need of our example, all the values
are computed for every discretization method, and not only
for the ones which should have been selected after the step
proposed in Section IV-B (cf. Table IV). The results show that
EFD-Jenks and KMEANS are the two methods that obtain
the lowest values for VD. The values got by the EWD and
AVST methods are the worst: This is consistent with our
optimization proposed in table IV, since the sample distribution
is multimodal.

TABLE V. EVALUATION OF DISCRETIZATION METHODS.

H J S VDM

EWD 1.5 0.972 0.25 0.313
EFD-Jenks 2 0.985 0.167 0.028
AVST 1.92 0.741 0.167 0.101
KMEANS 1.95 0.972 0.167 0.031

V. EXPERIMENTAL ANALYSIS

In this section, we present some experimental results by
evaluating three samples. We decided to implement it using
the MineCor KDD Software [4], but it could have been
with another one (R Project, Tanagra, etc.) Sample1 is a
randomly generated file that contains heterogeneous values.
Sample2 and Sample3 correspond to real data representing
measurements provided by a microelectronics manufacturer
(STMicroelectronics) after completion of the manufacturing
process. Table VI sums up the characteristics of the samples.

TABLE VI. CHARACTERISTICS OF THE DATABASES USED.

Sample Number of columns Number of rows Type

Sample1 9 468 generated
Sample2 7 727 real
Sample3 1281 296 real

Figures 4 and 5 summarize respectively the evaluation of
the methods used on the two first samples.

2 4 6 8

Columns

0.0

0.2

0.4

0.6

0.8

1.0

V
D

EWD
EFD-Jenks
AVST
KMEANS

Figure 4. DM comparison on Sample1’s columns.

For the Sample1 evaluation shown graphically in Figure 4,
the columns studied have relatively dispersed, asymmetric and
multimodal distributions. “Best” discretizations are provided
by EFD-Jenks and KMEANS methods. We note also that
the EWD method is fast, and sometimes demonstrates good
performances in comparison with the EFD-Jenks or KMEANS
methods.

For Sample2 attributes, which have symmetric and nor-
mal distributions, the evaluation on Figure 5 shows that the
EFD-Jenks method provides generally the best results. The
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Figure 5. DM comparison on Sample2’s columns.

EWD

EFD-Jenks

AVST

KMEANS

Figure 6. Selected Discretization Method.

KMEANS method is unstable for these types of distributions,
but sometimes provides the best discretization.

Finally, Figure 6 summarizes our approach: We have tested
it over each column of each dataset. Any of the available
methods is selected at least once in the dataset of the three
proposed samples, which enforces our approach. As expected,
EFD-Jenks is the method that is the most often kept by
our software (' 42%). AVST and KMEANS are selected
approximately 30% each. EWD is only selected a very few
times (less than 2%).

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a new approach for automatic
data preparation implementable in most of KDD systems.
This step is generally split into two sub-steps: (i) detecting
and eliminating the outliers, and (ii) applying a discretization
method in order to transform any column into a set of clusters.
In this article, we show that outliers’ detection is depending
on if data distribution is normal or not. As a consequence,

we do not have to apply the same pruning method (Box plot
vs. Grubb’s test). Moreover, when trying to find the most
appropriate discretization method, what is important is not
the law followed by the column, but the shape of its density
function. That is why we propose an automatic choice for
finding the best discretization method based on a multi-criteria
approach. Experimental evaluations done on real and synthetic
data validate our work, showing that it is not always the very
same discretization method that is the best: Each method has
its strengths and drawbacks.
For future works, we aim to experimentally validate the rela-
tionship between the distribution shape and the applicability
of used methods, to add other discretization methods (Khiops,
Chimerge, Entropy Minimization Discretization, etc.) to our
system, to parallelize our work using the latest functionalities
of multicore programming, and to measure the impact of the
data preparation step on the results of some mining algorithms
(association rules, correlation rules, etc.).
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