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Abstract—Sequence alignment is one of the most used tools
in bioinformatic to find the resemblance among many sequences
like ADN, ARN, amino acids. The longest common subsequence
(LCS) of biological sequences is an essential and effective tech-
nique in sequence alignment. For solving the LCS problem, we
resort to dynamic programming approach. Due to the growth of
databases sizes of biological sequences, parallel algorithms are
the best solution to solve these large size problems. Meantime,
the GPU has become an important element for applications
that can benefit from parallel computing. In this paper, we first
study and compare some languages for parallel development on
GPU (CUDA and OpenCL). Then, we present a parallelization
approach for solving the LCS problem on GPU. Finally, we
evaluate our proposed algorithm on an platform using CUDA,
OpenCL and on CPU using the C Language and the OpenMP
API. The experiment results show that the implementation of
our algorithms in CUDA outperforms the implementation in
OpenCL, and the execution time is about 17 times faster on
GPUs than on typical CPUs.

Index Terms—Bioinformatic, GPU, Parallel algorithm, LCS,
CUDA, OpenCL.

I. INTRODUCTION

Most common studies in the bioinformatic field have

evolved towards a more large scale, passing from the analysis

of a single gene/protein to the study of a genome/proteome,

from a single mechanism within the body towards the biology

of the entire system. Hence, it become more and more difficult

to achieve these analyses on a single computer, and even for

some of them on clusters. The bioinformatic requires now

more infrastructure allowing the storage, the transfer of huge

amount of data, and finally, the massive computation for their

analysis.

Until recently, the CPU, or the computer main chip, dealt

most heavy load operations such as physics simulation, bioin-

formatic, rendering off-line for movies, calculations of risks

for financial institutions, weather forecasting, file encoding

video and audio [13]. Some of these heavy computations [10]

however, are easily parallelizable and can therefore benefit

from an architecture for parallel computing. Most parallel

architectures were heavy, expensive and targeted at a specific

market.

That is until the Graphic Processing Unit (GPU) imposes

itself as a major player in the parallel computing [11].

The graphics processors have rapidly evolved, with continual

growth performance, more generic architectures and high-

level programming tools (CUDA, OpenCL, etc.). GPUs are

processors that can run a smaller job a great many times

in parallel, while the CPUs are expected to perform lengthy

and complex calculations in series [4]. The General Purpose

Computation on Graphic Processing Unit (GPGPU) [9] is a

new low-cost technology which take advantage of the GPUs to

perform massively parallel calculation, traditionally executed

on multi-cores CPU.

The GPU computing is designed to accelerate massively

parallel algorithms taking advantage of the many execution

units present in a GPU. Streaming algorithms are massively

parallel algorithms, widely investigated on GPUs. They are

algorithms of treatment of data stream in which the input is

presented as a sequence of object and can be processed in

some passes (sometimes only one). The streaming algorithms

are characterized by strongly parallel computations with a little

of re-use of input data. These algorithms must be designed to

be decomposed in a multitude of small threads that will run

in parallel, in groups, on the GPU.

We are talking about thousands of threads, in contrast to the

few threads in a CPU. From the software perspective, GPUs

are used with more and more tools for developing scientific

computing codes using high level programming languages.

In front of first spectacular results in terms of reducing the

computation time, the major manufacturers now offer pro-

fessional solutions, dedicated to scientific calculations. Since

GPU performance grows faster than CPU performance, the

use of GPUs for bioinformatics is therefore a perfect match.

Sequence alignment is a fundamental technique for biolo-

gists to investigate the similarity between different species. In

computational method, biological sequences are represented as

strings and finding the longest common subsequence (LCS)

is a widely used method for sequence alignment. Dynamic

programming is a classical approach for solving LCS problem,

in which a score matrix is filled through a scoring mechanism.

The best score is the length of LCS and the subsequence
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can be found by tracing back the table. The LCS algorithms

can be considered as streaming algorithms and thus can be

solved using the GPU computing paradigm. In this paper, we

investigate to what extend we can solve the LCS problem on

GPUs using different hight level programming tools. We show

that solving the LCS problem on GPUs has a speed up 17 time

faster than solving the LCS problem using traditional parallel

API.

The rest of the paper is organized as follows. Section 2

gives an overview and compares the two most used tools

in GPU computing, CUDA and OpenCL. Section 3 defines

the Longest Common Subsequence problem and presents the

used parallelization approach for solving this problem on

GPUs. Section 4 shows the experimental results for solving

the LCS problem on GPUs and discusses what is the most

appropriate developmental environment to solve this problem

on a particular GPU device. Section 6 concludes the paper.

II. GPU COMPUTING

Current personal computers can be viewed as multi-

processor stations with shared memory. Thus, developers

can easily write parallel programs on these workstation by

using specific programming API. OpenMP [6] is one of the

most promising parallel programming APIs. It uses a multi-

threading parallelization method where a single task is divided

between several threads that are executed concurrently.

Moreover, most of the current personal computers holds

graphic cards which embed several graphical processors. Tra-

ditionally, these processors are exclusively used for graphics

manipulation purposes. Nonetheless, with the forthcoming of

new programming environments, these processors can execute

highly parallel programs and intensive calculus. They are

consequently called Graphic Processing Units (GPUs) and

becoming serious rival to the traditional CPUs.

In the following, we present the two most used used GPUs

programming environments, CUDA and OpenCL.

A. CUDA, NVIDIA

The Compute Unified Device Architecture (CUDA) envi-

ronment developed by Nvidia is a high-performance vector

computing environment [3].

On a typical CUDA program, data are first sent from the

main memory to the GPU memory. Then, the CPU sends com-

mands to the GPU which performs the computation kernels

by scheduling the work on the available hardware. Finally

Compute Work Distribution (in GPU) copies the results from

the GPU memory to the CPU one via the Host Interface [9].

The hardware architecture used by CUDA consists of a

host processor, a host memory and an Nvidia graphics card

that supports CUDA. CUDA enabled GPUs are based on the

Tesla architecture [9]. These GPUs can run in parallel several

thousands of instances (threads) of a unique code (SPMD

model). Threads are grouped into blocks which size is defined

by the programmer. All threads within a block are executed on

a Streaming Multiprocessor (SM) and communicate with each

other using a shared memory. Threads in different blocks can

not communicate which make the scheduling of the different

blocks rapid (independent of the number of SMs used for

program execution). In CUDA, a grid is a group of (thread)

blocks, with no synchronization between them [8].

The programming language is based on the C language with

extensions to indicate whether a portion of the code is executed

on the CPU or the GPU. In CUDA, a kernel is a code (usually

a function) that can be executed in the the GPU. The process

of creating an executable CUDA includes 3 stages associated

with the CUDA compiler nvcc. First, the program is divided

into CPU section and GPU one’s following pragmas inserted

by the programmer. The CPU part is compiled by the compiler

of the host, while the GPU part is compiled using a specific

compiler. The resulting GPU code is a binary CUDA (file

Cubin). Both CPU and GPU programs are then linked with

libraries that contain CUDA functions for loading the binary

code Cubin and send to the GPU for execution.

CUDA has a hierarchy of several types of memory: global,

shared, local, texture/constant memory. The global memories

are visible to all threads in all blocks, the biggest and the

slowest. The shared memories are visible to all threads in

a particular block, a medium size and an average speed of

communication. The local memories are only visible to a

particular thread, the smallest and the fastest. The texture/-

constant memories are visible to all threads in all blocks

and they are read-only memory. Each thread can read/write

independently in registers and local memory. All threads in the

same block can read/write (communicate) in shared memory.

And all threads in the same grid can read/write (communicate)

in global and constant memory.

B. OpenCl, Apple

OpenCL (Open Compute Language) is an open API dedi-

cated to massively parallel computing, initially developed by

Apple and the Khronos Group -a consortium of firms engaged

in the development of open APIs like OpenGL.

The CUDA is a non-free proprietary software and CUDA

programs can exclusively be executed on Nvidia GPUs. Apple

has proposed OpenCL to exploit the power of GPUs without

being locked in a range of products from a particular manu-

facturer (Nvidia). OpenCL can therefore be seen as an API

intended to standardize the GPU computing. OpenCL is a

common language to all architectures, it is not intended only

to GPUs but also CPUs and covers accelerators such as the

Cell (in the Playstation 3).

OpenCL basic functions are exactly the same as for CUDA:

a kernel is sent to the accelerator (compute device) which is

composed of ”compute units” whose ”processing elements”

working on ”work items”.

Finally, CUDA compatible cards (GeForce, Quadro, Tesla)

support both CUDA and OpenCL.

C. Comparison

Table I presents a qualitative comparison between CUDA

and OpenCL. This comparison highlights the fact that CUDA

is a more mature technology than OpenCL; whereas, OpenCL
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has the merit to be an open standard. While CUDA can be

used only on Nvidia‘s GPU, OpenCL can be used on a wide

range of GPU devices.

CUDA OpenCL

Technologies Owner Open

Start 2006 2008

Free SDK Yes Depend on
vendor

Many vendors No,only
NVIDIA

Yes:
Apple,AMD,
IBM

Multiple OS Yes;Windows,
Linux,

Depend on
vendor

Mac OS X;32
and 64 bits

Heterogeneous

devices

No, Only Yes

NVIDIA GPUs

TABLE I: QUALITATIVE COMPARISON BETWEEN

CUDA AND OPENCL

From a memory management point of view, in both CUDA

and OpenCL, the host and the device memories are separated.

The device memory are hierarchical designed and must be

explicitly controlled by the programmer. The memory model

of OpenCL is more abstracted and supplies more way for

various implementations. CUDA explicitly defines all the

memories levels, whereas in OpenCL, these details are hidden

as they are device dependent.

CUDA and OpenCL are similar in several aspects. They are

concentrated on data parallel computing model. They provide

a C-basic language customized for device programming. The

device, the execution scheme and the memory models are very

similar.

Most of the differences result from differences of their

origin. CUDA is the technology owner of Nvidia and targets

only Nvidia devices. OpenCL is open and targets several

devices. CUDA has been on the market earlier than OpenCL

(2006 vs. 2008) and has more support, applications, related

research and products. Finally, CUDA is more documented

than OpenCL.

III. THE LCS PROBLEM

The extraction of the longest common subsequence of two

sequences is a current problem in the domain of datamining.

The extraction of theses subsequence is often used as a

technique of comparison to get the similarity degree between

two sequences.

A. Definition

A sequence is a finished suite of symbols taken in a finished

set. If U = 〈a1,a2, ..,an〉 is a sequence, where a1,a2, ..,an

are letters, the integer n is the length of u. A sequence

V = 〈b1,b2, ..,bn〉 is a subsequence of U = 〈a1,a2, ..,an〉 if

there are integers i1, i2, .., im(1 ≤ i1 < i2 < .. < im ≤ n) where

bk = aik for k ∈ [1,m].

For example, V = 〈B,C,D,B〉 is a subsequence of U =
〈A,B,C,B,D,A,B〉. A sequence W is a subsequence common

to sequences U and V if W is a subsequence of U and of V . A

common subsequence is maximal or is a longer subsequence

if it is of length maximal. For example: sequences 〈B,C,B,A〉
and 〈B,D,A,B〉 are the longest common subsequences of

〈A,B,C,B,D,A,B〉 and of 〈B,D,C,A,B,A〉.

B. Parallel algorithms for the LCS problem

The dynamic programming is a classical approach for

solving the LCS problem. It is based on the filling of a score

matrix through a scoring mechanism. The best score is the

length of the LCS and the subsequence can be found by tracing

back the table.

Let m and n be the lengths of two strings to be compared.

We determine the length of a maximal common subsequence

in A = 〈a1,a2, ..,an〉 and B = 〈b1,b2, ..,bm〉.

We note L(i, j) the length of a maximal common subse-

quence in 〈a1,a2, ..ai〉 and 〈b1,b2, ..,b j〉(0 ≤ j ≤m,0 ≤ i ≤ n).

L(i, j)











0 i f i = 0 or j = 0

L(i− 1, j− 1)+ 1 i f ai = b j

max(L(i, j− 1),L(i− 1, j)) else.

(1)

We use the above scoring function to fill the matrix row by

row (Fig. 1).

The highest calculated score in the score matrix is the length

of the LCS. In Fig. 1, the length is 4. In the scoring matrix,

the LCS is traced back from the highest score point (4) to the

score 1.

Fig. 1: Example of filling the LCS matrix score.

The time and space complexity of this dynamic

programming approach is O(mn), where m and n are

the length of the two compared strings. Several parallel

algorithms in the literature target to solve the LCS problem.

In the following table, we present the parallel complexity and

the number of processors of some algorithms (m and n are

the length of the two compared strings, p is the number of

available processor):

145

INFOCOMP 2011 : The First International Conference on Advanced Communications and Computation

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-161-8



Reference Parallel Number of

Complexity processors

Apotolico O(logm∗ logn) mn/logm

et al.

1990 [1]

Lu and Lin O(logm+ logn) mn/logm

1994 [7]

Babu and O(logm) mn

Saxena

1997 [2]

Xu et al. O(mn/p) p

2005 [12]

Krusche et al. O(n) p

Tiskin

2006[5]

C. The parallelization approach

In the scoring matrix that dynamic program algorithm

constructs according to the equation Eq. 1, for all i and

j (1 ≤ i ≤ n,1 ≤ j ≤ m), L[i, j] depends on three entries;

L[i− 1, j − 1],L[i− 1, j] and L[i, j − 1] (as shown in Fig. 2).

In other words, L[i, j] depends on the data in the same row

and the same column. So the cells in the same column or same

row cannot be computed in parallel.

Fig. 2: Data dependency in the score matrix of a dynamic

programming algorithm for solving LCS problem.

We start computing L1,1 then L1,2 and L2,1 in the same

time, afterthat L1,3, L2,2 and L3,1. We continue until we fill

the matrix. We notice that it is possible to compute cells in

the same anti-diagonal parallelly. To parallelize the dynamic

programming algorithm, we have to compute the score matrix

in the anti-diagonal direction (see Fig. 3).

IV. RESULTS

A. Performance measurement methodology

We implement our LCS algorithm using CUDA, OpenCL,

OpenMP and the C language on a computer equipped with

a processor Intel(R) Core(TM) Quad CPU Q9400 2.66GHZ,

a random access memory 8 GBytes and a graphics board

Fig. 3: The parallelization approach

NVIDIA GT 430. We use as operating system Ubuntu 10.04.

The characteristics of our graphics board are listed in the

following:

• GPU Engine Specifications:

CUDA Cores 96

Graphics Clock(MHz 700

Processor Clock(MHz) 1400

• Memory Specifications:

Memory C lock(MHz) 800-900 (DDR3)

Standard Memory Config 1GB DDR3

Memory Interface Width 128-bit

Memory Bandwidth(GB/sec) 25.6-28.8

We measure the filling of the LCS scoring matrix runtime

without taking into account the initialization of sequences A

and B. The unit of measure of the runtime is the millisecond.

In all the following tests, we run as many trials as needed

to reach a 95% confidence interval at ε = 1% of the average

value.

B. The execution time

Fig. 4 illustrates the execution time of the four implemen-

tations of our LCS algorithm (CUDA, OpenCL, OpenMP and

C) versus the size of the two sequences.

We can clearly see that for the C implementation of our

algorithm, whenever we increase the size of the compared

sequence the execution time exponentially increases. This

behavior is justified by the absence of parallelization in the

C implementation of our algorithm.

Both CUDA, OpenCL and OpenMP implementations of

our algorithm use the parallelization approach presented in

section III-C. Thus, the execution time of these three versions

of our algorithm increases linearly as we increase the size of

the compared sequence
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For long sequences, we notice that the fastest version of

our algorithm is the CUDA one, and specifically more than

the OpenCL implementation. As CUDA is the SDK developed

by NVIDIA for their graphic processors, it is then more

appropriate for NVIDIA devices than OpenCL.

For short sequences, we plot in Fig. 5 the execution time of

the four implementations of our algorithm using a logarithmic

scale in the y-axis.

Fig. 5 shows that, for short sequences, OpenMP outperforms

OpenCL and has similar performances than CUDA. In fact,

CPU is more performant than GPU for small problems where

parallelism has a negative effect on the execution time. The

thread management slacken the overall execution time and

signficanlty exceeds the kernel execution time.
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Fig. 5: The LCS execution time (logarithmic scale)

Fig. 6 compares the latency of the kernel runtime and the

latency taken to transfer the data to the main memory (RAM).

Only OpenCL allows us to determine these latencies.

Foremost, we notice that the required time to perform the

memory transfer is the most important in the operation of

Fig. 6: Kernel latency vs. memory transfer latency

filling of the score matrix. In addition, the memory transfer

latency increases with the size of the sequences.

C. The speed up

In the parallel computing, the speed up shows to what extent

a parallel algorithm is faster than a corresponding sequential

algorithm.

Analytically, we define the speed up as:

SpeedUp =
Sequential execution time

Parallel execution time
(2)

Fig. 7 shows the speed up of the implementation versions

of our algorithms in OpenMP, OpenCL et CUDA versus the

size of the two sequences.

The measured speed up for the implementation of our

algorithm in Open Mp (on CPU) is bounded at 3.22 times.

In fact, we use OpenMP to get advantage of the parallelism

provided by the Quad core CPU. But, because of the other

operating system threads, the speed up cannot achieve 4 times

The implementation of our algorithms in CUDA outper-

forms the implementation in OpenCL, as we are using an

NVIDIA graphic card and CUDA is specifically designed for

the NVIDIA devices.

Our results show that for long sequences, the implementa-

tion of our algorithm in CUDA (on GPU) is 17 times faster

than the one on CPU.

This result is explained by the CUDA architecture. In

CUDA, threads are grouped in blocks (the programmer

chooses their size). All threads in the same block are executed

on the same Streaming Multiprocessor (SM) and communicate

via a shared memory.

Our parallelism approach is based on the filling of a score

matrix in the anti-diagonal sense. The threads are filling the

matrix by calculating anti-diagonals one by one, every anti-

diagonal uses the necessary number of block to calculate it in

parallel.

We notice that up to a certain sequence size (800 characters),

the GPU is under exploited. This is mainly due to the man-
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agement of threads which delays the execution time. The CPU

can handle with this problem effeciently for small sequences.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  2000
 4000

 6000
 8000

 10000

 12000

 14000

 16000

S
p

ee
d

 U
P

Sequence Dimension

OpenMP
OpenCL

CUDA

Fig. 7: Speed UP

V. CONCLUSION

In bioinformatic, biological sequences are represented as

strings and finding the longest common subsequence (LCS) is

a widely used method for sequence alignment.

We have focused in this paper on the parallelization of a

dynamic programming algorithm for solving the LCS problem.

For this purpose, we have studied some languages for parallel

development on GPU (CUDA and OpenCL). Then, we have

presented a parallelization approach for solving the LCS

problem on GPU. We have evaluated our proposed algorithm

on an NVIDIA platform using CUDA, OpenCL and on CPU

using the C Language and the OpenMP API.

The results have shown that the studied algorithm enables

higher degree of parallelism and achieves a good speedup on

GPU. In addition, during this experiment, we have proved that

CUDA is more suitable for NVIDIA devices than OpenCL.

Finally, we have demonstrated that the major contribution in

the execution time is the latency of the memory transfer from

GPU Global memory to CPU RAM.
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