
A Framework for Migrating Traditional Web Applications into Multi-Tenant SaaS

Eyad Saleh, Nuhad Shaabani, and Christoph Meinel
Hasso-Plattner-Institut
University of Potsdam

Potsdam, Germany
{eyad.saleh, nuhad.shaabani, christoph.meinel}@hpi.uni-potsdam.de

Abstract—Software-as-a-Service (SaaS) is emerging as a new
model of delivering a software, where users utilize software
over the internet as a hosted service rather than an installable
product. Multi-tenancy is a core concept in SaaS. It is the
principle of running a single instance of the software on a
server to serve multiple companies (tenants). Re-engineering
traditional web applications from scratch into multi-tenancy
requires tremendous efforts in terms of cost, manpower, and
time. Thus, we provide a framework to migrate traditional web
applications into multi-tenant SaaS. The framework provides
a detailed overview of the proposed multi-tenant architecture
that helps software architects and developers to migrate their
applications into multi-tenancy.

Keywords-Multi-tenancy; Migration; Software-as-a-Service;
SaaS.

I. INTRODUCTION: MULTI-TENANCY EVOLUTION

History has shown that advances in technology and com-
puting changes the way software are designed, developed,
and delivered to the end users. These advances yield to the
invention of personal computers (PCs) and graphical user
interfaces (GUIs), which in turn adopted the client/server ar-
chitecture over the old big, super, and expensive mainframes.
Currently, Fibers and fast internet connections, Service-
Oriented Architectures (SOAs), and the high-cost of man-
aging and maintaining on-premises dedicated applications
raised the flag for a new movement in the software industry,
and the result was the introducing of a new delivery model
called Software-as-a-Service (SaaS) [1].

Cloud computing has several definitions, one of those
is ’delivering computation to end-users over the Internet’.
This computation could be software, hardware, or even
information. Users use this computation in a pay-as-you-go
model, this means that they will pay for their usage of this
computation. For instance, renting a server for two hours
or one day, or using a certain financial application for two
weeks, without the need to provision a complete data center
or buy a full license of the software.

SaaS provides major advantages to both service providers
as well as consumers. Service providers can provision a
single set of hardware to host their applications and manage
hundreds of clients (tenants). They can easily install and
maintain their software. As for consumers, they can use
the application anywhere and any time, they are relieved
from maintaining and upgrading the software (on-premises

scenario), and benefit from cost reduction by following the
pay-as-you-go model [2].

Multi-tenancy is a requirement for a SaaS vendor to
be successful (Marc Benioff, CEO, Salesforce) [3]. Multi-
tenancy is the core of SaaS; it is the ability to use a
single-instance of the application hosted by a provider to
serve multiple clients (tenants). Multi-tenancy is different
from multi-instance architecture (Figure 1) where separated
instances of the same software are hosted on different servers
to serve different tenants.

Figure 1. Multi-instance vs. Multi-tenant Architecture.

Software applications had been built for decades into non-
SaaS mode, re-engineering or re-designing such applica-
tions from scratch requires tremendous efforts in terms of
cost, manpower, and time. Therefore, researchers have been
proposing several approaches to migrate such applications
into SaaS mode.

While migrating the non-SaaS applications into SaaS
mode, certain issues need to be considered, such as database
architecture, data partitioning, UI customizations, data-
model extension by tenants, scalability issues, and work-
flow management. This paper introduces a framework that
supports the migration of traditional web applications into
SaaS mode, and discusses certain solutions to the concerns
above, as well as introducing new features that could utilize
the multi-tenancy mode.

The main contribution of the paper is the framework
itself and its components, especially, the business logic
configuration and workflow customization, as well as the
techniques described to implement the framework, which
can be applied in different use cases.

The rest of this paper is organized as the following:
Section II discusses the related work. Section III outlines
the framework and its main components. In Section IV, we

100Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

detailed the configuration and customization layer. Section
V outlines the use case. Section VI discusses the different
database architectural designs. Finally, Section VII con-
cludes the paper and outlines the future work.

II. RELATED WORK

There is much research that has been carried on SaaS
and multi-tenancy; however, to the best of our knowledge,
there are only a few who proposed a complete framework
for migrating traditional web applications into SaaS mode.
Moreover, none of the related work touches critical com-
ponents such as business logic configuration or workflow
customization.

A. SaaS-ization

Cai et al. [6] propose an end-to-end methodology for
SaaS-ization based on identifying isolation points between
tenants, such as UI, constant fields, and configuration files.
Once these points are identified, the development team can
modify these points to be configurable per tenant using
a toolkit which was built for the purpose of their work.
This approach addresses only the look-and-feel and basic
configuration options between tenants, however, business
logic and data-model are not covered.

A new approach based on migrating traditional web
applications into SaaS automatically and without changing
the source code has been proposed by Song et al. [7]. They
adopt several technologies to accomplish this goal, mainly
(1) page template to fulfill configurability, (2) memory in
thread to maintain tenant-info, and (3) JDBC proxy to adopt
the modified database. Additionally, they propose a SaaSify
Flow Language (SFL) which models and implements the
flow of the migration process. Practically, migrating an
application from non-SaaS mode into SaaS without having
or changing the source code is very hard to achieve. For
instance, how the developers are going to handle the session
data, how the database changes would be reflected on the
Data Access Layer (DAL), even the simple UI components,
how it could be managed.

B. Migration into SaaS

Bezemer et al. [8] report on a use case of converting an
industrial, single-tenant application (CRM) for a company
called Exact [9] into a multi-tenant one. They propose
a pattern to migrate the application taking into account
hardware sharing, high degree of configurability, and shared
database instance. They propose three components that need
to be added to accomplish the migration process: (1) Au-
thentication module to map end-users credentials to tenants,
(2) Configuration module to handle tenant-settings, and (3)
database module to adapt insert, modify, and query tenant-
oriented data. It is not possible in this approach to have a
different business logic or workflow for each tenant.

C. Customization and Configuration

Since multi-tenancy is based on sharing the same applica-
tion by more than one tenant, and the business requirements
can vary among those tenants, there is a need to customize
the application to appear as tenant-specific, in terms of the
look-and-feel, workflow, business logic, etc.

Nitu [10] focuses on the configuration of SaaS applica-
tions, basically on user interfaces and access control. They
store the configurations in XML files that are injected into
applications at runtime. Based on a simple case study they
introduce about a university grading system in two Indian
universities, they suggest that a tenant should not expect
all aspects of the software to be customized. If the tenant
needs a complete customized software, then SaaS is not the
right choice. This approach is very simplified, and does not
cover other critical configuration items, such as workflow
and data-model.

Müller et al. [11] identify different categories of cus-
tomization, such as desktop integration and UI customiza-
tion. Additionally, they identify two cornerstones for a
customizable, multi-tenant aware infrastructure, namely, dy-
namic instance composition and abstraction from the per-
sistency layer. However, they focus mainly on back-end
customization by injecting custom business logic at runtime.

D. Database Architecture

Database design is considered as one of the most crit-
ical issues in multi-tenant SaaS, because multiple tenants
are mapped into one physical database. Therefore, non-
traditional concerns are involved, such as data-model ex-
tension, workloads, and database scalability.

Several approaches for designing a database for multi-
tenant applications from different point of views are dis-
cussed by Chong et al. [12], such as completely isolated
databases for each tenant versus shared databases with
different schemas, or shared databases and shared schemas.
Choosing specific approach depends on several factors,
such as cost, security level, tenant requirements, scalability
options and SLA.

W. Tsai et al. [13] propose a new database partitioning
schema to maximize SaaS customization called two-layer
schema. Their approach combines read-optimized column
store and update-oriented writeable operations.

A new technique for mapping logical schema into
physical schema is introduced by Aulbach et al. [14]. They
categorize the tables into two types; conventional and chunk
tables. The most and heavily utilized parts of the database
are placed in conventional tables while the remaining parts
are vertically partitioned into chunks. These chunks are
folded into different multi-tenant physical tables and joined
as needed.

All the aforementioned research proposals strongly con-
tribute to our research; however, in this paper, we tried to

101Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

introduce a complete framework to migrate traditional web
applications into multi-tenancy and introduces new compo-
nents such as, business logic configuration and workflow
customization.

III. THE FRAMEWORK

In this paper, we propose a framework for migrating
traditional web applications into SaaS mode as shown in
Figure 2.

The process flow of the migrated application will be as
follows:

• A user belonging to a certain tenant logs into the system
by entering his username and password.

• A dedicated authentication module is used to map this
user to the tenant he belongs to, to create a token for the
tenant including the Tenant-ID as well as other relevant
information (such as locale settings), and finally to pass
it to the customization layer.

• In the customization and configuration layer, the UI
components, such as logos and colors, the business
logic, and workflow configuration data for this tenant
are restored, and passed to the application server.

• The DB configuration data will be passed to the DB
server for query transformation.

• The application server receives the above specified
data from the upper layer and pass it to the run-time
customization engine, which integrates all components
and lunches the application instance.

• A log service is used to record the application actions
and store them in text files.

• A dedicated monitoring service is used to monitor the
performance and status of the application, and detects
any faults or bad resource usage.

Figure 2. The Architecture of the Proposed Framework

A. The Back-End Layer

The main components of this layer are as follows:

1) The Performance Monitoring Service: Monitoring
means getting feedback from the usage of the current
software, which leads to enhance and improve the current
version of the software.

This service monitors the performance of the software, for
example, which queries respond slowly, what are the most
heavily-used components of the application, which tenant is
overusing the resources, etc.

This collective data will enable the vendor to enhance
(upgrade) the software and better isolate tenants to improve
the performance.

2) The Log Files: Log files are important to several
applications, and more importantly to the multi-tenant ones.
They can be used for many reasons, such as, monitor
the performance of the application, figure out processing
bottlenecks, discover software bugs in the early stages of
the release and fix them immediately.

3) The Language Pack: A multi-tenant application is used
by several tenants, and they might be from different cultures
or having specific language requirements. Therefore, a lan-
guage pack is additional component the tenant may use to
personalize the language settings he needs.

This component is responsible for managing language
files, and provide the settings that correspond to the tenant
preferences to the run-time customization engine. Several
languages could be defined in the language pack, such as
English, Arabic, German, Chinese, etc.

IV. THE CONFIGURATION AND CUSTOMIZATION LAYER

A. User Interface Customization

UI customization means changing the look-and-feel of
the application to be tenant-specific. This includes general
layout, logos, buttons, colors, and locale settings, such as
date and time. To utilize this customization, we propose the
usage of Microsoft’s ASP.NET master page concept [17].

ASP.NET master page allows the developer to create
a consistent look for all pages (group of pages) in the
application; one or more master pages could be created for
each tenant and used in the application. The master page
provides a shared layout and functionality for the pages
of the application, when users request any page, ASP.NET
engine merges the master page that contains the layout with
the requested content-page, and send the merged page to the
user as shown in Figure 3.

The application developers would be able to define a mas-
ter page for each tenant by applying the master page tech-
nique, which contains the required layout, color, buttons, and
other design components. Moreover, several master pages
could be defined for each tenant. Therefore, tenants will have
the chance to get benefit of using dynamic look-and-feel.
It is worth to mention that applying the ASP.NET concept
does not require Microsoft’s technologies or platform, our
approach aims to apply a similar concept regardless of the
technology or the platform.

102Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

Figure 3. ASP.NET Master Page [17]

B. Workflow Customization

The workflow of the application might vary from one
tenant to another, for instance, a recruitment agency (Tenant
A) might wait until they receive a request for a specific
vacancy (from a company looking for employees), then start
looking for applicants, while another agency (Tenant B)
would collect applications, meet applicants, and then short-
list them according to their potential, and have them ready
for any vacancies from companies looking for employees
(Figure 4). Therefore, we assume that customizing the
workflow of the multi-tenant software is important. In order
to achieve this, two steps are required. First, identify the
components of the software that need to be customized,
second, change the design of these components to be loosely
coupled, thus they can be easily replaced by other versions
and integrated with other components, and therefore, each
tenant can have his own version of the same component.

Figure 4. Different Workflow for two recruitment agencies

Changing the design of the entire application into loosely
coupled components is a difficult task, on the other hand,
customizing the complete workflow of the application may
not be necessary since the majority of the application
components are normally common among all tenants.

The second step is crucial to make workflow customiza-
tion successful. The benefit of changing the components
selected in step one into loosely coupled is twofold; first,
it will maximize the utilization of workflow customization,
by allowing the tenant to architect the workflow according
to their needs; second, these services/components will be-

come interoperable, thus they can integrate with each other
as well as with other services or components from other
applications, and even with third party components.

C. Business Logic Configuration

In software engineering, a multi-tier architecture enables
developers to divide the application into different tiers to
maximize the application re-usability and flexibility. One of
the most common implementations of multi-tier is the three-
tier architecture, which divides the application into three-
tiers, namely, the presentation layer (PL), the business logic
layer (BLL), and the data access layer (DAL) (Figure 5).

Figure 5. Multi-tier Architecture

Business rules are part of the business logic layer (BLL),
and these rules varies from one organization to another. For
instance, in a travel agency, if a reseller or a client exceeds
his credit limit, all his upcoming purchases will be rejected,
while another agency, may apply a different rule which state
that if the reseller exceeds his credit limit for three weeks
without any payment, he will be blacklisted.

In order to achieve and maximize multi-tenancy, we pro-
pose that these business rules need to be tenant-specific, this
means that the tenant should have the ability to design, apply,
and re-configure his own rules at the run-time. Therefore,
a tool that offers this feature is needed as a part of the
proposed framework.

D. Database Configuration

Database design is considered as one of the most critical
issues in multi-tenant SaaS because multiple tenants are
mapped into one physical database. Therefore, a robust
database architecture must be modelled and implemented.

Consolidating multiple tenants into one database requires
changes to the design of the tables and the queries as well,
thus, a query transformation is required. For instance, in a
traditional hospital management system, a simple query to
fetch a patient record would be “select * from patient where

103Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

SSN=1234”, while in a multi-tenant system, this will not
work, since the “patient” table would have information for
many tenants (i.e., hospitals). Therefore, the query should
be changed to something similar to “select * from patient
where tenant id=12 and SSN=1234”; in this case, the patient
record that belongs to the tenant 12 (i.e., hospital 12) will be
retrieved. Based on that, the rules for query transformation
should be stored in the database configuration files and
restored by the transformation engine when required. Further
details are discussed in Section VI.

V. THE USE CASE: GTDS

Gießen Tumor Documentation System (GTDS) [18] is
a software developed mainly for hospitals treating cancer.
The project was funded by the federal ministry of health in
Germany. GTDS is a powerful and comprehensive system
for the documentation of cancer data. GTDS is widely
accepted in all over Germany, and it is used in more than 60
hospitals and clinics. From technical point of view, GTDS
was initially implemented with Oracle Forms, and its rela-
tional data model contains about 400 tables [19]. The base
schema for GTDS that we used in the experiments is shown
in Figure 6. There are some efforts to redesign the software
with modern technologies to produce a standard version that
could be used in all hospitals around Germany. Therefore,
we are designing and implementing a new modern multi-
layer architecture for GTDS. This new architecture will
enable us to speed-up the process of migrating GTDS into
multi-tenant one.

Figure 6. GTDS Basic Schema Architecture

VI. DATABASE ARCHITECTURE

There are several database architectures that could be
used for multi-tenancy, such as completely isolated database
for each tenant, shared database with different schemas, or
shared database and shared schemas.

The isolated database design makes it easy to extend the
data model to meet the requirements of individual tenants.
Additionally, it works well in terms of backup and restore,
tenant migration between VMs or hosts, and requires only
minor changes to the software or database layer. However,
it does not reflect the real benefits of multi-tenancy, at least
on the database level, such as consolidating several tenants

into one physical database. Moreover, it is costly since we
need a separate database instance for each tenant, and we
will be limited with the number of databases the server can
support.

Another approach is the shared database with separate
schemas, several tenants will share the same database in-
stance, while everyone is having his own schema. This
approach is relatively easy to implement, tenants can extend
the data model, and a moderate degree of logical isolation
is gained. However, the main limitation of this approach
is maintainability, recovering the data for a single tenant in
case of failure if a complex task. The database administrator
cannot restore the entire database (e.g., from a backup) since
this will overwrite the data for other tenants. Therefore,
additional efforts need to be taken.

The third approach is shared database with shared schema,
where all tenants share the same database with common
schema. Obviously, this approach overcomes most of the
shortcomings of the aforementioned approaches. However,
few questions arise, such as, how to accomplish data isola-
tion between tenants, how to extend the data model since
the extension is different from one tenant to another, etc.

The most simple technique to accomplish data isolation
is adding a tenant-id column to all tables, then change the
queries, functions, and triggers to add the tenant-id filter.
However, other advanced techniques can also be used, such
as extension table layout, pivot tables, and chunk folding.
For more details about these techniques, please refer to [14].

VII. CONCLUSION AND FUTURE WORK

Migrating traditional web applications into multi-tenant
SaaS poses several research challenges in terms of software
customization, database architecture, and isolation between
tenants. In this paper, we presented a complete framework
to facilitate the migration process. We explored the config-
uration and customization of the application from several
layers, such as UI, business logic, workflow, and database
design. Our future work will focus on implementing the
framework on GTDS. A set of tools will be developed to
facilitate the business logic configuration and workflow cus-
tomization. Further, security in terms of isolation between
tenants will be investigated. Furthermore, how to protect the
privacy of tenants will be studied. Finally, several validation
experiments of the framework will be conducted on different
use cases.

ACKNOWLEDGMENT

The authors would like to thank Mohammed AbuJarour
from SAP for his valuable feedback, insights and comments.

REFERENCES

[1] T. McKinnon: “The Force.com multitenant architecture:
understanding the design of Salesforce.com’s
internet application development platform”,
White Paper, USA, 2008. [Online]. Available:

104Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

http://www.developerforce.com/media/ForcedotcomBookLibrary/
Force.com Multitenancy WP 101508.pdf [retrieved: 08,
2012]

[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, and M. Zaharia:
“Above the clouds: A Berkeley view of cloud computing”.
Technical report, University of California, Berkeley, USA,
2009.

[3] D. Woods: Salesforce.com Secret Sauce,
Forbes, January 2009. [Online]. Available:
http://www.forbes.com/2009/01/12/cio-salesforce-
multitenancy-tech-cio-cx dw 0113salesforce.html [retrieved:
08, 2012]

[4] X. H. Li, T. C. Liu, Y. Li, and Y. Chen: “SPIN: Service Perfor-
mance Isolation Infrastructure in multi-tenancy environment”.
Proc. 6th Int. Conf. on Service-Oriented Computing, Sydney,
Australia, 2008, pp. 649-663.

[5] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao: “A
framework for native multi-tenancy application development
and management”. Proc. 9th IEEE Int. Conf. on E-Commerce
Technology and The 4th IEEE Int. Conf. on Enterprise Com-
puting, E-Commerce and E-Services, Tokyo, Japan, 2007, pp.
551-558.

[6] H. Cai, K. Zhang, M. J. Zhou, W. G., J. J. Cai, and X. Mao:
“An end-to-end methodology and toolkit for fine granularity
SaaS-ization”. Proc. IEEE Int. Conf. on cloud computing,
Bangalore, India, 2009, pp. 101-108.

[7] J. Song, F. Han, Z. Yan, G. Liu, and Z. Zhu: “A SaaSify
tool for converting traditional web-based applications to SaaS
application”. Proc. IEEE 4th Int. Conf. on Cloud Computing,
Washington, DC, USA, 2011, pp. 396-403.

[8] C. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, and
A. Hart: “Enabling multi-tenancy: An industrial experience
report”. Proc. 26th IEEE Int. Conf. on Software Maintenance,
Timi oara, Romania, 2010, pp. 1-8.

[9] Exact Website. [Online]. Available: http://www.exact.com [re-
trieved: 08, 2012]

[10] Nitu: “Configurability in SaaS (software as a service) appli-
cations”. Proc. 2nd India Software Engineering Conference,
Pune, India, 2009, pp. 19-26.

[11] J. Müller, J. Krüger, S. Enderlein, M. Helmich, and A. Zeier:
“Customizing enterprise software as a service applications:
Back-end extension in a multi-tenancy environment”. Proc.
11th Int. Conf. on Enterprise Information Systems, Milan,
Italy, 2009, pp. 66-77.

[12] F. Chong, C. Gianpaolo, and R. Wolter: “Multi-
tenant data architecture”, Microsoft Corporation,
http://www.msdn2.microsoft.com, 2006.

[13] W. Tsai, Q. Shao, Y. Huang, and X. Bai: “Towards a scalable
and robust multi-tenancy SaaS”. Proc. Second Asia-Pacific
Symp. on Internetware, Suzhou, China, 2010.

[14] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger:
“Multi-tenant databases for sSoftware as a service: schema-
mapping techniques”. Proc. 2008 ACM SIGMOD Int. Conf.
on Management of data, Vancouver, Canada, 2008, pp. 1195-
1206.

[15] D. Lin and A. Squicciarini: “Data protection models for
service provisioning in the cloud”. Proc. 15th ACM symp.
on access control models and technologies, Pittsburgh, Penn-
sylvania, USA, 2010, pp. 183-192.

[16] Y. Shen, W. Cui, Q. Li, and Y. Shi: “Hybrid fragmentation
to preserve data privacy for SaaS”. Proc. 2011 Eighth Web
Information Systems and Applications Conf., Chongqing,
China, 2011, pp. 3-6.

[17] ASP.NET Master Page on Microsoft.com. [Online]. Avail-
able: http://msdn.microsoft.com/en-us/library/wtxbf3hh.aspx
[retrieved: 08, 2012]

[18] GTDS Website. [Online]. Available: http://www.med.uni-
giessen.de/akkk/gtds/ [retrieved: 08, 2012]

[19] U. Altmann, FR. Katz, and J. Dudeck: “A reference model
for clinical tumour documentation”. Institute of Medical In-
formatics, University of Gießen, Germany, 2006.

105Copyright (c) IARIA, 2012. ISBN: 978-1-61208-226-4

INFOCOMP 2012 : The Second International Conference on Advanced Communications and Computation

