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Abstract—Traumas resulting from falls have been reported as 

the second most common cause of death. For this reason, 

computer vision tools can be exploited for detecting humans’ 

fall incidents. In this paper, we propose a fast, real-time 

computer vision algorithm capable to detect humans’ falls in 

complex dynamically changing conditions, by exploiting the 

motion information in the scene and 3D space’s measures. This 

algorithm is using a single monocular low cost camera and it 

requires minimal computational cost and minimal memory 

requirements that make it suitable for large scale 

implementations in clinical institutes and home environments. 

The proposed scheme was tested in complex and dynamically 

changing visual conditions and as proved by the experiments it 

has the capability to detect over 92% of fall incidents.  

 

Keywords-machine vision; image motion analysis; features 

extraction; subtraction techniques 

I.  INTRODUCTION 

Life expectancy in developed countries is increasing and 

population is aging. However, the quality of life, especially 

for elderly, is associated with their ability to live 

independently and with dignity, without having the need to 

be attached to any person in order to live a normal life and 

fulfill daily living. According to medical records, falls are 

the leading cause of injury-related visits to emergency 
departments and the primary etiology of accidental deaths in 

persons over the age of 65 years. The mortality rate for falls 

increases dramatically with age in both sexes and in all 

racial and ethnic groups, making this one of the most 

important problems that hinders these people’s ability to 

have such an independent life, making necessary the 

presence and monitoring of their daily activities by care-

givers. 

For this reason, a major research effort has been 

conducted in the recent years for automatically detecting 

persons’ falls. One common way is through the use of 
specialized sensors, such as accelerometers, floor vibration 

sensors, barometric pressure sensors, gyroscope sensors, or 

combination/fusion of them [1][2][3][4][5]. However, most 

of the previous techniques require the use of specialized 

wearable devices that should be attached to human body and 

thus their efficiency relies on the person’s ability and 

willingness to wear them. On the other hand, a more 

research challenging alternative is the use of visual cameras, 

which is however, a prime research issue due to the 

complexity of visual content (illumination variations, 

background changes and clutter) and the fact that a fall 

should be discriminated than other ordinary humans’ 

activities, like sitting and bending. Vision-based systems 

present several advantages as they are less intrusive, 
installed on building (not worn by users), they are able to 

detect multiple events simultaneously and the recorded 

video can be used for post verification analysis. Towards 

this direction, some works exploit 2D image data like for 

instance [6][7][8][9]. These works exploit foreground 

object’s shape as well as its vertical motion velocity in order 

to detect a fall incident. H. Qian et al. [10] are based on 

human anatomy according which each part of the human 

body occupies an almost fixed percentage in length relative 

to body height, in order to train a classifier capable six 

indoor human activities, including fall incidents. However, 
none of these works exploit 3D information to increase 

system robustness. A 3D active vision system based on 

Time of Flight (ToF) cameras is proposed in [11]. Although, 

this work doesn’t take into account the orientation of motion 

of the moving blob, and the measures that are provided by 

the camera could be affected by reflectivity objects 

properties and aliasing effects when the camera-target 

distance overcomes the non-ambiguity range. Multi-camera 

systems have been also proposed in [12], to exploit stereo 

vision. 3D processing, though more robust than a 2D image 

analysis in terms of fall detection and discrimination of a 

fall than other daily humans’ activities; require high 
computational cost making these systems unsuitable for 

real-time large scale implementations. 

In this paper, a new innovative approach is presented that 

exploits, on the one hand, monocular cameras to detect in 

real-time fall incidents in complex dynamically changing 

visual conditions and, on the other, it is capable to exploit 

actual 3D physical space’s measures, through camera 

calibration and inverse perspective mapping, to increase 

system robustness. Due to its minimum computational cost 

and minimum memory requirements, it is suitable for large 

scale implementations, let alone its low financial cost since 
simple ordinary low-resolution cameras are used, making it 
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affordable for a large scale. In contrast to other 2D fall 

detection methods [6][7][8], our system is very robust for 

wider range of camera positions and mountings, as is proven 

by the experiments. 

The rest of this paper is organized as follows: in Section 

2 problem formulation is presented. Section 3 presents 2D 
and 3D measures for features extraction. In Section 4 

experimental results along with the fall detection algorithm 

are presented, and, finally, Section 5 concludes this work.  
 

II. APPROACH OVERVIEW 

Humans’ fall incidents can be characterized by motion 

features that are very discriminative in the fall detection 
context and in humans’ posture. Information about humans’ 

posture can be derived by the actual width-height ratio, and 

it is valid that in a 3D space this ratio is bigger in value 

when a fall event occurs than the same ratio with humans in 

standing position. The most commonly used feature to 

detect a fall is that of vertical motion velocity, which, 

besides fall incidents discrimination, is also able to provide 

useful information about fall intensity and thus possible 

injuries. Vertical motion velocity V, during a sequence of 

frames, can be expressed by (1). 

 

 

                

 

     

 (1) 

 

where       stands for the actual height of a human in 3D 

space at the     image frame (time). Vertical motion 

velocity is calculated over a time window of length   to 

estimate the speed of the motion which is also an evident of 

how severe would be a fall. Index   denotes the current 

frame for processing. We choose to use actual humans’ 

height, measured in physical world units (e.g., cm, inches), 

and not their projected height being measured in pixel units, 

since this yields a more robust performance not be affected 

by cases where the human is far away or very close to the 

camera. To measure the actual height, however, we need to 
exploit 3D information. In addition, actual height can 

provide information about the moving object, in a way that 

the system becomes capable to discriminate if the moving 

object might be a human or something else, like a pet. 

 

 
Figure 1:  Object in camera’s plane and 3D space 

Width-height ratio computation requires, firstly 

foreground extraction (Section III.A), to extract the 

foreground object, which initially is unknown and secondly 

information about its left-most, right-most, top-most and 

bottom-most points, to calculate its projected height and 

projected width, as explained in Section III.B. 

Vertical motion velocity,   , computation requires 
knowledge of the actual height of foreground object in 3D 

space. Representation of an object in camera’s plane is 

presented in Figure 1. From Figure 1, it appears that the 

actual height of foreground object can be given through (2), 

if camera’s focal length  , distance   between the camera 

and foreground object and foreground object’s projected 

height    are known. 

 
 

    
  

 
 (2) 

 

The projected height can be obtained by the use of a 

foreground detection algorithm (Section III.B), the focal 

length can be obtained through camera calibration, as this 

process provides information about camera’s geometry, and 

the distance between the camera and the foreground object 

can be obtained through the construction of a reference 

plane that is the orthographic view of the floor, as explained 
in Section III.C. 

 

III. 3D MEASURES FOR FALL DETECTION 

This Section presents 2D and 3D measures used for 

features extraction, as well as, the fall detection algorithm. 

A. Foreground Extraction 

For foreground extraction we use the iterative scene 

learning algorithm described in [8]. This algorithm, unlike 

the classic background subtraction techniques, which fail in 

large scale implementations because of their computational 

cost and memory requirements, is computationally efficient 

and has the ability to operate properly in real-time and in 

complex, dynamic in terms of background visual content, 

and unexpected environments. 

It exploits the intensity of motion vectors along with 

their directions to identify humans’ movements. For motion 

vectors estimation, the “pyramidal” Lucas-Kanade 
algorithm [13] was used, which has the ability to catch large 

motions by using an image pyramid. Motion vectors 

estimation is followed by the creation of a binary mask in 

order to indicate areas of high motion information. 

 

Figure 2:  (a) original frame, (b) extracted foreground, (c) minimum 
bounding box 

   
(a) (b) (c) 
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This information is used as a computationally efficient 

background/foreground updating mechanism that updates 

the background at every frame instance by using the 

intensity of motion vectors within an area. If motion 

vectors’ intensity is greater than a threshold then this area is 

denoted as foreground, otherwise it is denoted as 
background. 

B. 2D Foreground Object Width-Height Ratio 

Width-height ratio estimation requires information about 

the projected width and projected height of foreground 

object. In order to estimate the projected width and 

projected height of foreground object a minimum bounding 
box that includes the foreground object was created. Figure 

2 shows foreground extraction and minimum bounding box 

for a captured frame. By using the four corners of the 

bounding box the left-most, right-most, top-most and 

bottom-most points of foreground object can be estimated 

and width-height ratio can be expressed by (3). 

 

   
  

  

 
       

       

 (3) 

 

where    and    are projected width and projected height 

and    ,    ,    ,     are the left-most, right-most, top-

most and bottom-most points of foreground object 

respectively. 

C. Estimation of 3D Measures for Detecting Falls 

As mentioned before, vertical motion velocity 

computation requires camera calibration as this process 

relates camera measurements with measurements in the real, 

three dimensional, world according to (4). This relation is a 

critical component in any attempt to find the dimensions of 

an object in a three dimensional scene. 

 

           
 
 
 
     

     

     

   

     
 
 
 

  (4) 

 

where   is a point on camera’s plane,   is the same point in 

three dimensional world and   is camera’s intrinsic matrix. 

The two parameters,    and   , have to be introduced to 

model a possible displacement between the principle point 

and the center of the imager, while two different focal 

lengths are used because the individual pixels on a typical 

low-cost imager are rectangular rather than square. Our 

approach to camera calibration is derived from [14], which 
tries to determine optimal values for intrinsic parameters 

based on image observations of a known target. 

Besides camera calibration, vertical motion velocity 

computation requires the construction of a reference plane 

that is the orthographic view of the floor. This construction 

is a perspective transformation, which can be though as a 

specific case of projective homographies. As described in 

[15], an affine space    is transformed to a projective space 

   by the following mapping: 

 
            

                       
                

  

 

and the inverse mapping, from the projective space    to 

the affine space   , is given as: 

 
   

   
 
      

   
 
    

              
    

 

  
   

     
 

   
     

   
   

     
   

 

where        . 

For a projective space   , a projective homography is 

defined as a nonsingular matrix              . A point   is 

projectively transformed to    as follows: 

  

                      (5) 

 

where   denotes pixel coordinates in the homogeneous 

coordinates and    is a new position of a pixel in the 

wrapped output image.  

By using perspective transformations, any parallelogram 
can be transformed to any trapezoid, and vice versa. In our 

case, we want to transform the camera's plane to a reference 

plane that represents the orthographic view from above of 

the camera's plane. Then according to the inverse 

perspective mapping algorithm described in [16],    and   

can be expressed by the following relations: 

 

                         (6) 

 

where            represent Cartesian coordinates on image 
plane and reference plane respectively, homography  matrix 

       can be normalized so to have       and through 

(6) equation (5) is expressed as: 
 

 

 
  
  
 

   
         

         

         

  
 
 
 
  (7) 

 

This equation that represents a perspective transform 
requires at least four non-collinear points in order to be 

solved. By using observations of a known target, a larger set 

of points can be found and this equation can be solved in a 

least square sense. The quality of the transformation is 

measured by the Back Projection Error [16], associated 

with  (8). 
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(a) (b) 

Figure 3: (a) camera’s plane, (b) reference plane 

Figure 3 shows both camera’s and reference planes, while 

Figure 4 shows input images along with their inverse 

perspective transformation output images. To approximate 
the distance Z between foreground object and camera, we 

use the bottom-most point of foreground object,    . As 

shown in Figure 3(b), on the reference plane the relation 

between camera’s natural units (pixels) and the units of the 

physical world (cm) is linear and thus distance   is 

straightforwardly calculated. 

This results in a simple model and a single solution in 

which a point in the physical world         with actual 

height    is projected on the image plane with projected 

height    in accordance with (9). However, the appearance 

of errors during perspective transformations affects the 

actual height estimation, as it depends on distance 

estimation on created reference plane. 

 

 
    

       

  
 (9) 

 

 

 
Figure 4:   Input images and their inverse perspective transformation 

mappings 

 

In order to use (1), actual height has to be approximated 

for every captured frame. Because of the motion of 

foreground object, errors in the calculation of its height may 

occur. Let us denote as       this approximate height of the 

foreground object at the current frame of analysis  . In our 

approach, to reduce accumulation of the approximation 
errors to the following frames to process we use a heuristic 

iterative methodology, which updates the foreground height 

taking into account previous height information and the 

current one, yielding to a robust approximate solution, 

denoted as     , which is computed by (10). This iterative 

procedure requires an initial value of       which in our case 

is set to average height for adult males, e.g., 175cm. 

 

                         (10) 

 

where   is a parameter that regulates the importance of       
to the iterative procedure. For our experiments,   is set to 

0.8, since this value yields the more reliable performance. 

By using this form for every captured frame,      
converges to the actual height of foreground object. In order 

to reduce wrong estimations when a fall event occurs and 

height is significantly decreases, height      is being 

updated only if       is bigger and smaller than a threshold 

(in our case ±20 cm). Figure 5 shows the approximation of 

foreground object’s actual height. The gray line represents 

the approximation of foreground object’s actual height for 

the first 1,000 frames of system operation, while the 
horizontal line represents its actual height. 

  

 
Figure 5: Actual height approximation 

 

IV. EXPERIMENTAL RESULTS 

The application was developed on a PC with 4GB RAM 
and a dual-core Intel processor at 2.1GHz. The camera that 

was used was a simple USB webcam with 640x480 pixels 

resolution. The code was written in C by using OpenCV 

library. By using this hardware, this algorithm operates in 

real time at 14fps. In quad-core computers, the time can be 

reached up to 17fps.  
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Figure 6:  Workflow diagram of presented fall detection scheme 

 

The workflow of the system is presented in Figure 6. For 

every captured frame, initially, the background subtraction 

algorithm takes place. The output of this algorithm leads to 

the extraction of the foreground, and thus, the features that 

are used by the fall detection algorithm (vertical motion 

velocity and width-height ratio). The fall detection 
algorithm, firstly checks if the width height ratio suggests a 

fall. If this feature suggests a fall, then the vertical motion 

velocity is calculated and compared with a threshold relative 

to the real height of the foreground object measured in cm. 

If this feature suggests a fall too, then a fall alarm occurs. 

By measuring vertical motion velocity in cm, the 

performance of the system is not affected by cases where 

the foreground object is far away or close to the camera.   

 

 

  

  
(a) (b) 

Figure 7:  (a) Falls in every direction according to the camera position, (b) 
normal everyday activities that look like a fall, like bending and lying down 

During the experimentation process one person simulated 

falls, in every direction according to the camera position and 

normal every day activities, that may look like falls; but, 

they are not real falls; see Figure 7. Because of the nature of 

the algorithm two different variables affect its performance; 

the width-height ratio of foreground object and its vertical 
shifting during a sequence of frames. Figure 8 and Figure 9 

describe the performance of the system, concerning on 

successful fall detection, when the camera was placed at the 

height of 260cm. In the diagram in Figure 8, we keep 

constant the value of vertical motion velocity threshold, 

while in the Figure 9 we keep constant the value of width-

height ratio threshold.  

 

 

 
Figure 8:     Performance in regard to width-height ratio when camera 

placed at 260cm 

 

 

 
Figure 9:  Performance in regard to vertical shifting when camera placed 

at 260cm 

 
TABLE I: PERFORMANCE WHEN CAMERA PLACED AT DIFFERENT 

HEIGHTS 

Camera’s 

height 
 

Proposed 

system 
System of [8] 

40cm 
Falls detected 92.8% 92.8% 

Wrong detections 4 4 

220cm 
Falls detected 92% 72% 

Wrong detections 6 6 

260cm 
Falls detected 96% 73% 

Wrong detections 2 2 
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Table I summarizes its performance and compares it with 

system performance proposed in [8]. As this system is an 

expansion of [8], it was expected to perform better. 

Performance of system proposed in [8] was affected by the 

camera’s position, in contrast, this system performs well for 

a much wider range of placements that permits a camera 
mounted in a higher position, favoring fall detection process 

by providing better coverage with less obstacles inserted 

into its field of view. This comparison was performed by 

using the same demo video as input into both fall detection 

systems. 
 

V. CONCLUSION AND FUTURE WORK 

This paper presented a fall detection scheme that exploits 

3D measures by using a single monocular camera. The 

proposed scheme has the capability to operate in real-time 

and to detect over 92% of fall incidents in complex and 

dynamically changing visual conditions, while it presents 

low false positive rate. Its minimal computational cost and 

memory requirements, let alone its low financial cost since 

simple ordinary low resolution cameras are used, making it 

affordable for a large scale. 
This algorithm makes the assumption that only one 

person is present in the scene; so, primary priority in to-do 

list is its evolution in a way that it will operate properly 

when more than one person are present in the scene and 

even in crowded conditions. 

Through our proposed scheme, besides the contribution 

to humans’ fall problem, significant measures of a 3D scene 

can be calculated that can reveal much more information 

which might be useful in different kind of applications. 
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