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Abstract—This paper discusses the evaluation of several recom-
mendation methods used to suggest relevant contents to museum
visitors. We employed traditional recommender systems along
with our versatile Social Filtering formalism to test different
strategies on a genuine dataset, which was collected during a
recent cultural exhibition that received significant interest in
Paris, France. The results show the promising potential of rec-
ommendation techniques in the not so well explored application
domain of museum visit. This work is part of the AMMICO on-
going research project that aims to develop “smart” audio guides
for museums.
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I. INTRODUCTION

Museum visitors are often offered a wide selection of
artworks. Most frequently, curators design exhibitions with
a linear narrative, and wearable audio guides are optionally
available to provide information to the visitors. This setting is
generally very static with almost no interaction with the user.
Gradually, some museums have developed devices offering
predefined suggested visit paths with adapted contents accord-
ing to the type of the audience, e.g., children, families or school
groups. The AMMICO project [1] takes one step further: it
aims to provide an audio guide prototype with several novel
functions exploiting advanced digital information techniques
to enhance the visitor’s experience.

The most important functionality on this audio guide is
the online recommender system, based on the analysis of the
visitor behavior: trajectory (measurement of the accurate po-
sition of the user, time dedicated to each artwork), interaction
with the device (“likes”, search for complementary informa-
tions) [2]. In the present study, we will focus on the “likes”:
the visitor explicitly tells the audio guide that he is interested
by the current Point of Interest (POI) he is viewing. Building
such a recommender system faces the well-known challenges:
cold start, data sparsity, over-specialization [3]. Recently, we
developed a generic formalism that integrates various classic
Recommender Systems (RSs) while providing additional novel
ways to implement recommendation [4]: the Social Filtering
framework (SF). This versatile tool provides an efficient way
to test the performances of many different recommendation
strategies. We used SF beside other RSs methods in the mu-
seum context. This paper analyses the results we obtained on a
real dataset collected during a five-month exhibition held by an
AMMICO museum partner. Our contribution lies in revealing
the promising potential of recommendation techniques in the
not so well explored application domain of museum visit.

The paper is organized as follows: Section II summarizes
the concepts and notations of SF while Section III briefly
explains the operation mode of traditional RSs we also tested;
Section IV recalls the evaluation indicators we used to assess
the performances of the tested RSs; Section V describes the
dataset on which we ran our experiments; the results are
displayed and commented in Section VI. Lastly, our conclusion
identifies issues and perspectives.

II. SOCIAL FILTERING

This section outlines the concepts behind the Social Filter-
ing formalism. We limited ourselves to the definitions we used
in the RSs we tested. For a comprehensive description of this
theoretical framework, please refer to [4].

In the RS domain, widely exploited in the marketing
industry, it is usual to refer to users “consuming” items. Here
we will employ the vocabulary associated to the museum
context: visitors “interact” with POIs (any object liable to be
exposed in a museum). In our experiments (see section V) we
will consider POIs “liked” by visitors.

A. Bipartite Graph Visitors×POIs
The SF recommending approach is based on Social Net-

work Analysis. More precisely, it relies on a bipartite graph (or
network) and its projections. The bipartite graph we consider
is defined over two separate set of nodes: visitors and POIs.
A link can only exist between two nodes in different sets.
For instance, links connect a visitor to the POIs he has
viewed or liked depending on the semantic meaning we choose
for the links. Such data structure can be represented by a
binary interaction (or preferences) matrix R with L rows
corresponding to the visitors and C columns corresponding
to the POIs. Matrix R is thus of dimensions L×C. The value
rui at row u and column i is one if visitor u is connected to
POI i, and zero otherwise. We denote:
• ru· the line vector of matrix R corresponding to visitor u

and ru· = 1
C

∑C
i=1 rui the average number of POIs liked

by u;
• r·i the column vector of matrix R corresponding to POI
i and r·i = 1

L

∑L
u=1 rui the average number of visitors

who liked i.

B. Graph Projections
The bipartite graph is then projected into two (unipartite)

graphs, one for each set of nodes: a Visitors Graph and a POIs
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Graph. In the projections (see Figure 1 for a toy example),
two nodes are connected if they had common neighbors in
the bipartite graph. The link weight can be used to indicate
the number of shared neighbors. For example, two visitors
are connected if they have liked at least one same POI (we
usually impose a more stringent condition: at least K POIs).
The projected networks can thus be viewed as the network of
visitors that liked at least K same POIs (visitors having the
same preferences) and the network of POIs liked by at least K ′
same visitors. Thus, such projected networks are implicit social
networks: they do not follow from a deliberate social con-
nection like in usual explicit social networks (e.g., friendship
networks on Facebook). Instead, they reflect relations derived
from similar behaviors of the visitors.

Visitors⌥POIs Graph
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POIs
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Figure 1. Bipartite Visitors×POIs graph and its projections (K=K′=1).

The general idea of Social Filtering (SF) is to leverage the
concepts and methods of network analysis by exploiting the
central hypothesis of social recommendation: connected enti-
ties (visitors or POIs) are similar in some way and thus share
tastes or attributes. This property is known as homophily [5].

Network structures allow to define similarity between in-
stances, neighborhoods and communities that can be relevant,
as we will see, to suggest content to museum visitors. We apply
these techniques to the visitors (user-based recommendation)
or the POIs projected graphs (item-based recommendation).

C. Similarity Measures
We consider an active visitor a for whom we seek rec-

ommendations, u being any other visitor. Asymmetric cosine
similarity [6] is a flexible way for defining the similarity
between them:

Simasymcos(a, u) =
ra· · ru·

‖ra·‖2α‖ru·‖2(1−α)
(1)

where ra· · ru· =
∑C
i=1 rairui denotes the dot product of

vectors ra· and ru·, ‖ · ‖ is the associated euclidian norm and
α is a real number in [0, 1]. Note that for α = 0.5 we obtain
the classic cosine similarity.

The similarity between two POIs i and j (not displayed
here for space-saving purposes) can be defined in the same
fashion simply by replacing visitors by POIs or, equivalently,
rows by columns.

Many more similarity measures are implemented in the SF
framework that are not described here because there were not
used in the experiments.

D. Neighborhoods

Given a network and a similarity measure we can now
define the neighborhood K(a) for an active visitor a (we only
give the definition for visitors; neighborhood V (i) for a POI
i is defined in a similar manner):

• K(a) is the first circle of neighbors of a in the Visitors
Graph, where they can be rank-ordered by their similarity
to a.

• K(a) is the local community of a in the Visitors Graph,
where local communities are defined as in [7].

• K(a) is the community of a in the Visitors Graph where
communities are defined, for example, by maximizing
modularity [8].

As stated in [4], these last two cases are novel ways to
define neighborhoods for recommendation systems: visitors in
K(a) might not be directly connected to the active visitor a.
These definitions thus embody some notion of paths linking
visitors through common behavior patterns.

E. Scoring Functions

The last step in the RS pipeline consists in providing a
ranked list of recommended POIs to the active visitor a. This is
done through a scoring function that aggregates the preferences
concerning a given POI i. The user-based approach considers
the preferences of the neighbors in K(a) about i:

ScoreU(a, i) =
∑

u∈K(a)

f
(
Sim(a, u)

)
rui (2)

Alternatively, the item-based approach takes into account the
preferences of a on POIs in the neighborhood V (i) of i:

ScoreI(a, i) =
∑
j∈V (i)

raj g
(
Sim(i, j)

)
(3)

Various functions f and g can be used [9]. For the sake
of brevity, we only mention the scoring functions we applied
(alternatives are thoroughly described in the reference paper
on SF [4]):

• weighted average popularity for a of POI neighbors of i in
V (i) weighted by their similarity to i:

ScoreI(a, i) =
1∑

j∈V (i)∩I(a) |Sim(i, j)|
∑
j∈V (i)

raj Sim(i, j) (4)

where I(a) is the set of POIs liked by a.
• scoring function “with locality”: Aiolli [6] proposed another

mechanism to produce locality without having to explicitly
define neighborhoods. Function g is defined so as to put
more emphasis on high similarities (with high q′):

ScoreI(a, i) =
∑
j∈V (i)

raj
(
Sim(i, j)

)q′
(5)

Finally, POIs are rank-ordered by decreasing scores and
the top k POIs (ia1 , i

a
2 , ..., i

a
k) are recommended to a, where

Score(a, ia1) ≥ Score(a, ia2) ≥ ... ≥ Score(a, iak)
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III. CLASSICAL RECOMMENDER SYSTEMS

Many recommendation techniques are commonly used in
industry. We now briefly describe those we used as baseline
or for comparison purposes. Some of these methods can be
expressed as special cases of the SF formalism.

A. Popularity
Perhaps the simplest recommendation method: we rank

POIs by decreasing popularity (the sum of ones in each column
of matrix R) and suggest the list of top k most popular POIs
to the active visitor. This method is used as a baseline.

B. Collaborative Filtering (CF)
CF is a widely used technique to implement RSs. There

exist two main groups of CF techniques: memory-based (or
neighborhood methods) [9] and model-based (or latent factor
models) [10]. CF methods use the opinion of a group of similar
visitors to recommend POIs to the active visitor.

1) Memory-based Methods: as SF, these techniques rely
on the notion of similarity between visitors or POIs to build
neighborhood. Unlike content-based methods, that we did not
implement, similarity is not computed on the basis of the
attributes of the instances (visitors or POIs). Instead, it is based
on the shared preferences between two visitors (user-based CF)
or the number of common visitors who liked two given POIs
(item-based CF). The ways for computing the similarity are
the same as described in the Section II-C. In fact, it is easy
to observe that CF can be obtained with the SF framework by
choosing K = K ′ = 1 as parameters of the projected graphs,
cosine similarity (eq. 1 with α = 0.5) and a score function as
in Section II-E.

2) Model-based Methods: Model-based RSs estimate a
global model, through machine-learning techniques, to predict
ratings. This generally leads to models that neatly fit data
and therefore to good quality RSs. However, learning a model
may require a great amount of training data which could be a
problem in some applications. Many model-based CF systems
have been proposed [11]. One of the most efficient and used
model-based methods is matrix factorization [12] in which
visitors and POIs are represented in a low-dimensional latent
factors space. This technique is more suited to feedback with
ratings (e.g., zero to five “stars”).

C. Association Rules
Association rules mining [13] is a popular technique

widely used in marketing in order to find regularities in large
databases like products often purchased together. Association
rules of length two can be used for recommendation [14].
They are equivalent to the item-based SF choosing asymmetric
confidence-based similarity with the suitable parameters, but
we preferred to use the classic Apriori algorithm [15] to
implement this method.

IV. EVALUATION OF RECOMMENDER SYSTEMS

This section recalls the evaluation methods listed in the
corresponding part of [4].

For a given active visitor, a RS produces a list of ranked
POIs. We want to evaluate whether they are adequate for him.
Two scenarios may be considered to evaluate RSs:

• online evaluation: if live interactions between visitors and
POIs are available we can build RSs on past behaviors and
measure the reaction of visitors to the suggestions: does
the visitor take them into consideration, like them, etc.?
Several groups of control can be considered in order to
test different recommendation strategies. This approach is
used by merchant websites, for example.

• offline evaluation relies on a static dataset of interac-
tions between visitors and POIs on which we simulate
recommendation. We underline the fact that this dataset
corresponds to visits without recommendation. As it is
usual in the evaluation of machine-learning algorithms,
the original dataset is split into a training set and a
test set. For each visitor of the test set, considered as
an active visitor, recommendations are computed based
on the data from the training set and from part of the
interactions between the visitor and the POIs, taking
into account time stamps if available. Evaluation is then
computed by comparing the recommended POIs with the
remaining real interactions the active visitor had with the
POIs not taken into consideration for the recommendation
computation.

One may argue that this last approach is flawed since the
active visitor would probably have behaved differently if he
had been actually recommended with POIs. Moreover, one
might also question the relevance of evaluating RSs on the
basis of the accuracy to predict the POIs the active visitor
liked without being recommended, since the recommendation
principle is precisely to suggest contents that the visitor would
not have been likely to discover without being recommended.
Nevertheless, although these arguments are valid when there
exists a vast choice of items like in most marketing situations,
in a museum exhibition it is reasonable to assume that the
visitors interacted with almost all of the available POIs. Thus,
predicting his appreciation on part of the POIs is valuable to
evaluate the performance of a RS. Naturally, offline evaluation
is unable to take into account the influence of being recom-
mended: there is a psychological bias that is beyond the scope
of this study.

A. Performance Metrics
In both situations, for each active visitor of the test set we

have a target set Ta that represents the set of POIs he liked
after being recommended. Let Ra = (ia1 , i

a
2 , ..., i

a
k) be the set

of k POIs recommended to a. The metrics classically used in
this context are:

• Precision@k = 1
L

∑
a
|Ra∩Ta|

k

• Recall@k = 1
L

∑
a
|Ra∩Ta|
|Ta|

• Mean Average Precision:
MAP@k = 1

L

∑L
a=1

1
k

∑k
i=1

Cai

i 1ai

where Cai is the number of correct recommendations to visitor
a in the first i recommendations (Precision@i for visitor a) and
1ai = 1 if POI at rank i is correct (for visitor a), 0 otherwise.

B. Qualitative indicators
Additionally, more “qualitative” metrics indicate whether

all visitors (resp. POIs) receives recommendations (resp. are
recommended) or which of the more or less popular POIs are
recommended: as we will see, some RSs might be better on
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performance metrics and poorer on these qualitative indicators.
Let Utest denote the set of visitors in the test set and Ltest =
|Utest| the number of visitors in it, then:

• VisitorsCoverage@k = nb visitors in Utest with k reco
Ltest

is the proportion of visitors who get recommendations.

• Average number of recommendations: when visitors cov-
erage is not 100% , i.e, not all visitors got k recommended
POIs, we may want to know the average number of POIs
recommended for the visitors with partial lists:

AvNbRec@k =
∑k−1
K=0K

nb visitors in Utest with K reco
Ltest−nb visitors in Utest with k reco

• POIs coverage: a high diversity of suggested POIs should
result in more attractive recommendations. We thus seek
a high proportion of POIs that are recommended:

POIsCoverage@k = nb distinct POIs in reco lists
C

• Head/Tail coverage: if we rank POIs by decreasing pop-
ularity (number of visitors who liked each POI), we call
Head the 20% of POIs with highest popularity and Tail
the remaining 80%. Recommending only most popular
POIs will result in relatively poor performances and low
diversity. We thus define the rate of recommended POIs
in the Head and in the Tail:

RateHead@k = 1
Ltest

∑
u∈Utest

nb reco for u in Head
nb reco for u

RateTail@k = 1− RateHead@k

C. Accuracy vs.Originality
Ideally we would like to produce accurate recommen-

dations that are not too popular, providing the visitors
with “pleasant discoveries”. This amounts to maximize both
MAP@k and RateTail@k. Furthermore, it could be interesting
to give more or less emphasis to each of these two metrics
depending on the objectives of the recommendation: accuracy
vs. originality (or novelty). We propose the following (not
normalized) combined indicator:

Perfe = e MAP@k + (1− e) RateTail@k (6)

where e is chosen in [0, 1] depending on the relative importance
we want to give to each aspect of the performance.

Now that we have described how we build RSs and evaluate
their performances it is time to expose our experimental results
on a dataset extracted from a real museum exhibition.

V. DATASET

This section describes the origin and principal features of
the dataset we used to experiment on RSs for museums.

A. General description
From March 11 to August 24, 2014, the Great Black

Music exhibition (GBM) took place at the Cité de la Musique
in Paris [16]. Both Cité de la Musique and the curator
M. Benaı̈che (director of the digital art factory l’Atelier 144)
are members of the AMMICO project consortium. The exhibi-
tion showcased the variety and story of the black music around
the world by means of numerous multimedia installations. It
has been successful with around 76 000 unique visitors.

At the entrance, the visitor got a stereo headset connected
to a “smartguide” device which was an Android smartphone

running a specifically developed application. Several tech-
nological solutions are explored nowadays in order to have
direct and accurate information about which exhibition items
is viewed by a specific visitor. In the GBM exhibition, visitors
simply introduced manually the POI identification number dis-
played on it in the exhibition space. Since a significant amount
of the content was only available through the device (e.g.
musical content), visitors were highly motivated to use it. With
this equipment, the visitor was able to interact with numerous
audiovisual material (11 hours of available recordings in total).
Among other features, the device allowed him to create his
personal playlist by “liking” (or bookmarking) his favorite
contents (POIs) that he could later retrieve online by logging
into a dedicated personal webpage [17]. This possibility was
a fairly good incentive for visitors to bookmark POIs. On the
example displayed on Figure 2 the visitor can add POI n◦23
(artist: Tumi & The Volume; song: Asinamali) on his favorites
playlist. .

Figure 2. Example of the user interface used at GBM exhibition.

On the museum side, this setting allowed to collect a
large amount of data on visitors’ behaviors: each time they
interacted with a content by the means of the device, which
was indispensable given the very nature of the exhibition, the
details of the action (visitorId, POIId, time, duration, liked or
not) was recorded in the exhibition database. In total, more
than 20 million interactions were recorded concerning all the
75 774 visitors.

From this raw database we constructed a dataset focusing
on the bookmarked POIs: we considered the bipartite graph
consisting of the two sets U and I of the visitors and the
liked POIs respectively, where a link connecting a visitor u
with a POI i means that “u liked i”. We ended up with
|U | = 67 883 users, |I| = 600 liked POIs (among 608 possible
POIs to bookmark) and |E| = 1681 534 links (bookmark
notifications) between the two sets. Visibly, around 10% of the
visitors (75 774−67 883) did not make use of the bookmarking
functionality. For them, other strategies might be implemented
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TABLE I. GBM DATASET STATISTICS

number of visitors |U | 67 883
number of POIs |I| 600
number of “likes” |E| 1 681 534

min and max visitor degree 1...447
mean and std visitor degree 24.8± 34.4

min and max POI degree 1...13 005
mean and std POI degree 2802.6± 2481.4

in order to provide recommendation, for example taking into
account the time they spent viewing a POI as a measure of
their interest. Since this study aims at evaluating different
recommendation methods and not at providing explicit live
recommendation to visitors we simply excluded them from
the dataset.

B. Degree distribution
A vast majority of visitors bookmarked a relatively small

amount of POIs and as the number of bookmarked items per
visitor increases less visitors are concerned. We thus get a
typical power-law distribution of visitors nodes’ degrees.

POIs are also unevenly popular: 19 of them received a
single “like” from the visitors, while others were bookmarked
by a large amount of them. The three top favorite POIs are
the ones corresponding to the songs “Why I Sing the Blues”
by B.B. King, “Sodade” by Cesaria Evora and “Respect” by
Aretha Franklin, liked respectively by 13 005 visitors (19.2%
of the visitors and 0.77% of the “likes”), 11 801 visitors (17.4%
of the visitors, 0.70% of the “likes”) and 11 552 visitors (17.0%
of the visitors, 0.69% of the “likes”).

C. Mega-hubs
In a network, hubs are nodes with the highest degree. They

are common in social networks as a consequence of the power-
law degree distribution. Mega-hubs are nodes connected to all
or almost all the other nodes of the graph. We generally con-
sider them as not informative in the recommendation context.
Moreover, they could undermine the performance of RSs by
not allowing the meaningful communities to emerge. Also,
from a technical point of view, the presence of mega-hubs
causes increased loads of computation and memory. These
considerations often lead practitioners to remove mega-hubs
from the networks.

What about our dataset? The highest POI degree in the
bipartite graph is 13 005 out of a maximum of 67 883 possible
links to visitor nodes. The corresponding node in the POIs
Graph is a hub connected to less than 20% of the nodes. With
respect to visitors, the highest degree is 447 out of a maximum
of 600. This relative high value (≈ 75% of the possible links)
indicates the presence of potential mega-hubs in the Visitors
Graph. There are several ways to define mega-hubs, but we
will not enter into details here: in this work-in-progress study
we first used the entire original dataset without eliminating the
potential mega-hubs.

Table I summarizes some statistics of the GBM dataset.

VI. EXPERIMENTS

We performed an offline evaluation of several RSs on the
GBM dataset. As explained before, it consists in simulating

a recommendation scheme and comparing suggested POIs to
some visitors with the POIs they actually liked.

A. Experimental Setting
We randomly split the data into 90% visitors for training

and the remaining 10% for testing. For training, we used all
the interactions (likes) of the 90% visitors. For testing we
input 50% of the interactions of each test visitor and compared
the obtained recommendation list to the remaining 50% liked
POIs.

The RSs methods we chose to evaluate are (see Sections II
and III):

• Popularity: used as a baseline;
• Bigrams: association rules of length two implemented

using Apriori algorithm [15] with thresholds on support
and confidence at 1%. POIs are ranked in decreasing
confidence of the rule generating them;

• NMF (non-negative matrix factorization): we used the
code associated to [18], with maximal rank 10 and
maximum number of iterations 50. These parameters
were chosen after several attempts at maximizing the
performances, but without a systematic exploration of
their value space.

• CF UB: user-based collaborative filtering implemented as
a special case of SF with cosine similarity (eq. 1 with
α = 0.5) and weighted average popularity (eq. 4 adapted
to visitors) as scoring function;

• CF IB: item-based collaborative filtering implemented as
a special case of SF with cosine similarity (eq. 1 with α =
0.5) and weighted average popularity (eq. 4) as scoring
function;

• SF IB: item-based social filtering with asymmetric cosine
similarity (eq. 1). The neighborhood is defined as the top
10 most similar neighbors in the first circle of neighbors
of the POIs graph and we used the scoring function
with locality (eq. 5). We explored several combinations
for the parameters α (of similarity) and q′ (of the scoring
function) and reported the most interesting results.

• We tried user-based SF with different parameters α and
q, but it shed poor results that we will not report here.

We produced suggested POI lists of length k = 10 and
evaluated the RSs using all the indicators described in Sec-
tion IV. In order to obtain more accurate measures we repeated
the process on 30 different randomly split training/test sets
(90%-10%) and computed the mean value for each indicator.

B. Results
Members of the L2TI laboratory implemented the SF

formalism in a Python library released under an open source
license [19]. A flexible processing pipeline and the versatility
of our SF formalism provided an efficient way to assemble the
various elements for experimenting on several methods.

The performances are shown in Table II. Values in bold
and italic indicate respectively the best and second-best perfor-
mances for the corresponding indicator (except for computa-
tion time, “higher is better” for all the performance indicators).
We ran our simulations on an Intel Xeon E7-4850 2,00 GHz
(10 cores, 512 GB RAM), shared with members of the team
so that concurrent usage may have happened in some of the
experiments, with impact on reported time. Computing time
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TABLE II. PERFORMANCES OF RECOMMENDATION SYSTEMS ON GBM DATASET.

Popularity Bigrams NMF CF UB CF IB
SF IB
α = 0.1
q′ = 3

SF IB
α = 0.1
q′ = 2

SF IB
α = 0.9
q′ = 1

SF IB
α = 1
q′ = 3

MAP@10 0.035 0.080 0.004 0.005 0.077 0.087 0.086 0.049 0.015
Precision@10 0.059 0.124 0.078 0.018 0.119 0.132 0.131 0.092 0.036
Recall@10 0.080 0.158 0.105 0.023 0.152 0.158 0.158 0.113 0.067
VisitorsCoverage@10 62.60% 100% 96.93% 47.22% 85.44% 74.00% 74.23% 84.77% 83.77%
AvNbRec@10 8.52 - 4.67 3.26 6.46 5.63 5.62 5.24 4.88
POIsCoverage@10 1.69% 71.81% 20.41% 93.96% 99.17% 93.88% 95.63% 99.17% 94.61%
RateTail@10 0% 24.12% 6.35% 35.23% 44.83% 35.09% 36.92% 73.64% 91.87%
Perf0.0 0.000 0.241 0.063 0.352 0.448 0.351 0.369 0.736 0.919
Perf0.1 0.003 0.225 0.058 0.317 0.411 0.325 0.341 0.668 0.828
Perf0.5 0.017 0.161 0.034 0.178 0.263 0.219 0.228 0.393 0.467
Perf0.9 0.031 0.096 0.010 0.039 0.114 0.113 0.114 0.118 0.106
Perf1.0 0.035 0.080 0.004 0.005 0.077 0.087 0.086 0.049 0.015
Computation time 0:00:10 0:30:00 0:30:00 0:00:30 0:00:30 0:00:30 0:00:30 0:00:30 0:00:30

is thus indicative only (0:00:10 is 10 seconds, 0:30:00 is 30
minutes).

C. Discussion
The first observation one might be inclined to make is that

the performance measurements of MAP, Precision and Recall
seem to be low in relation to their possible values in [0, 1].
However, compared to similar experiments on other datasets,
we note that these apparently low values are common in the RS
evaluation context (see the results on four publicly available
datasets presented in [4]).

Supporting the observations reported in [6] where the
author carried out the same kind of experiments but with a
different dataset, the results for SF IB show that asymmetric
cosine similarity and the scoring function with locality bring
enhanced performances to classic methods, provided a suitable
choice for the parameters α and q′. It outperforms in all
indicators except for VisitorCoverage@10: it is able to provide
a full list of ten recommended POIs for a maximum of around
85% of the visitors. The remaining visitors received an average
of five suggested items. It gives a significant improvement on
traditional item-based CF (CF IB) from which it is derived.

Within the variants of SF IB when changing the param-
eters, we note the necessary trade-off between accuracy and
originality of the recommendation: when performance metrics
increase (MAP, Precision and Recall) it is at the expense of
qualitative indicators, especially RateTail. This is well captured
by our combined indicator Perfe.

Following SF IB, Bigrams presents fairly good relative
performances, particularly on VisitorCoverage which is 100%.
However, it has low RateTail and the computation time is 60
times longer.

User-based CF does not give good results on this dataset,
similarly to all the user-based methods we tried (SF UB). This
could be caused by the presence of mega-hubs in the Visitors
Graph. This point would be worth exploring.

NMF performs particularly bad on this dataset, only
slightly better than the baseline Popularity. This may be due to
the insufficient amount of data necessary to build an accurate
model and on the fact that we consider simple binary feedback
(liked or not) instead of an explicit rating with which this
method is known to perform better.

Finally, the baseline Popularity behaves as expected: by
recommending the 10 most popular POIs without taking into

account the similarities of visitors’ behaviors, its POIsCover-
age is dramatically low and the RateTail is null, by definition.

VII. CONCLUSION

We have presented in this paper an evaluation study of
several recommender systems applied to the museum visit con-
text. We compared and discussed the performances of different
recommendation strategies by evaluating them on a genuine
dataset concerning visitor behaviors in a real exhibition. Beside
classic recommendation methods, we used a versatile Social
Filtering formalism developed and implemented in our labo-
ratory. The results show that promising improvements can be
achieved with efficient algorithms provided that parameters are
properly adjusted.

We are currently conducting experiments regarding the
neighborhoods we consider in the projected graphs: better
recommendations could be obtained by taking into account
the graph community or local community of the active user
as described in Section II-D instead of the simple first circle
of neighbors since interesting suggestions of POIs could come
from related but not directly connected visitors. In parallel,
we are carrying out a set of experiments on modified versions
of the present dataset in order to observe the influence of
mega-hubs on the recommendation quality. Combining several
recommendation methods in what are commonly denominated
ensemble methods in statistical learning is another direction
that could somehow enhance performances.

This application domain raises other issues that may be
interesting to investigate: how is recommending content per-
ceived and accepted by museum visitors? Beyond the quality
and relevance of the suggested content, what is the influence
of the presentation and editorialization in its receptivity?
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