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Abstract—Efficient resource exploration in mining necessitates 

a strategic approach to drilling campaigns, where the 

acquisition of geological data must be both informative and cost-

effective. In this paper, we present a new methodology that 

combines clustering algorithms, global bias assessment, and 

variogram comparison to evaluate the efficacy of additional drill 

holes in geological investigations. The methodology begins with 

the application of clustering algorithms to identify spatial 

patterns within existing data sets. Through this process, we 

categorize geological information into meaningful groups, 

allowing for the identification of regions with similar 

characteristics. Subsequently, a global bias assessment is 

conducted to quantify the contribution of each drill hole to the 

overall dataset. This step aids in discerning the unique 

information provided by individual holes and highlights 

potential redundancies. The variogram comparison is then 

employed to analyze the spatial continuity and variability of 

geological features. By assessing how variograms evolve with the 

inclusion of additional drill holes, we can determine when the 

acquired information reaches a point of diminishing returns. 

Through the integration of clustering validation parameters 

(Rand index), global bias between campaigns, and variogram 

contrast, we can quantify the moment when the data no longer 

contributes new information to our models. This analysis forms 

the basis for informed decision-making regarding the optimal 

number and placement of drill holes. 

Keywords - Drillhole Data; Clustering analysis; Global bias 

assessment; Variogram; Mining exploration efficiency; Decision-

making. 

I.  INTRODUCTION  

In the mining industry, acquiring and interpreting 
geological data must be informative, cost-effective, and 
delivered on time at the expected quality to support 
multidisciplinary analyses required to report mineral 
resources according to industry standards. Although the 
importance of high-quality geological data is well-
recognized, continuous robustness measurements during 
general and detailed exploration phases remain limited due to 
time and resource constraints. Implementing more frequent 
robustness measurements could enable timely data 
publication for interdisciplinary analysis and provide 
decision support for optimizing drilling campaign timelines 
and costs. 

Addressing the challenge of spatial dependence in 
clustering problems using drillhole data, Romary et al. [10] 
introduced two algorithms: geostatistical hierarchical 
clustering and geostatistical spectral clustering, with 
proximity measures as the key differentiating factor. Notably, 
objects are clustered based on their spatial connectivity 
through an undirected graph. Geostatistical hierarchical 
clustering demonstrated superior performance compared to 
other algorithms, although its applicability is limited to 
smaller datasets. Building upon this, Fustos [6] explored two 
approaches that integrate geostatistical formulations into 
unsupervised machine learning clustering techniques, aiming 
to incorporate geological knowledge. The first approach 
modifies the distance function in hierarchical clustering by 
integrating the variogram function into the conventional 
Mahalanobis distance De Maesschalck [2]. The second 
approach utilizes a mixture of distributions. Both proposals 
were initially validated using synthetic data and subsequently 
applied to real-world cases involving geochemical, 
metallurgical, and geological data. Furthermore, Faraj [5] 
proposed a workflow for defining domains, employing 
hierarchical clustering and emphasizing geology, statistics, 
and spatial continuity through a distribution-based 
classification.  

This paper contributes to this line of research by 
presenting a practical application case, demonstrating the 
effectiveness of geostatistical clustering in a real-world 
scenario. 

The rest of the paper is structured as follows. In Section 
2, we present the methodology and key indicators applied to 
the analysis of clustering for drillhole data. In Section 3, we 
present results applied to a copper deposit, including a case 
study on the decision matrix for publishing preliminary 
geological data. Finally, in Section 4, we conclude the work 
and provide recommendations for future research. 

II. METHODOLOGY 

To achieve the goals outlined in Section I, we applied 
unsupervised machine learning clustering, global bias 
assessment and variography comparison to drillhole data for 
continuous measurement of data robustness, considering 
execution time and feasibility of human effort.  
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     The proposed approach involves comparing two sets of 
geological data: one with data up to a specific time and 
another with the additional newly acquired data. The 
comparisons focus on two aspects: the effect on data 
grouping using the Adjusted Rand Index and the impact on 
grade spatial distribution using global bias. When comparing 
these two metrics, we can create a decision matrix that, when 
contrasted with the difference between the experimental 
variograms, can support an informed decision-making 
process by indicating whether the collected data population 
possesses the desired robustness or not. In Figure 1, we can 
see the interpretation of the Adjusted Rand Index and global 
bias values to represent different scenarios of robustness of 
the geological data from drillhole campaigns. In this figure, 
the target scenario indicates that the dataset already has 
satisfactory robustness. 
 

 
 

Figure 1. Decision matrix with detailed scenarios based on the 
Adjusted Rand Index and global bias. 

 

The methodology employed in this study encompasses 
the selection of variables for clustering algorithms and the 
subsequent application of non-hierarchical clustering 
methods, particularly focusing on Clustering for Large 
Applications (CLARA) Kaufman et al. [9]. The chosen 
variables include coordinate, numerical, and categorical 
parameters, with specific attention to numerical variables 
based on geochemical data with low linear correlations to 
avoid redundancy. CLARA, an extension of the K-medoids 
method, is adopted due to its computational efficiency and 
integration capability with scaled coordinate variables. 
Furthermore, data treatment involves considerations such as 
detection limits for geochemical elements and normalization 
of variable distributions. The process of selecting the optimal 
number of clusters is addressed, using the elbow method to 
discern significant decreases in intracluster variance without 
sacrificing relevance or introducing redundancy. In this way, 
candidates for the number of clusters to be generated are 
found and this information is crossed with the number of 
geological domains to select the ideal number of clusters. In 
addition, the decision to apply the Manhattan distance metric 
is justified by the irregular grid distribution of the drillholes 
and the desire to take advantage of spatial information while 
mitigating dimensional errors. 

The following sub-sections describe the indicators of 
interest obtained by applying clustering to datasets from 

drilling surveys conducted before and after incorporating 
data from new campaigns.  

A. Indicator of interest: Rand index 
 
The Rand index is a quantity used to compare different 

subsets of the same data set in different groupings. The 
Adjusted Rand Index (ARI) is calculated by correcting the 
unadjusted index for Random overlaps. Its value is a number 
between 0 and 1, where 1 means that the partitions are 
identical, while 0 represents that they are completely random 
(Hubert [8]; Yeung [12]; Warrens [11]). 

 
Rand indices are calculated across distinct instances, 

facilitating a comparison of cluster alterations based on 
shared information. This evaluation method allows for an 
assessment of the impact of new data on reservoir 
understanding by analyzing changes in the Rand index. An 
increase in the ARI indicates that the new data does not 
significantly contribute additional insights into the deposit. 
On the other hand, a decrease in the ARI indicates that the 
data acquired is considerably different from the data obtained 
in previous campaigns. 

TABLE 1. ADJUSTED RAND INDEX INTERPRETATIONS. 

Adjusted Rand Index Value Interpretation 

 ARI < 0.5 Low correlation  

 0.5 < ARI < 0.8. Medium correlation 

 0.8 < ARI. < 0.9 Strong correlation 

 0.9 < ARI < 1.0 Very strong correlation 

 
B. Indicator of interest: Decluster Mean Bias 

 
In addition to the metrics for clustering techniques with 

machine learning, considering the need to work with 
regionalized variables, geostatistical metrics are used. One of 
these metrics corresponds to the declustered mean bias 
(Chilès [1]; Deutsch [3]; Emery [4]), which allows us to 
appreciate the change in domain statistics as new information 
is added through the drilling campaigns. The calculation of 
the bias is done through the following equation (1) where i 
and j represent two partitions of the total data according to 
the amount of information available up to that moment. 

 

                Bias (%) =|
𝑚𝑧𝑖

𝑚𝑧𝑗
− 1| ∙ 100                     (1) 

 
where  𝑚𝑧 represents the declustered mean of the data. 

With respect to the declustering means, these are calculated 
using a cell coherent to the spacing between drillholes up to 
the given drilling campaign, which will decrease in size as 
the sampling density for the reservoir increases.  
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TABLE 2. GLOBAL BIAS INTERPRETATIONS. 

Adjusted Rand Index 
Value 

Interpretation 

 > 5% High variation 

 < 5% Variation within the standards 

expected in international norms 

< 3% Low variation 

 
C. Indicator of interest: Variograms 

 
After performing a variographic map analysis, 

experimental variograms are calculated in the preferential 
directions with the data from two different drilling campaigns 
and the nugget effect, the sill and the ranges are compared. 
For this purpose, it is necessary to use the same parameters 
and directions for the variograms of the different drilling 
campaigns when contrasting.   
 

 
Figure 2. Variograms of cumulative drilling campaigns in the same 

direction in order to contrast short and long range spatial differences. 

 

III. RESULTS 

For Deposit A (whose name has been changed to maintain 
confidentiality), the main mineral commodity corresponds to 
copper, therefore the analysis and decision for the 
methodology are going to be centered to better understand 
this element.  The geochemical variables chosen for the 
analysis correspond to Copper, Gold, Iron and Magnesium 
and the categorical variables chosen for the deposits 
correspond to the lithological domains. 

 
 
 

TABLE 3. MAIN STATISTICS FOR DEPOSIT A WITH COMPOSITE 

SIZE OF 2 M.  

 
Number of 

data points 
Mean Min Max 

Standard 

deviation 

Copper grade 

(%) 
60094 0.278 0.001 29.640 0.512 

Gold grade 

(ppm) 
60092 0.049 0.005 30.700 0.049 

Iron grade (%) 52781 6.244 0.05 37.200 6.244 

Magnesium 

grade (%) 
43409 4.069 0.005 25.200 3.908 

 
With the critical variables defined, the decision matrix 

between the Adjusted Rand Index and global bias is 
constructed. Of the matrix, it can be observed that in the last 
2 campaings, the new information ceases to significantly 
contribute to the defined criteria. Subsequent to this 
observation, a more detailed analysis of the drillhole 
distribution for the second last campaign is conducted finding 
that with a sub-distribution of 28% of the campaign, 
geological preliminary data could have been published. This 
suggests that information obtained after this point, upon 
reaching the target zone, does not yield additional relevant 
insights. This analysis underscores the potential for 
expediting downstream processes by as much as 11 months. 

Figure 3. Decision matrix with drilling campaigns for Deposit A. 
Campaigns of interest highlighted. 

IV. CONCLUSIONS AND FUTURE WORK 

In this work, we aimed to assess the robustness of 
additional drill holes for the publication of preliminary 
geological data in the mining workflow by integrating 
clustering algorithms, global bias assessment, and variogram 
comparison. To achieve this, we developed a structured 
workflow that leverages these techniques to analyze drillhole 
data and extract meaningful insights summarized in a 
decision matrix. After applying the proposed workflow, it 
was possible to identify robust results by up to 11 months by 
being able to assess and quantify the maturity of the data to 
integrate it into the resource estimation workflow and 
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improve results by sharing them earlier to downstream 
processes.  

Based on our analysis, we conclude that: 
• Automated robustness measurement achieves expected 

quality while optimizing time and effort. 
• The decision matrix is useful for guiding decisions on 

geological data publication and influencing drilling 
campaigns. 

• Analysis shows no confirmation bias, ensuring objective 
quality assessments. 

This approach contributes to ensure timely data 
publication with expected quality for interdisciplinary 
analyses, improve drilling campaign decisions regarding 
costs, timing and data quality in both general and detailed 
exploration phases, and mitigate the risk of rework due to 
inappropriate data quality. 

For future work, it is important to consider that in using 
clustering techniques, one of the most critical parameter in 
this context is the number of clusters to be generated, which 
can be estimated using the elbow methodology. However, it 
is essential to carry out manual iterations of this process and 
to contrast the results with the specific geological information 
of the reservoir. This practice becomes an obstacle to the full 
automation of the proposed methodology. In addition, by 
employing the Mahalanobis distance, which includes 
coordinates, the spatial correlation of variables can be taken 
into account in a trivial way. However, it would be advisable 
to evaluate this methodology using a distance function that 
incorporates this consideration more comprehensively, such 
as the distance function proposed by Gonzalez [7]. 
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