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Abstract—We study the minimization of a quadratic objec-
tive function in a distributed fashion. It is known that the
min-sum algorithm can be applied to solve the minimization
problem if the algorithm converges. We propose a min-sum-
min message-passing algorithm which includes the min-sum
algorithm as a special case. As the name suggests, the new
algorithm involves two minimizations in each iteration as com-
pared to the min-sum algorithm which has one minimization.
The algorithm is derived based on a new closed-loop quadratic
optimization problem which has the same optimal solution as
the original one. Experiments demonstrate that our algorithm
improves the convergence speed of the min-sum algorithm by
properly selecting a parameter in the algorithm. Furthermore,
we find empirically that in some situations where the min-
sum algorithm fails, our algorithm still converges to the right
solution. Experiments show that if our algorithm converges, our
algorithm outperform a reference method with fast convergence
speed.

Keywords-Distributed optimization, Gaussian belief propa-
gation, message-passing algorithms

I. I NTRODUCTION

In this paper we consider minimizing a quadratic opti-
mization problem, namely

min
x∈Rn

f(x) =
1

2
xT Jx− hTx, (1)

whereJ ∈ R
n×n is a positive definite matrix andh ∈ R

n.
It is known that the optimal solutionx∗ satisfies a linear
equation

Jx∗ = h.

We suppose that the matrixJ is sparse and the dimension-
ality n is large. In this situation, the direct computation
(without using the sparse structure ofJ) of the optimal solu-
tion may be expensive and unscalable. One natural question
is how to exploit the sparse geometry to efficiently obtain
the optimal solution. To achieve this goal, the quadratic
function f(x) can be associated with an undirected graph
G = (V,E). That is, the graph has a node for each
variablexi and an edge betweeni and j for each nonzero
Jij term. The algorithms that exploit the sparse geometry
exchange information between nodes in the graph until
reaching consensus.

Existing algorithms are either applicable to a specific
class ofJ or are computationally expensive (which we will

explain in detail in next section). Our work will focus on
designing an efficient distributed message-passing algorithm
for a general positive definite matrixJ .

The reminder of the paper is organized as follows. In
Section II, we provide a literature review. Section III briefly
describes the GaBP algorithm, or equivalently, the min-
sum algorithm for quadratic optimization. In Section IV, we
present our new min-sum-min message-passing algorithm.
Section V provides the experimental results. Finally, we
draw conclusions in Section VI.

II. RELATED WORK

The quadratic optimization problem is closely related to
the Gaussian belief propagation (GaBP) for inference in
graphic models. This is due to the fact thatf(x) can be
associated with a Gaussian distributionp(x) via

p(x) ∝ exp(−(1/2)xTJx+ hTx).

The mean value ofp(x) is the same as the optimal solution
of the quadratic optimization problem. The GaBP algorithm
is a min-sum message-passing algorithm for estimating the
mean of the Gaussian random vector. Due to its simplicity,
the GaBP algorithm has found many applications in practice,
such as signal processing [1][2], consensus propagation
in sensor networks [3], multiuser detection [4] and Turbo
decoding with Gaussian densities [5]. It is known that if the
GaBP algorithm converges, it converges to the mean value
of p(x) (see [6],[7]). Unfortunately, the GaBP algorithm
does not always converge, which limits its application. Two
general sufficient conditions for the convergence of the
GaBP algorithm are established: diagonal dominance ofJ
[8] and walk-summability ofJ [9][6]. For completeness, we
give their definitions in the following.

Definition [8],[10] A matrix J ∈ R
n×n, with all ones on

its diagonal, is walk-summable if the spectral radius of the
matrix J̄ − I, whereJ̄ = [|Jij |]

n

i,j=1 , is less than one.

Definition [10] A matrix J ∈ R
n×n is diagonally dominant

if |Jii| >
∑

j 6=i |Jij | for all i.

Recently research attention has moved to overcome the
convergence-failure of the GaBP algorithm for a general
matrix J . In [10], Ruozzi and Tatikonda proposed a variant
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of the GaBP algorithm by changing the edge structure of
the graph. In their algorithm, two parameters have been
introduced to ensuring the correct convergence. However,
it is not clear how to choose the two parameters. In [11],
Johnson et al. proposed a double-loop algorithm with the
GaBP algorithm as a subroutine (corresponds to the inner
loop). Each time the GaBP algorithm is called a better
estimate of the mean vector is obtained. The double-loop
algorithm guarantees the convergence at the cost of high
computational complexity. The basic idea of the double-loop
algorithm is to precondition the matrixJ such that the new
matrix is diagonal dominant, allowing the use of the GaBP
algorithm.

In this paper we generalize the min-sum algorithm by
proposing a new min-sum-min algorithm. We first construct
a new closed-loop quadratic optimization problem which has
the same optimal solution as that of the original problem.
Instead of solving the original problem, we solve the new
problem by developing the min-sum-min algorithm. The ba-
sic idea behind the algorithm is to transform the closed-loop
optimization problem inton scalar closed-loop optimization
problems, one for each node. Note that our algorithm has
two minimizations for each iteration as compared to the min-
sum algorithm which has one minimization. The additional
minimization in our algorithm serves to break the loop at
each node.

We test our algorithm for two scenarios. When the min-
sum algorithm converges, we find that our algorithm can be
more efficient than the min-algorithm by properly choosing
a parameter in the algorithm. When the min-sum algorithm
fails, we find that our algorithm still converges in some
situations. Experiments show that our algorithm significantly
improves the convergence speed of the double-loop algo-
rithm [11].

III. M IN-SUM MESSAGE-PASSING

In this section we briefly review the min-sum message-
passing algorithm for quadratic optimization (which is actu-
ally the GaBP algorithm). This algorithm is the basis for de-
veloping our new min-sum-min message-passing algorithm.

Before considering the quadratic optimization problem
(1), we first study a more general objective functionf(x),
which takes the form

f(x) =
∑

j∈V

fj(xj) +
∑

(i,j)∈E

fij(xi, xj). (2)

In the literature,fj and fij are often called self-potentials
and edge potentials, respectively.fij captures the correlation
between nodesi and j. Due to the pairwise correlations,
the jth componentx∗

j of x∗ that minimizesf(x) requires a
global knowledge off(x). The min-sum algorithm describes
the form of the messages exchanged between the nodes.
Specifically, the message sent from nodei to node j at

iteration t+ 1 takes the form

m
(t+1)
i→j (xj) = κ+min

xi

(

fi(xi)

+fij(xi, xj) +
∑

u∈N(i)\j

m
(t)
u→i(xi)

)

, (3)

whereN(i) denotes the set of neighboring nodes ofi, i.e.,
N(i) = {j|(i, j) ∈ E}. The parameterκ in (3) represents an
arbitrary offset term that may be different from message to
message. (3) implies that there are two messages associated
with each edge(i, j) ∈ E, one for each direction on the
edge. To facilitate the performance analysis, we introducea
directed graph~G = (V, ~E) for G. For every edge(i, j) ∈ E,
there are two elements(i → j), (j → i) in ~E.

At each timet, each vertexj forms a local belief function
f
(t)
j (xj) by combining messages received from all neighbors

f
(t)
j (xj) = fj(xj) +

∑

u∈N(j)

m
(t)
u→j(xj). (4)

An estimate of thejth componentx∗
j is then given by

x̂
(t)
j = argmin

xj

f
(t)
j (xj). (5)

The min-sum algorithm is successful ifx̂(∞)
j is equal tox∗

j

for all j ∈ V .

When the functionf(x) in (2) is specified to the quadratic
function as in (1), the min-sum algorithm becomes the GaBP
algorithm. In this situation, the self-potentials and edge
potentials are given by

fj(xj) = (1/2)Jjjx
2
j − hjxj

fij(xi, xj) = Jijxixj .

Without loss of generality, we may assume thatJ is normal-
ized to have unit diagonal, i.e.,Jjj = 1. Since the functions
fj and fij are in quadratic form, the belief functionf (t)

j

also takes a quadratic form [7]:

f
(t)
j (xj) =

1

2



1−
∑

i∈N(j)

J2
ijγ

(t)
ij



x2
j

−



hj −
∑

i∈N(j)

z
(t)
ij



xj , (6)

whereγ(t)
ij andz(t)ij are updated as

γ
(t+1)
ij =

1

1−
∑

u∈N(i)\j J
2
uiγ

(t)
ui

, (7)

z
(t+1)
ij =

Jij

1−
∑

u∈N(i)\j J
2
uiγ

(t)
ui



hi −
∑

u∈N(i)\j

z
(t)
ui



 . (8)
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The update of γ
(t+1)
ij and z

(t+1)
ij are valid if

∑

u∈N(i)\j J
2
uiγ

(t)
ui < 1 for all i, j andt. These inequalities

are always satisfied under the walk-summability condition
or the diagonal dominant condition [8],[10]. Given the form
of the belief functionf (t)

j (xj) in (6), the estimate ofx∗
j is

obtained by applying (5)

x̂
(t)
j =

1

1−
∑

i∈N J2
ijγ

(t)
ij



hj −
∑

i∈N(j)

z
(t)
ij



 . (9)

The message-updating equations (6)-(9) are described
above for comparison with our algorithm in Section IV.
We will explain how our min-sum-min algorithm is derived
based on the min-sum messages (3)-(5).

IV. M IN-SUM-M IN MESSAGE-PASSING

In this section we first construct a new closed-loop
quadratic minimization problem. The new problem has the
same optimal solution as that of the original problem.
We then propose a so-called min-sum-min message-passing
algorithm for the new problem. Finally, we provide explicit
message-updating expressions for solving the new problem.

A. A New Cost Function

Based on (1), we define a new quadratic minimization
problem:

x∗ = argmin
x

f̃(x, x∗), (10)

where

f̃(x, x∗) =
1

2
xT (sI+(1−s)J)x−[(1−s)h+sx∗]Tx, (11)

wheres is a scalar parameter andI is the identity matrix.
Different from (1), the optimal solutionx∗ appears on both
sides of (10). Thus, (10) is in fact a closed-loop optimization
problem. It is obvious that the min-sum algorithm cannot be
directly applied here sincex∗ is not known. We explain in
the following howf̃(x, x∗) is constructed as in (11).

Before providing the motivation forf̃(x, x∗), we first
show that the optimal solution of (10) is the same as
that of the original minimization problem. We let̃Js =
sI + (1− s)J . Same asJ , the new matrixJ̃s also has unit
diagonal. In order that the new optimization problem is well
defined, we chooses such thatJ̃s is positive definite. It
should be noted thats can be negative depending onJ . To
solve (10), we first fixx∗ in f̃(x, x∗). We then set the first
derivative off̃(x, x∗) w.r.t. x to be 0. By doing so, we have

[sI + (1 − s)J ]x∗ = (1− s)h+ sx∗,

Jx∗ = h.

Thus instead of solving (1), we can solve the new optimiza-
tion problem.

Note that the introduction ofsx∗ in constructingf̃(x, x∗)
is the key point in designing a new message-passing algo-
rithm. Due to the simple form ofsx∗, the self-potentials and

edge potentials of̃f(x, x∗) also take a simple form:

f̃j(xj , x
∗
j ) = (1/2)x2

j − [(1− s)hj + sx∗
j ]xj , (12)

f̃ij(xi, xj) = (1− s)Jijxixj . (13)

We point out that the self-potential̃fj(xj , x
∗
j ) has only

x∗
j involved instead of the whole vectorx∗. This property

of f̃j(xj , x
∗
j ) makes it possible for nodej to deal with

x∗
j locally. In fact, one can introduceΓx∗, whereΓ is a

diagonal matrix, in constructing a new closed-loop function
(the matrixJ̃s should be changed accordingly). For the same
reason, one can also design a massage-passing algorithm. In
this paper we focus onsx∗ for simplicity.

We point out that the diagonal-loading onJ to obtainJ̃s
is inspired by the work in [11]. The main difference between
our work and [11] is that we propose a new message-passing
algorithm based on (10). On the other hand, the authors in
[11] took the min-sum algorithm as a subroutine to solve
(1) directly.

B. Algorithm design

In this subsection we present the min-sum-min algorithm
for solving the closed-loop optimization problem (10). We
show that one of the two minimizations of the algorithm
unlocks the loopy effect ofx∗ in (10).

In order to tackle the unknown parametersx∗
j in self-

potentialsf̃j(xj , x
∗
j ), we first revisit the min-sum algorithm

as described by (3)-(5). Note that after each iteration of
message-passing, an estimatex̂

(t)
j of x∗

j can be obtained

from the local belief functionf (t)
j (xj). In other words, a

new estimate ofx∗
j is always accessible to nodej after each

iteration. Inspired by this property of the min-sum algorithm,
we propose to compute an estimate ofx∗

j in (12) at each
iteration in designing our new algorithm. We then take the
estimate ofx∗

j for message-updating in the next iteration.
In principle, if the estimate ofx∗

j becomes more and
more accurate as the information diffuses through message-
passing, the algorithm converges to the right solution.

Based on the above analysis, we propose new message-
updating expressions as

x̂
(t)
i = argmin

xi



f̃i(xi, x̂
(t)
i ) +

∑

u∈N(i)

m̃
(t)
u→i(xi)



 ,(14)

x̌
(t)
i = gi

(

x̂
(t)
i , x̂(t)

u , u ∈ N(i)
)

, (15)

m̃
(t+1)
i→j (xj) = κ+min

xi

(

f̃i(xi, x̌
(t)
i )

+f̃ij(xi, xj) +
∑

u∈N(i)\j

m̃
(t)
u→i(xi)

)

. (16)

Note that there are two minimization operations in (14)-(16)
for each iteration, as compared to (3) which has only one
minimization. The namemin-sum-min for our new algorithm
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then arises naturally. The first minimization in (14) comes
from (5) and (12). This minimization plays an important
role in breaking the loop in (10). The second minimization
in (16) comes from the min-sum algorithm. The functiongi
in (15) is utilized to refine the estimate using the outputs of
the first minimization. (14)-(15) together provide an estimate
of x∗

i for nodei at each iteration.

Note that (14) is again a closed-loop minimization with
respect tox̂(t)

i . Thus we successfully transform the global
closed-loop optimization problem inton local closed-loop
optimization problems, one for each node. As all the mes-
sages are in quadratic form, it is not difficult to compute
x̂
(t)
i after each iteration. Once{gi|i ∈ V } is specified, we

effectively provide a min-sum-min algorithm to solve (10).

We can also interpret (14)-(16) from another viewpoint.
Note that (14)-(15) combines information from neighboring
nodes in computing an estimate of the optimal solution.
Thus (14)–(15) can be viewed as an information-fusion
step. On the other hand, the second minimization (16)
carries information from nodei to a neighboring nodej.
Correspondingly, (16) can be viewed as an information-
diffusion step. The two steps are implemented in order until
reaching consensus at each individual node. That is, the
estimatex̌(t)

i of the optimal componentx∗
i is stable over

time for all i.

Remark 1: The min-sum-min algorithm is a natural exten-
sion of the min-sum algorithm. To see this, we lets approach
to 0, it is immediate thatm̃ij(xj) → mij(xj). Since our
algorithm has a free parameters to choose, we can improve
the performance of the algorithm by properly adjusting the
parameter.

Remark 2: Note that the min-sum-min algorithm is not lim-
ited to the quadratic minimization problem. In fact, as long
as an original optimization problem can be reformulated into
a proper closed-loop optimization problem, the min-sum-
min algorithm can be applied in correspondence.

C. Explicit message-updating expressions

In this subsection we provide explicit message-updating
expressions for solving the closed-loop optimization prob-
lem. We study the three updating expressions (14)-(16) one
by one for the quadratic form of the potentials (12)-(13).

We first consider the minimization (14). We suppose that
the messagẽm(t)

u→i(xi) at iterationt takes the form

m̃
(t)
u→i(xi) = −

1

2
(1− s)2J2

uiγ̃
(t)
ui x

2
i + z̃

(t)
ui xi, (17)

where γ̃
(t)
ui and z̃

(t)
ui are the associated parameters charac-

terizing the quadratic form. By plugging (17) into (14), we

obtain

x̂
(t)
i = argmin

xi

(

1

2

[

1−
∑

u∈N(i)

(1− s)2J2
uiγ̃

(t)
ui

]

x2
i

−
[

(1− s)hi + sx̂
(t)
i −

∑

u∈N(i)

z̃
(t)
ui

]

xi

)

. (18)

The optimal solution̂x(t)
i can be easily computed from (18),

expressed as

x̂
(t)
i =

(1 − s)hi −
∑

u∈N(i) z̃
(t)
ui

1− s−
∑

u∈N(i)(1− s)2J2
uiγ̃

(t)
ui

. (19)

Given the expression for̂x(t)
i , we then specify the function

set {gi|i ∈ V } in (15). To achieve this goal, we construct
an equality

x∗ =
1

2

(

h+ x∗ − (J − I)x∗
)

, (20)

wherex∗ is the optimal solution to the minimization prob-
lem. Based on (20), we then letgi be

x̌
(t)
i =

1

2

(

hi + x̂
(t)
i −

∑

u∈N(i)

Jiux̂
(t)
u

)

∀i ∈ V. (21)

The new estimatěx(t)
i is obtained by combining information

from neighboring nodes and the node itself. The update
expression (21) is just one instance ofgi. In principle, there
are many ways to construct the functiongi by building new
equalities in terms ofx∗.

Upon obtaining the expression fořx(t)
i , we study the

second minimization (16). Again by plugging (17) into (16),
we obtain

m̃
(t)
i→j(xj)

=κ+min
xi

(

1

2

[

1−
∑

u∈N(i)\j

(1− s)2J2
uiγ̃

(t+1)
ui

]

x2
i −

[

sx̌
(t)
i

+(1− s)hi − (1− s)Jijxj −
∑

u∈N(i)\j

z̃
(t)
ui

]

xi

)

,

wherex̌(t)
i is given by (21). We then simplifỹm(t)

i→j(xj) by
solving the minimization. The resulting expression takes the
from:

m̃
(t+1)
i→j (xj) = −

1

2
(1− s)2J2

ij γ̃
(t+1)
ij x2

j + z̃
(t+1)
ij xj + κ′,

where

γ̃
(t+1)
ij =

1

1−
∑

u∈N(i)\j(1− s)2J2
uiγ̃

(t)
ui

, (22)
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and

z̃
(t+1)
ij

=
(1 − s)Jij

(

(1− s)hi + sx̌
(t)
i −

∑

u∈N(i)\j z̃
(t)
ui

)

1−
∑

u∈N(i)\j(1− s)2J2
uiγ̃

(t)
ui

, (23)

andκ′ is a new constant.̃m(t+1)
i→j (xj) again takes a quadratic

form, which is consistent with (17).
One observes that̃γ(t+1)

ij andγ
(t+1)
ij essentially take the

same message-passing form. The only difference between
them is that̃γ(t+1)

ij is derived fromJ̃s while γ
(t+1)
ij is derived

from J . Thus as long ass is chosen such that̃Js is diagonal
dominant or walk-summable,̃γ(t+1)

ij always converges.

The parameter̃z(t+1)
ij has an additional termsx̌(t)

i com-

pared toz(t+1)
ij . This additional termsx̂(t)

i is an estimate

of sx∗
i in the self-potential (12). Ifz(t)ij converges, the min-

sum-min algorithm then converges to the right solution.

Stage Operation
1 Initialize Choose a values;

Set γ̃ij = 0 and z̃ij = 0, ∀(i → j) ∈ ~E

2

Iterate For all (i → j) ∈ ~E
Updatex̂i using (19)
Updatex̌i using (21)
Updateγ̃ij using (22)
Updatez̃ij using (23)

End

3 Check If {x̌i}, {γ̃ij} and{z̃ij} become
stable, go to 4; else, return to 2.

4 Output Returnx̌i, ∀i.

Table I
M IN-SUM-MIN MESSAGE-PASSING FOR COMPUTING

x∗ = argminx
1

2
xTJx− hTx.

Based on the above analysis, we briefly summarize the
min-sum-min algorithm for the quadratic minimization (1)
in Table I. In the algorithm, we choose the parameters
such thatJ̃s is diagonal dominant. This guarantees thatγ̃ij
converge for all(i → j) ∈ ~E.

V. EXPERIMENTAL RESULTS

In the experiment, we test the convergence speed of the
min-sum-min algorithm. We study two scenarios: the one
where the min-sum algorithm converges and the other one
where the min-sum algorithm fails.

We considered two graphs for constructingJ as shown
in Fig. 1. Graph (a) is a 4-cycle with a chord. Graph (b) is
a 5-cycle. For each graph, the matrixJ is constructed with
its diagonal elements being 1 and its off-diagonal elements
being the edge weights as described in the graph. Theh
vector in (1) for the two graphs areh = [ 1 2 1 2 ]T

andh = [ 1 2 1 2 1 ]T , respectively.

1 2

4 3

r
r

r

r

-r
1

2

4 3

-r

-r

5

-r
-r

-r

Graph (a): 4-cycle with a chord Graph (b): 5-cycle

Figure 1. The two graphs for constructingJ . The edge weights are as
denoted by−r or r in the two graphs.
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Figure 2. Effect of diagonal loading on the convergence speed. We use the
symbol ”◦” to denote the number of iterations required for different values
of s in the min-sum-min algorithm. For comparison, we use the dash-dot
line to denote the number of iterations required for the min-sum algorithm.

A. Comparison between the min-sum-min and the min-sum
algorithms

In the first experiment, we investigate the scenario where
the min-sum algorithm converges. We take the min-sum
algorithm as a reference for performance comparison.

We set r = 0.34 and r = 0.4 in Graph (a) and (b),
respectively. Correspondingly, we obtain two realizations for
J . The spectral radius of̄J − I, whereJ̄ = [|Jij |]

n

i,j=1, are
0.8709 (for (a)) and 0.8 (for (b)). Thus theJ matrices satisfy
the walk-summable condition.

In the implementation, we chose the criterion for ter-
minating the algorithm to be1

n

∑n

i=1 |x̌
(t)
i − x∗

i | ≤ 10−5.
We selected the parameters between -0.2 and 1 for our
algorithm.

The experiment results are as shown in Fig. 2. Surpris-
ingly, we observe that for a range ofs values, the min-
sum-min algorithm outperforms the min-sum algorithm in
both cases. The results suggest that there exist more efficient
algorithms than the min-sum algorithm. The min-sum-min
algorithm is one example in improving the convergence
speed. We also tested other valuesr in Fig 1. The results
are similar to those in Fig. 2.
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B. Comparison between the min-sum-min and the double-
loop algorithms

In the second experiment, we investigate the scenario
where the min-sum algorithm fails. We take the double-loop
algorithm [11] as a reference for performance comparison.

In this situation, we setr = 0.45 and r = −0.52 in
Graph (a) and (b), respectively. Correspondingly, the spectral
radius ofJ̄ − I, are 1.1527 (for (a)) and 1.04 (for (b)). The
J matrices are not walk-summable anymore.

Again we chose the criterion for terminating the algorithm
to be 1

n

∑n

i=1 |x̌
(t)
i − x∗

i | ≤ 10−5. In implementing the
double-loop algorithm, we had to setup one more criterion
for the inner-loop iteration. We terminated the inner-loop
each time when1

n

∑n

i=1 |x̂
(t)
i − x̂

(t−1)
i | ≤ 10−5.

Fig. 3 and Fig. 4 display the experiment results for
Graph (a) and (b), respectively. It is seen from the figures
that if our algorithm converges, it converges much faster than
the double-loop algorithm. The performance gain in terms of
the number of iterations range from hundreds to thousands
in the experiment.
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Figure 3. Comparison between the min-sum-min algorithm andthe double-
loop algorithm for Graph (a).
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Figure 4. Comparison between the min-sum-min algorithm andthe double-
loop algorithm for Graph (b).

VI. CONCLUSION

We have proposed a new min-sum-min message-passing
algorithm which includes the min-sum algorithm as a special

case. The new algorithm has been derived based on a closed-
loop optimization problem which has the same optimal
solution as the original problem. Compared to the min-sum
algorithm, the min-sum-min algorithm has a free parameters
to choose. This property renders two advantages of the min-
sum-min algorithm over the min-sum algorithm. First, the
min-sum-min algorithm provides faster convergence speed
when the parameters is chosen properly. Second, in some
situations where the min-sum algorithm fails, the min-sum-
min algorithm still converges.

One open issue is how to choose the parameters to make
our algorithm most efficient. This issue is quite relevant to
engineering in practice.
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