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Abstract—We study the minimization of a quadratic objec-  explain in detail in next section). Our work will focus on

tive function in a distributed fashion. It is known that the designing an efficient distributed message-passing dlgori
min-sum algorithm can be applied to solve the minimization for a general positive definite matrix.

problem if the algorithm converges. We propose a min-sum- . . .

min message-passing algorithm which includes the min-sum The reminder Of. the Paper IS °f9a”'zed %S fOIIOWS' In
algorithm as a special case. As the name suggests, the new Section Il, we prOV|de a literature review. Section Il tﬁlye
algorithm involves two minimizations in each iteration as om-  describes the GaBP algorithm, or equivalently, the min-

pared to the min-sum algorithm which has one minimization.  sum algorithm for quadratic optimization. In Section 1V, we
The algorithm is derived based on a new closed-loop quadrati present our new min-sum-min message-passing algorithm.

optimization problem which has the same optimal solution as Secti Vv ides th . tal Its. Einall
the original one. Experiments demonstrate that our algorihm ection V. provides the expernimental results. Finally, we

improves the convergence speed of the min-sum algorithm by ~draw conclusions in Section VI.
properly selecting a parameter in the algorithm. Furthermore,

we find empirically that in some situations where the min- Il. RELATED WORK

sum algorithm fails, our algorithm still converges to the right . T .

solution. Experiments show that if our algorithm converges our The quadratic optimization problem is closely related to
algorithm outperform a reference method with fast convergmce ~ the Gaussian belief propagation (GaBP) for inference in
speed. graphic models. This is due to the fact thitr) can be

Keywords-Distributed optimization, Gaussian belief propa- ~ @ssociated with a Gaussian distributipfx) via
gation, message-passing algorithms () o exp(—(1/2)xTJ:v n th).

|. INTRODUCTION The mean value of(z) is the same as the optimal solution
of the quadratic optimization problem. The GaBP algorithm

is a min-sum message-passing algorithm for estimating the
mean of the Gaussian random vector. Due to its simplicity,

In this paper we consider minimizing a quadratic opti-
mization problem, namely

min f(z) = leJx — KT, (1) the GaBP algorithm has found many applications in practice,

zER™ 2 such as signal processing [1][2], consensus propagation

whereJ € R™"*" is a positive definite matrix anil € R*.  in sensor networks [3], multiuser detection [4] and Turbo
It is known that the optimal solution* satisfies a linear decoding with Gaussian densities [5]. It is known that if the

equation GaBP algorithm converges, it converges to the mean value
Jz* = h. of p(z) (see [6],[7]). Unfortunately, the GaBP algorithm

. . . does not always converge, which limits its application. Two
We suppose that the matrikis sparse and the dimension- yonera) sufficient conditions for the convergence of the
ality n is large. In this situation, the direct computation 5 pp algorithm are established: diagonal dominance of

(without using the sparse structure.bf of the optimal solu- 18] and walk-summability of/ [9][6]. For completeness, we
tion may be expensive and unscalable. One natural questiod}ve their definitions in the following.

is how to exploit the sparse geometry to efficiently obtain

the optimal solution. To achieve this goal, the quadraticdDefinition [8],[10] A matrix J € R™*™, with all ones on

function f(z) can be associated with an undirected graphts diagonal, is walk-summable if the spectral radius of the

G = (V,E). That is, the graph has a node for eachmatrix J — I, where.J = [|J;;[]7,_, , is less than one.

variablez; and an gdge betvveanano_lj for each nonzero Definition [10] A matrix J € R"*™ is diagonally dominant

Ji; term. The algorithms that exploit the sparse geometry]c il > 5. || for all i

exchange information between nodes in the graph until' 177 JFi 1o '

reaching consensus. Recently research attention has moved to overcome the
Existing algorithms are either applicable to a specificconvergence-failure of the GaBP algorithm for a general

class ofJ or are computationally expensive (which we will matrix J. In [10], Ruozzi and Tatikonda proposed a variant
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of the GaBP algorithm by changing the edge structure ofterationt + 1 takes the form

the graph. In their algorithm, two parameters have been

introduced to ensuring the correct convergence. However, mz(.t_fjl)(a;j) = Kk + min <fi(xi)

it is not clear how to choose the two parameters. In [11], ' i

Johnson et al. proposed a double-loop algorithm with the

GaBP algorithm as a subroutine (corresponds to the inner (o z) + Y mg)—n(xi)>v (3)
loop). Each time the GaBP algorithm is called a better u€N (i)\j

estim.ate of the mean vector is obtained. The double—lopg\,hereN(i) denotes the set of neighboring nodesi ofe.,
algonthm_ guarantees t_he convergence at the cost of hlgﬂ,(i) = {j|(i,7) € E}. The parametex in (3) represents an
computational complexity. The basic idea of the doubleploo 4rpitrary offset term that may be different from message to
algorithm is to precondition the matrix such that the new message. (3) implies that there are two messages associated
matrix is diagonal dominant, allowing the use of the GaBPith each edge(i, j) € E, one for each direction on the

algorithm. edge. To facilitate the performance analysis, we introduce

In this paper we generalize the min-sum algorithm bygijrected grapl; = (V, E) for G. For every edgéi, j) € E,
proposing a new min-sum-min algorithm. We first constructihere are two elements — j), (j — i) in E.

a new closed-loop quadratic optimization problem which has

the same optimal solution as that of the original problem. At each timet, each vertey forms a local belief function
Instead of solving the original problem, we solve the newf;t)(xj) by combining messages received from all neighbors
problem by developing the min-sum-min algorithm. The ba- ® ®

sic idea behind the algorithm is to transform the closeghloo H2@) = fi) + Y] my, (). 4)
optimization problem intm scalar closed-loop optimization €N (j)

problems, one for each node. Note that our algorithm hagn estimate of thejth component:* is then given by
two minimizations for each iteration as compared to the min- !

sum algorithm which has one minimization. The additional :Elg.t) = argmin ff) (xj). (5)
minimization in our algorithm serves to break the loop at “
each node. The min-sum algorithm is successfulﬁiﬁ."o) is equal toz’

We test our algorithm for two scenarios. When the min-for all j € V.
sum algorithm converges, we find that our algorithm can be
more efficient than the min-algorithm by properly choosing When the functiory(z) in (2) is specified to the quadratic
a parameter in the algorithm. When the min-sum algorithnfunction as in (1), the min-sum algorithm becomes the GaBP
fails, we find that our algorithm still converges in some algorithm. In this situation, the self-potentials and edge
situations. Experiments show that our algorithm signifigan potentials are given by
improves the convergence speed of the double-loop algo filzy) = (1/2)Jjjx§ ~

rithm [11].
fij(@i,x5) = Jijwiz;.

I1l. MIN-SUM MESSAGEPASSING Without loss of generality, we may assume thigs normal-

. . . . . ized to have unit diagonal, i.eJ;; = 1. Since the functions
In this section we briefly review the min-sum message- >

, iy i i i iofR®)
passing algorithm for quadratic optimization (which istact g isc?r;glféjs Zreu'g d?:ti:dltstlrfr:\ ]Eg]rm the belief functiofy
ally the GaBP algorithm). This algorithm is the basis for de- q '
veloping our new min-sum-min message-passing algorithm.

1
Before considering the quadratic optimization problem f;t)(xj) = 3 1- Z J%Wf;) CC?
(1), we first study a more general objective functipfx), iEN(J)
which takes the form
(t)
— | h: = \ ; 6
f(ZC) = Z fj(xj) —+ Z fij(xiaxj)- (2) J Z Z’L] fEJ? ( )
: = iEN(J)
JeEV (i,5)EE

In the literature,f; and f;; are often called self-potentials Where%ﬁ? and ZS) are updated as
and edge potentials, respectivefy; captures the correlation

between nodes and j. Due to the pairwise correlations, '75?” = ! PNOR (7)
the jth component:} of z* that minimizesf () requires a 1- ZueN(z‘)\j SuiVui

global knowledge off (x). The min-sum algorithm describes I

the form of the messages exchanged between the nodesxi(]t.“) = e | hi — Z szl) . (8)
Specifically, the message sent from nodéo node;j at ' I- ZueN(i)\j JSZ’%(M') weN (D)\j
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The update of 7/"" and -{"" are vald if edge potentials of (z,z*) also take a simple form:
ZUGN@\.J@%S? < 1 for all 4, j andt. These inequalities Fle o) = (1/2)22 — [(1 — s + sales. (12
are alwa);s satisfied under the walk-summability condition {7(:6'7’%) (1/2)z; = [(1 = s)hj + sajle;, (12)
or the diagonal dominant condition [8],[10]. Given the form fij(@wiswg) = (1= s)Jijwi;. (13)
X . t . . % . e
of the belief funct|_onfj( >(xj) in (6), the estimate of} is e point out that the self-potentiaf (z;, %) has only
obtained by applying (5) «% involved instead of the whole vectar. This property
1 of fj(a:j,a:;f) makes it possible for nodg¢ to deal with
;gg_t) — ol ke Z zf;) . (9) x locally. In fact, one can introducEz*, wherel is a
=3 sen I3 iEN(H) diagonal matrix, in constructing a new closed-loop funetio

e(éhe matrix.J; should be changed accordingly). For the same
reason, one can also design a massage-passing algorithm. In
this paper we focus osz* for simplicity.
We point out that the diagonal-loading ohto obtain.J;
is inspired by the work in [11]. The main difference between
IV. MIN-SUM-MIN MESSAGEPASSING our work and [11] is that we propose a new message-passing
In this section we first construct a new closed-loop@lgorithm based on (10). On the other hand, the authors in

quadratic minimization problem. The new problem has thd11] took the min-sum algorithm as a subroutine to solve
same optimal solution as that of the original problem.(1) directly.

We then propose a so-called min-sum-min message-passifg Algorithm design

algorithm for the new problem. Finally, we provide explicit
message-updating expressions for solving the new problerr]a(.)

The message-updating equations (6)-(9) are describ
above for comparison with our algorithm in Section IV.
We will explain how our min-sum-min algorithm is derived
based on the min-sum messages (3)-(5).

In this subsection we present the min-sum-min algorithm
r solving the closed-loop optimization problem (10). We

A. A New Cost Function show that one of the two minimizations of the algorithm
Based on (1), we define a new quadratic minimizationunlocks the loopy effect of™ in (10). _
problem: In 0rder~ to tackle the unknown parameters in self-
#* = argmin f(xvx*), (10)  potentialsf; (:cj,:c;*-), we first revisit the min-sum algorithm
r as described by (3)-(5). Note that after each iteration of
where message-passing, an estim ) of r} can be obtained

Fla,z*) = le(sI—l—(l—s)J)x—[(1—S)h+sx*]TI, (11) from thg local bellief functionf;t) (a:.j). In other words, a
2 new estimate of’ is always accessible to nogeafter each
wheres is a scalar parameter ardis the identity matrix. iteration. Inspired by this property of the min-sum algomit,
Different from (1), the optimal solution™ appears on both we propose to compute an estimateadf in (12) at each
sides of (10). Thus, (10) is in fact a closed-loop optimizati iteration in designing our new algorithm. We then take the
problem. It is obvious that the min-sum algorithm cannot beestimate ofz} for message-updating in the next iteration.
directly applied here since* is not known. We explain in In principle, if the estimate ofr; becomes more and
the following how f(z,2*) is constructed as in (11). more accurate as the information diffuses through message-
Before providing the motivation forf(x,2*), we first  passing, the algorithm converges to the right solution.
show that the optimal solution of (10) is the same as Based on the above analysis, we propose new message-
that of the original minimization problem. We let, = updating expressions as
sI 4+ (1 —s)J. Same as/, the new matrixJ, also has unit
diagonal. In order that the new optimization problem is well
defined, we choose such thatJ; is positive definite. It
should be noted that can be negative depending dn To
solve (10), we first fixz* in f(z,z*). We then set the first AR (il@, M ue N(i)) , (15)
derivative off(:v, x*) w.r.t. z to be 0. By doing so, we have

2" = argmin | fi(z,27) + 3" m, (@) | (14)
’ uEN (4)

S+ oy ; o (0
[sT+(1—s)J]z" = (1—8)h+sz™, m;_j (zj) = K+ H}ﬁlln <fz(171,17i )
Jx* h
Follm. m. ~ (1) )
Thus instead of solving (1), we can solve the new optimiza- +fij (@i, ) + 2(:)\ mu—n'(xz)) (16)
wEN(4)\j

tion problem.
Note that the introduction ofz* in constructingf (x, 2*) Note that there are two minimization operations in (14)}(16

is the key point in designing a new message-passing algder each iteration, as compared to (3) which has only one

rithm. Due to the simple form ofz*, the self-potentials and minimization. The namenin-sum-min for our new algorithm
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then arises naturally. The first minimization in (14) comesobtain

from (5) and (12). This minimization plays an important 1

role in breaking the loop in (10). The second minimization fcgt) = argmin <— {1 - Z (1—s) Jﬁﬁffz)} x5

in (16) comes from the min-sum algorithm. The functign o\ 2 u€EN (4)

in (15) is utilized to refine the estimate using the outputs of

the first minimization. (14)-(15) together provide an estien - [(1 —8)h; + s:EEt) — Z 25?}%) (18)
of =} for node: at each iteration. uEN (i)

Note that (14) is again a closed-loop minimization with
respect to:z:(t) Thus we successfully transform the global
closed- Ioop optimization problem inte local closed-loop
optimization problems, one for each node. As all the mes-
sages are in quadratic form, it is not difficult to compute
fcgt) after each iteration. Oncéy;|i € V'} is specified, we
effectively provide a min-sum-min algorithm to solve (10).

We can also interpret (14)-(16) from another viewpoint.
Note that (14)-(15) combines information from neighboring ~ Given the expression far"’, we then specify the function
nodes in computing an estimate of the optimal solutionset {¢;|i € V'} in (15). To achieve this goal, we construct
Thus (14)—(15) can be viewed as an information-fusionan equality
step. On the other hand, the second minimization (16) 1
carries information from node to a neighboring nodg. xt = 3 (h +a*—(J - I):z:*), (20)
Correspondingly, (16) can be viewed as an information- - ) o
diffusion step. The two steps are implemented in order untifVheréz" is the optimal solution to the minimization prob-
reaching consensus at each individual node. That is, th€m- Based on (20) we then lg be
estlmatex ) of the optimal component; is stable over MO _( Z J. x(t)) VieVv. (1)
time for all . ‘ " '

The optimal solutior:!"

expressed as

t
20 _ (L=8)hi = uen) ? 2
1—s— ZuEN(i)(l - 8)2‘]7315/7(;1)

can be easily computed from (18),

(19)

u€EN ()

Remark 1: The min-sum-min algorithm is a natural exten- The new estimate'” is obtained by combining information
sion of the min-sum algorithm. To see this, wedetpproach  from neighboring nodes and the node itself. The update
to 0, it is immediate thatm;;(z;) — my;(x;). Since our  expression (21) is just one instancegof In principle, there

algorithm has a free parameteto choose, we can improve are many ways to construct the functignby building new
the performance of the algorithm by properly adjusting theequalities in terms of:*.

parameter.

Remark 2: Note that the min-sum-min algorithm is not lim-
ited to the quadratic minimization problem. In fact, as long
as an original optimization problem can be reformulated int

Upon obtaining the expression fat; t), we study the
second minimization (16). Again by pIuggmg (17) into (16),

a proper closed-loop optimization problem, the min- sum-Y obtain
~ (
min algorithm can be applied in correspondence. mz(._))j (z)
_ (1 2 ~(t+1) 0)
_m—i-rr;lin <§ {1 - E _ _(1 —8)2 T2 A, ]xl - [sgci
uEN(4)\j

C. Explicit message-updating expressions

(1= )T — 1 .

In this subsection we provide explicit message-updating +(1 = 9)hi = (1 = 8)Jijz; Z ZM :vz>,
expressions for solving the closed-loop optimization prob ueN@\I

lem. We study the three updating expressions (14)-(16) Onﬁ/herex is given by (21). We then simplifyi\") (z;) by

by one for the quadratic form of the potentials (12)-(13). solying the minimization. The resulting expression takes t

We first conS|der the minimization (14). We suppose thatfrom:

the messagen ;) at iterationt takes the form 1
gen,’.i(x) i (2) = —=(1 — )220 2 4 50 g 4w
) 1 2 (1) 2 ) 1—J J 2 17 113 J 1] J
My, s ('rl) = _5( ) Juz’Yuz €Ty + Zui Lis (17) where
where 5 N(t) and 51(2) are the associated parameters charac- Z(;f+1> 1 (22)

terizing the quadratic form. By plugging (17) into (14), we 1— ZueN(imﬂ —5)2 Jgfffl)’
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and 1 - 2
21_(;+1)
(1—s)Ji; ((1 — 8)h; + s\ —2ueN () 51(;?) ' '
- : ,(23)
~(t
1- ZueN(i)\j(l - S)ngi%(n)
andx’ is a new constanmgfj;)(xj) again takes a quadratic 4 r 3
form, which is consistent with (17). Graph (a): 4-cycle with a chord Graph (b): S-cycle
One observes that|; " and~ ™" essentially take the

L . Figure 1. The two graphs for constructing The edge weights are as
same message-passing form. The only difference betwe&fnoted by—r or r in the two graphs.

them is that;. ") is derived fromJ, while v\ *") is derived

from .J. Thus as long as is chosen such thak, is diagonal For Graph (a) For Graph (b)
. ~ 26 32
dominant or walk—summable/,f;“) always converges. .
240 30 o
The parametef; ") has an additional termz " com- . . .°
pared t0zi(;+1). This additional terms:izz(.t) is an estimate | | oo . " 2 o
=} =
of sz} in the self-potential (12). Ifzi(;) converges, the min- £ oo | T o
sum-min algorithm then converges to the right solution. = | ,°° o 2 °
14 [ XX ° 20 -o---‘-‘-o-é-‘-‘-‘-‘----‘-‘-‘-
Stage Operation " ° G0t s o
1 | Initialize | Choose a value;
~ ~ . . N 10 o 16 oo
Setyi; =0 and Zij =0, V(Z - J) €EE 0 02 04 06 08 -02 0 02 04
|terate For all (Z — ]) c E" parameter s parameter s
Updatez; using (19)
2 Updatez; using (21)
Update¥;; using (22) Figure 2. Effect of diagonal loading on the convergence gpéée use the
Updatez;; using (23) symbol "o” to denote the number of iterations required for differeatues
End of s in the min-sum-min algorithm. For comparison, we use thehdist
3 Check If {Z:], {7;;} and{%;;] become line to denote the number of iterations required for the mum algorithm.
stable, go to 4; else, return to 2.
Output Returnz;, Vi.
Table | A. Comparison between the min-sum-min and the min-sum
MIN-SUM-MIN MESSAGE-PASSING FOR COMPUTING algorithms

x* = arg min, %:p Jr — hTz.
In the first experiment, we investigate the scenario where
Based on the above analysis, we briefly summarize th#1€ min-sum algorithm converges. We take the min-sum
min-sum-min algorithm for the quadratic minimization (1) &/gorithm as a reference for performance comparison.
in Table I. In the algorithm, we choose the parameter =~ We setr = 0.34 andr = 0.4 in Graph (a) and (b),
such thatJ, is diagonal dominant. This guarantees thgt ~ respectively. Correspondingly, we obtain two realizagitor
converge for all(i — 5) € E. J. The spectral radius of — I, whereJ = [|Jij|]zj:1, are
0.8709 (for (a)) and 0.8 (for (b)). Thus thlematrices satisfy
the walk-summable condition.
In the implementation, we chose the criterion for ter-
In the experiment, we test the convergence speed of theinating the algorithm to b% > |j:§t) —xf| <1075,
min-sum-min algorithm. We study two scenarios: the oneWe selected the parameterbetween -0.2 and 1 for our
where the min-sum algorithm converges and the other onalgorithm.
where the min-sum algorithm fails. The experiment results are as shown in Fig. 2. Surpris-
We considered two graphs for constructitigas shown ingly, we observe that for a range of values, the min-
in Fig. 1. Graph (a) is a 4-cycle with a chord. Graph (b) issum-min algorithm outperforms the min-sum algorithm in
a 5-cycle. For each graph, the matrixis constructed with  both cases. The results suggest that there exist more efficie
its diagonal elements being 1 and its off-diagonal elementslgorithms than the min-sum algorithm. The min-sum-min
being the edge weights as described in the graph. Ahe algorithm is one example in improving the convergence
vector in (1) for the two graphs are=[1 2 1 2|7 speed. We also tested other values1 Fig 1. The results
andh=[1 2 1 2 1]7, respectively. are similar to those in Fig. 2.

V. EXPERIMENTAL RESULTS
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case. The new algorithm has been derived based on a closed-
loop optimization problem which has the same optimal

In the second experiment, we investigate the scenariéomtion as the original problem. Compared to the min-sum

where the min-sum algorithm fails. We take the double-loopalgor'thm’ the min-sum-min algorithm has a free parameter

algorithm [11] as a reference for performance Comparison.to choose. This property renders wo advantages of the min-

In this situation. we set — 045 andr — —0.52 in sum-min algorithm over the min-sum algorithm. First, the
Graph (a) and (b) ’respectively. Correspondingly, the tsakc min-sum-min algorithlm provides faster convergence speed
radius of.J — I, are 1.1527 (for (a)) and 1.04 (for (b)). The when the parameter is chosen properly. Second, in some
7 matrices aré not walk-summable anymore situations where the min-sum algorithm fails, the min-sum-

Again we chose the criterion for terminating the algorithm min aIgonthm st CONVerges.

o be 13" |$Z'(t) | < 10-5. In implementing the One open issue is how to choose the parametermake
n Lui=11% T il = :

: ... _our algorithm most efficient. This issue is quite relevant to
double-loop algorithm, we had to setup one more criterion g q

: : : . . engineering in practice.
for the inner-loop iteration. We terminated the inner-loop g gmp

B. Comparison between the min-sum-min and the double-
loop algorithms

each time whent > |3{Y — (V| < 1072,
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