
CppSs – a C++ Library for Efficient Task Parallelism

Steffen Brinkmann and José Gracia
High Performance Computing Centre Stuttgart (HLRS)

University of Stuttgart
70550 Stuttgart, Germany

E-mail: {brinkmann,gracia}@hlrs.de

Abstract—We present the C++ library CppSs (C++ super-
scalar), which provides efficient task-parallelism without the need
for special compilers or other software. Any C++ compiler that
supports C++11 is sufficient. CppSs features different direction-
ality clauses for defining data dependencies. While the variable
argument lists of the taskified functions are evaluated at compile
time, the resulting task dependencies are fixed by the runtime
value of the arguments and are thus analysed at runtime. With
CppSs, we provide task-parallelism using merely native C++.

Keywords–high-performance computing; task paral-
lelism; parallel libraries.

I. INTRODUCTION

Programming models implementing task-parallelism play
a major role when preparing code for modern architectures
with many cores per node and thousands of nodes per cluster.
In high performance computing, a common approach for
achieving the best parallel performance is to apply the message
passing interface (MPI) [1] for inter-node communication and
a shared-memory programming model for intra-node paralleli-
sation. This way, the communication overhead of pure MPI
applications can be overcome.

Shared memory models are also crucial when using single
node computers as there are systems consisting of hundreds or
even thousands of processing units accessing the same memory
address space. These systems offer great parallelism to the
developer. But utilising the processing units evenly, so that
they can run efficiently, is a non-trivial task.

Many scientific applications are based on processing large
amounts of data. Usually, the processing of this data can be
split up and some of these chunks have to be executed in a
well defined order while others are independent. This is the
level on which task based programming models are employed.
We will call the chunks of work to be processed tasks, while
the appearances in the code (e.g., if they are implemented as
functions, methods or subroutines) are going to be called task
instances.

The dependencies between tasks can be stated explicitly
by the programmer or inferred automatically by some kind of
preprocessing of the code. In the case of fork-join-models (e.g.
OpenMP [2]), all tasks after a “fork” are (potentially) parallel
while code after the “join” and all consecutive forks depend
on them. For example, in figure 1a), tasks 2, 3 and 4 can run
in parallel, if sufficient processing units are available. Task
5 cannot be executed before all other tasks have finished. In
programming models which support nesting (e.g. Cilk [3]), the

dependencies can sometimes be derived from the placement of
the calls (see Figure 1b)).

In many implementations of task based programming mod-
els, the data dependencies are specified explicitly by the
programmer (e.g. SMPSs [4], OMPSs [5], StarPU [6] and
XKAAPI [7]). This allows for more complex dependency
graphs and therefore more possibilities to adjust the paralleli-
sation to the code, the amount of data and the architecture.
However, these implementations suffer from a number of
disadvantages:

• The tasks and/or task instances and their dependen-
cies have to be marked by special directives, usually
within a #pragma in C or using special comments in
Fortran. These use keywords and syntax which is not
part of the actual language and which the programmer
needs to learn.

• In order to compile the instrumented code, the pro-
grammer needs a special compiler or preprocessor. She
depends on this additional software to be available on
the desired platform, which is not generally the case.

• The need for special compilers also poses additional
work to system administrators who will be asked by
the programmer to install the specific compiler used
in the application.

• The code of the programming model implementation
itself becomes more difficult to maintain and usually
at least one additional compile step is introduced when
compiling the user code.

In order to avoid these inconveniences, we developed a
pure C/C++ library, which allows functions to be marked as
tasks and to execute them asynchronously. The programmer
still needs to prepare the code looking for the parts feasible
for parallelisation and separate them into functions. Also, it
is still necessary to instrument the code with the CppSs API.
But contrary to the implementations mentioned above, this is
achieved using standard C++11 syntax instead of an “imposed”
pragma language.

To execute the application serially, e.g. for debugging,
the programmer can define the macro NO_CPPSS, which
bypasses the creation of additional threads and converts the
tasks instances into normal function calls.

In the following, we will illustrate the usage (Section II)
and present the basic implementation of the library CppSs
(Section III). Lastly, we will sum up our conclusions in
Section IV.

39Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

(a) (b)

Fig. 1. (a) Example of fork-join-parallelism. After task 1 the execution thread
is forked. (b) Example of nested parallelism. Task 1 spawns tasks 2 and 5.
Before task 5 is created, task 3 and 4 are spawned, hence the numbering.

void func1(int *a1, double *a2, double *b)
{

//...
}
auto func1_task = CppSs::MakeTask(func1,

{INOUT,IN,OUT},
"func1");

Fig. 2. Defining and taskifying a function. The return value is a functor, i.e.,
an object which overloads the parenthesis operator. Hence it can be “called”
like a function.

II. CPPSS - USAGE

CppSs is a library which compiles on any system with
a working C++ compiler. The C++11 features necessary for
CppSs are provided by the GNU compiler of version 4.6 or
higher and the Intel compiler of version 13 or higher.

In order to use CppSs, the programmer only needs to
include the header CppSs.h and link against the library
libcppss.so. All of CppSs’ application programming in-
terface (API) functions are declared in the namespace CppSs
to avoid overlap with other libraries’ functions. In the follow-
ing, the CppSs API is introduced presenting the declaration of
tasks (Section II-A), the initialisation and finishing of the paral-
lel execution (Section II-B) and setting barriers (Section II-C).
Finally, we will give a minimal example putting everything
together in Section II-D.

A. Declaring Tasks

Parallelisation with CppSs relies on functions with well
defined directionality of their parameters. Loop parallelisation
and anonymous code blocks are not supported.

To convert a function into a task, the programmer has to
call the API function MakeTask, which takes the following
parameters (see listing in Figure 2):

• a pointer to the function,

• an initialiser list containing directionality specifiers for
each function parameter,

• (optional) a string with the function name for debug-
ging purposes and

• (optional) a priority level, which is ignored in the
present version. Future versions will provide one or
more priority queues.

auto func_task = CppSs::MakeTask(func,
{INOUT,IN,OUT},
"func");

auto func_task = CPPSS_TASK(func,
{INOUT,IN,OUT});

CPPSS_TASKIFY(func,{INOUT,IN,OUT})

Fig. 3. Convenience macros for task declaration. These three lines translate
into the same binary code. Hence only one of them should be used.

It is required that the arguments of the taskified function
which are intended to cause dependencies are pointers. These
can be used to access arrays, built-in types or any other data
structure. However, potential overlap with other data structures
is not detected. The directionality specifier must be one of
IN, OUT, INOUT, REDUCTION or PARAMETER. The latter
is used for arguments which are not to be interpreted as a
potential dependency and must be of a built-in numerical type.
The effect of each of the directionality specifiers are described
in the following:

a) IN: The task treats this argument as input. It will
not be executed until all task instantiations which were called
before the function and which write to this argument (i.e.
have an OUT, INOUT or REDUCTION specifier for the same
argument value) have finished.

b) OUT: The task treats this argument as output. The
content of the variable or array pointed to is (possibly) over-
written. This affects functions with an IN or INOUT specifier
for the same argument value.

c) INOUT: The task intends to read from and write
to this argument value. It will be dependent on the last task
writing to this memory address. The following tasks reading
from this memory address will be dependent on this task.

d) REDUCTION: Similar to INOUT. The task intends
to read from and write to this argument value. In contrast to
INOUT, the tasks with a REDUCTION clause will depend on
other tasks with a REDUCTION clause on the same argument
value.

e) PARAMETER: The argument is treated as a param-
eter. It will be ignored for the dependency analysis.

The return type of MakeTask is an internal template type,
which includes the argument types of the taskified function,
thus we recommend to use the C++11 keyword auto.

For convenience two macros were defined that wrap the
call to MakeTask. The three calls in Figure 3 are equivalent.

B. Init and Finish

The next instrumentation to be inserted in the application
code is calls to Init and Finish. These calls must be called
before and after each task, respectively. While Finish takes
no arguments, Init takes two optional arguments, namely

• the number of threads and

• the reporting level.

The number of threads must be any positive integer. If
none is given, the default is 2. The reporting level must be

40Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

Fig. 4. Task dependency graph of the minimal example in listing in Figure
5. The blue nodes (1 and 4) represent task function set_task, the red nodes
(2 and 5) increment_task and the green nodes (3 and 6) output_task.

one of ERROR, WARNING, INFO or DEBUG, which causes
increasing amount of output. The default is WARNING.

Init will instantiate a runtime system which enables the
queuing and asynchronous execution of tasks. The runtime will
create one thread less than the number of threads specified in
the call to Init as the main thread will also execute tasks.
The threads will be constructed using the standard library
std::thread class. This way portability is granted for each
system which provides a C++11 compiler.

Finish will wait for all the tasks to be finished and
destruct all threads, queues and the runtime.

C. Barriers

With the API function Barrier it is possible to halt the
main execution thread, i.e. the code outside of tasks, until
all tasks instantiated so far have finished. The call takes no
arguments. The call to Finish contains a call to Barrier.

D. Minimal example

To sum up the API usage, we compile everything into a
small example, shown in Figure 5. Internally, it produces the
dependency graph shown in Figure 4 and prints the output
shown in Figure 6.

III. CPPSS - IMPLEMENTATION WITH VARIADIC
TEMPLATES

The major design paradigm for CppSs was to avoid usage
of external libraries. All code should be compilable with a
standard C++ compiler. In order to achieve this goal, several
features of C++11 were used, the most prominent one being
variadic templates [8]. These are of central importance as
the objects representing a task and an instance of a task are
implemented as variadic templates, the function arguments
of the taskified function being the template arguments. This
is necessary because a function which the application pro-
grammer wants to taskify can have any number and type of
arguments. These arguments are known at compile time, so an

#include <iostream>
#include "CppSs.h"

#define N_THREADS 2

void set(int *a, int b)
{

(*a) = b;
}
CPPSS_TASKIFY(set,{OUT,PARAMETER})

void increment(int *a)
{

++(*a);
}
CPPSS_TASKIFY(increment,{INOUT})

void output(int *a)
{

std::cout << (*a) << std::endl;
}
CPPSS_TASKIFY(output,{IN})

int main(void)
{

int a[] = {1,11};

CppSs::Init(N_THREADS,INFO);

for (unsigned i=0; i < 2; ++i){
set_task(&(a[i]), i);
increment_task(&(a[0]));
output_task(&(a[0]));

}

CppSs::Finish();

return 0;
}

Fig. 5. Minimal complete example for CppSs. This code will produce a
dependency graph as shown in Figure 4. The output will be similar to listing
in Figure 6.

- 13:32:45.207 INFO: ### CppSs::Init ###
- 13:32:45.207 INFO: adding worker: 1 of 2
- 13:32:45.207 INFO: Running on 2 threads.
1
2
- 13:32:45.207 INFO: Executed 6 tasks.
- 13:32:45.207 INFO: ### CppSs::Finish ###

Fig. 6. Output from minimal example from listing in Figure 5.

implementation with variadic templates is the most efficient
way to handle variable argument lists.

An excerpt of the Task_functor class declaration which
stores the taskified function is shown in Figure 7.

In order to process the variable argument list at compile
time, recursive template evaluation is necessary. For instance,
the set of template functions used to retrieve the types of the
task function arguments is shown in Figure 8.

IV. CONCLUSION

We developed a pure C/C++ library, which allows functions
in C/C++ source code to be marked as tasks, specify their
dependencies and to execute them asynchronously. Contrary

41Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

template<typename... ARGS>
class Task_functor : public Task_functor_base
{

//...
void (*m_f) (ARGS...);

}

Fig. 7. Excerpt from the class declaration of Task_functor which stores
the taskified function. The member declaration shows the pointer to the actual
function with a variable argument list.

template <typename fun, size_t i>
struct get_types_helper {

static void get_types(
std::vector<std::type_info const*> &types) {
get_types_helper<fun, i-1>::get_types(types);
types.push_back(&typeid(typename

function_traits<fun>::template arg<i-1>::type));
}

};

template <typename fun>
struct get_types_helper<fun,0> {

static void get_types(
std::vector<std::type_info const*> &types) {}

};

template <typename fun>
void get_types(std::vector<std::type_info const*> &types) {

get_types_helper<fun, function_traits<fun>::nargs>::\
get_types(types);

}

Fig. 8. Template functions to process argument types at compile time. A
call to get_types<function>(types) will recursively get the type of
each of function’s arguments and place their type in the array types.

to other similar task based programming models like OpenMP,
SMPSs or OMPSs, no preprocessor directives are necessary
and the instrumented code will compile with any compiler,
which supports C++11 features such as variadic templates,
smart pointers and initializer lists. The smallest versions that
qualify of the GNU compiler collection (gcc) and the Intel C
compiler (icc), both of which are widely available, are gcc 4.6
and icc 13.

The current version is capable of constructing the task de-
pendency graph and execute the tasks asynchronously. Several
directionality clauses are available.

The code was checked for correctness but has still to
prove scalability in realistic scenarios. First performance tests
showed more than three times faster execution when running
on four cores compared with the serial version of the same
algorithm. We believe that these results can be enhanced by
revising the implementation of the queueing and dequeueing as
well as the creation and destruction of task functor instances.

ACKNOWLEDGMENT

The authors acknowledge support by the H4H project
funded by the German Federal Ministry for Education and Re-
search (grant number 01IS10036B) within the ITEA2 frame-
work (grant number 09011).

REFERENCES

[1] Message Passing Interface Forum (http://www.mpi-forum.org/)
[retrieved: 09, 2013]. [Online]. Available: http://www.mpi-forum.org/

[2] OpenMP (http://openmp.org/wp/) [retrieved: 09, 2013]. [Online].
Available: http://openmp.org/wp/

[3] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: an efficient multithreaded runtime
system,” in Proceedings of the fifth ACM SIGPLAN symposium on
Principles and practice of parallel programming, ser. PPOPP ’95.
New York, NY, USA: ACM, 1995, pp. 207–216. [Online]. Available:
http://doi.acm.org/10.1145/209936.209958

[4] TEXT - Towards EXaflop applicaTions (http://www.project-text.eu)
[retrieved: 09, 2013]. [Online]. Available: http://www.project-text.eu/

[5] The OmpSs Programming Model (http://pm.bsc.es/ompss) [retrieved:
09, 2013]. [Online]. Available: http://pm.bsc.es/ompss

[6] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, StarPU:
A Unified Platform for Task Scheduling on Heterogeneous Multicore
Architectures, 2009.

[7] XKAAPI - Kernel for Adaptative, Asynchronous Parallel and
Interactive programming (http://kaapi.gforge.inria.fr/) [retrieved: 09,
2013]. [Online]. Available: http://kaapi.gforge.inria.fr/

[8] D. Gregor and J. Järvi, “Variadic templates for C++0x,” Journal of
Object Technology, vol. 7, no. 2, p. 31–51, 02/2008 2008. [Online].
Available: http://www.jot.fm/issues/issue 2008 02/article2.pdf

42Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

