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Abstract—We present a novel data visualization approach to
display the contact trace of the spread of an infection between
individuals. This visualization presents the spread as a radial
organizational chart, where each node is an infected person,
and the distance from the root to a node is proportional to
time. We use real registration information for a population of
students at a small college to generate a social network that is
fed to an agent-based simulator. The simulation implements the
Susceptible-Infected-Recovered (SIR) model to control how the
infection moves from one individual to another. Contrarily to
other models that generate expected quantities, our tool displays
scenarios of a typical outbreak, where individuals involved in
the spread are identified, along with the trace of their infection.
The usefulness of our tool is in illustrating at the micro level
phenomena such as the appearance of super-spreaders, or the
influence of interventions such as quarantine or vaccination.
We present several visualizations corresponding to different SIR
parameters, and also illustrating the effect of vaccination.

Keywords–data visualization; agent-based modeling; discrete
event simulation; social network; contract graph; intervention
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I. INTRODUCTION

In this paper we present a novel approach for visualizing
the contact-trace or contact-map [1] resulting from the spread
of an infectious disease in a population whose social network
[2], [3] is known a-priori. The contact map is generated from
the data output by an agent-based simulator that uses the SIR
model [4] to control agents representing the students enrolled
at Smith College (2,625 students) during the fall semester of
2012, and for whom we have obtained the complete individual
course registration (487 different courses), as well as their
lodging information for that semester (49 different dorms).
Because students at Smith College live on-campus, we can
simulate their every-day contacts during class, during meals,
and during study periods. The fine-grain simulation evolves
on a one-hour scale, and lasts the 14 weeks of a semester, or
shorter if the whole population gets infected.

Our contact-map is a variant of radial organizational charts
[5], where a tree is displayed with its root in the middle of the
graph, and all its descendants organized in a 360-degree fanout.
In our implementation, each node of the tree is a student, and
the root is the first infected student. Edges link students who
directly infect other students, with the infecter closer to the
root than the infected. New for this type of visualization, we
set the length of an edge to be directly proportional to the
time it takes for an infected student to infect another student.
In the SIR model, individuals are infected only if they are

susceptible, after which point they incubate the virus, and then
become contagious for a given period of time, after which they
recover and are not contagious any longer. Using time as the
scale of the graph helps better understand how quickly the
outbreak expands, and how long it lasts.

Different visualization attributes, such as node size and
color, as well as edge width are available to enhance various
properties of the infectius spread. We set the size of a node
to vary proportionally to the number of other students directly
and indirectly infected by the student associated with that node
(number of tree descendants).

The advantage of such a map is that it can help the contact-
tracing process at the beginning of an outbreak when a few
individuals in a real population are found to be infected. If the
social network of the whole population is known, then possible
scenarios for the spread of the infectious disease can be plotted,
and the efficacy of various preventive measures, e.g. vaccina-
tion, or quarantine, can be evaluated through simulation. The
opportunity to assess visually the most probable path taken
by an infectious disease as it spreads through a population
is a beneficial complement to standard contact investigative
techniques.

The population used in our simulation is a closed pop-
ulation, which we assume has no contact with the outside
world. In a way we simulate a campus without staff or faculty.
While it is a simplistic rendition of real life on campus, it does
provide insights for important situations where the population
is isolated from the rest of the world, such as in hospitals, on
ships, or in small towns, as have been investigated in [6]–[8].

When studying an infectious outbreak, health researchers
typically use stochastic models to assess the spread of a
disease. Some tools use geographical information systems (see
[9] for an example of a visualization of heat-maps of the spread
of mosquito-based diseases), and others present statistical
properties of the infected population over time. These tools
provide a good understanding of the overall spread, but offer no
knowledge of how the infection spreads from one individual to
the next. The ability to trace a given individual and the spread
of infection it creates, and to observe how key agents appear
and affect the infection, such as super-spreaders [10], can help
health professionals better control infection outbreaks.

In the next section, we review background information that
puts our research in context. In Section II, we describe the
real data we use to drive our agent-based model, which is
presented in Section III. In Section IV, we present several
data-visualizations illustrating how different SIR parameters
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or interventions affect the contact map, and we provide an
analysis of the graphs in Section V. Section VI concludes this
paper.

A. Background
The major work that provides an overview of data visu-

alization techniques in the health field is that of Carroll et
al [11] who study a “myriad of new tools and algorithms
[that] have been developed to help public health professionals
analyse and visualize the complex data used in infectious
disease control.” Our visualization tool belongs in their social
network analysis section, which they report as one of the most
recent and growing fields of the health literature, accounting
for approximately 10% of the total number of yearly health
publications. While the general purpose of the tools surveyed
is to address the identification of common characteristics, such
as risk stratification of contacts, identifying common charac-
teristics of those infected, visually communicating cases for
improved understanding of outbreaks, and identifying potential
pathways of transmission, they note that as network data
becomes more available, new diverse methods of visualization
will be needed [11]. We suggest our work fits in this arena.

Our work also parallels that of Hansen et al [6]. Their
approach concentrates on visualizing possible scenarios of the
spread of an infectious disease in a hospital, presenting the user
with an interactive 3D graphic representation of the floors and
rooms of a hospital, and how the infection spreads across the
building. The data visualization is driven, as in our case, by
an agent-based simulator which is fed the real-life records of
the social contacts between health workers and patients. While
their visualization has the added advantage of presenting the
user with an interactive interface, it does not display a contact
trace of the infection, although they very likely have access
to the data needed to do so. We see our work as a logical
extension, or addition to theirs.

Our data-visualization is also reminiscent of the shortest-
path tree graph presented by Brokmann [12]. The nodes of
Brokmann’s tree are airports, and the edges are proportional to
the geographical distance separating these airports. In contrast,
the edges of our tree are proportional to time, and the nodes
are infected individuals. In some ways Brokmann’s edges
represent an approximation of time, as well, since planes
fly regularly from one airport to another, with approximately
uniform speed. Our visualization allows an exploration on a
much smaller scale than theirs, complementing their work as
well.

In the next section, we present the social-network data used
in our simulation.

II. SOCIAL-NETWORK DATA

Our data is taken from a spreadsheet maintained by the
Registrar’s office at Smith College which catalogs all classes
for which all 2,625 students registered during the Fall of
2012. Each student is identified by a unique Id number. For
each student, we have a record of the dorm she resides in
and the courses for which she is registered. Each course
has a unique Id. A student typically takes four courses a
semester, and for each one we have available the daily/weekly
time block(s) in which a course meets. The name of the
buildings and the classroom numbers where the courses take
place are also available. In addition, the type of classroom

meeting is also recorded, e.g. studio, performance, lecture,
lab, colloquium, discussion, or seminar. We do not use this
particular information, but note that it could be used in future
work to refine the granularity of the simulation, for example
in quarantine scenarios. We process this data and create lists
of Ids of students located in each classroom on campus in
each time block of the week. These lists of Ids associated to
location and time-blocks form the base of our social network.
For social connections outside the classroom, we extrapolate
the spreadsheet data and assume that students will take their
three daily meals in the dorm in which they reside, and that
they also study in their dorm after dinner and on weekends. In
the next section we describe the discrete-event simulation that
processes the list of Ids and controls the state of each agent
as the simulated time passes.

III. THE AGENT-BASED MODEL

The simulation keeps track of each student, or agent, during
her weekly schedule, and maintains a status of her health
according to the SIR model, where individuals evole through
an epidemic by transitioning through different states. In the
SIR model, somebody is initially assumed to be healthy and
Susceptible, then gets Infected, which results in an incubation
period Ti during which the student is not contagious, followed
by a period Tc where she becomes contagious, which finally
ends with the student healing and switching to a Recovered
state. We assume that students maintain their regular activities
while they are infected and contagious. In our model, we also
allow for a (small) probability pr for recovered students to
remain contagious.

When a susceptible student enters a location where con-
tagious students are located, she experiences a probability p
to get infected by each one of them. Contagious students
can be those who have recently been infected, or those who
have recovered, but are still possibly lightly contagious (with
probability pr). In our SIR model, we assume that recovered
students are imunized to future infection by the same virus.

The simulation lasts for a simulated time equivalent to a
semester of 14 weeks, which matches exactly the duration of
a Smith College semester. One student is picked at random (or
not, if repeatable scenarios are of interest) at the beginning of
the simulation, T0, which coincides with the breakfast period
of the first day of class. As the infected student goes about her
daily schedule, she randomly infects the susceptible students
who come in contact with her, in class, during meals, or during
study periods.

The simulator is written in Java and takes an average of
7.8 seconds to run one simulation to completion on a 2.4
GHz Pentium Core i5 with 8 GB Ram. It generates a contact-
trace of the spread of the infection as a collection of tuples of
students Ids associated with a time. The time corresponds to
the instant when the second student gets infected. These tuples
form the edges of a tree data structure, which is recorded in
DOT format [13], compatible with the Graphviz visualization
package [14].

In the next section we present several data visualizations
generated from the dot output of the simulator.

IV. DATA VISUALIZATION

The graphs presented below are generated using dot (not
to be confused with the dot language), one of the applications
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Figure 1. First infected is Student No. 82. Ti=6 days, Tc=8 days, no vaccination, no quarantine, p=1.0.

of the Graphviz package. Dot takes the dot-formatted file
generated by the simulator and creates a graphic file of the
resulting radial graph. We use the Scalable Vector Graphic [15]
(SVG) format for the graphic output to fully capture the details
of such a large number of tree nodes and levels. Generating
the SVG file typically takes an average of 5.5 seconds on the
same 2.4 GHz Pentium Core i5, and the resulting graphic file
is 5 to 10 MBytes in size.

Figure 1 shows the contact-map resulting from a simulation
where we set p=1.0, which ensures that if two students attend

the same class, or share a meal in the same cafeteria, and one is
infected, than the other automatically catches the infection. p=1
also ensures that the whole population gets infected (unless
there exist subgroups of students who never interact with the
larger population of students). While setting p to 1 is not
a realistic situation, it presents the interesting boundary-case
scenario that would result from an extraordinarily virulent
infection. The parameters used in Figure 1 are p=1, pr=0, Tc=8
days, and Ti=6 days.

Each graph also bares a time axis organized as a series of
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arrows going from the center of the graph to the East, and
complements the graph. In Figure 1, the length of each arrow
corresponds to 3 days. The largest concentric circle has a radius
of 21 days, indicating that the whole student population is
infected after 21 days.

The first infected student is at the center of the graph,
and is shown in red. The size of a node is proportional
to the number of people infected by the student associated
with that node. The radius of a node is defined as radius =
log(1+numberofdescendants) ∗ 0.35. Nodes other than the
root are either orange of purple, depending on whether they
infect several people, or just one, respectively. We note that
most of the orange nodes fall on the first concentric circle of
the circular graph, and are the largest of the tree, indicating
that these students will behave as super-spreaders, as they have
more time than the others to infect students they’ll come in
contact with. Because the time periods Tc and Ti are constant,
and not taken from a distribution, all the nodes fall exactly on
a few concentric circles, relative to the root.

Note also that the locations where the tree nodes are placed
are algorithmically picked for optimal use of the space by the
dot application, and slight variations in the tree may result in
significantly different looking graphs.

Figure 2 shows a close-up region of Figure 1, illustrating
the numbering of the nodes with the student Id, and the detail
of the time scale.

When p is set to a more realistic value of 0.01, we obtain
the graph depicted in Figure 3. It now takes 36 simulated days
for the whole population to be infected, but the dynamics at
the beginning of the infection is more complex than observed
in Figure 1, with a distribution of differently sized super-
spreaders who start their infectious path around Days 15 and
18.

In Figure4, we show how the visualization can help health
officials understand the effect of various interventions. In
this graph we assume that 50% of the initial population of
students is vaccinated at the beginning of the semester, and
that those vaccinated have a 0-probability of getting infected,
or of becoming carriers of the infection. Since the visualization
only shows infected students, Figure 4 contains only half
of the population of students, namely those not vaccinated.
The outbreak lasts 55 days, and a total of 15% of the total
student population gets infected during this time, or 30%
of the non-vaccinated students. Here again, we have very
different dynamics at play, with a handful of super-spreaders
who propagate most of the infection; they are the orange nodes
appearing between the Day 24 and Day 36.

V. ANALYSIS

Our model and visualization present new insights in the
way an infectious disease spreads in a closed population for
which the social network is well defined. Each figure represents
one of many possible scenarios, and should not be seen as
an average behavior; just a probable one. Unless the seed of
the random number generated remains the same for different
simulations, two different simulations with the same initial
parameters and root student will yield two different trees.
Whether the simulated growth of the infected population bears
a chaotic component is open for research, however, it is helpful
to see the trees generated by the agent-based simulator as

Figure 2. Close-up of Figure 1, showing details including node labeling and
time scale.

Figure 3. Contact map for p=0.01, Ti=6 days, and Tc=8 days.

different expressions of some dynamical system, all with the
same strange attractor [16]. Our data visualizations present the
micro-level dynamics of the infection, rather than an average
variation of some quantity.

It is easy to see that given an infected student in the
population, our model provides an exact trace of who infects
her, and who she infects in turn. Moreover, the day and
location of the infection from one student to the other is
known exactly. Such information could easily be added to an
interactive version of our visualizations.

Our visualizations also offer the ability for health officials
to investigate an infectious spread in its early stage, when
just a few students are found to be infected. Assuming the
social network for the population is available, a modified
data visualization can show the group of infected students
in a collective multi-node root of the tree, and the trace of
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Figure 4. Contact-map for p=0.01, Ti=6 days, and Tc=8 days, with 50% of
the initial population vaccinated. The probability that a vaccinated person is

contagious is 0.

potential contacts emanating from it. Officials can then use
this information to order local quarantines on buildings or
dorms, or cancellation of meetings in particular locations or
time blocks.

Different visualization attributes, such as node size and
color, as well as edge width are available for enhancing
various properties of the infectious spread. We decided to use
the size of a node to grow proportionally to the number of
other students directly and indirectly infected by its associated
student. Interaction and animation could also enhance the
visualization; time-lapse growth of the tree, or selection of
particular branches or nodes, for example, could enhance the
usefulness of our tool. We note, however that the size of the
population makes it challenging to display the entirety of the
tree with good resolution.

VI. CONCLUSIONS

In [11], Carroll et al. review visualization and analytical
tools for infectious disease, and state “visualization methods to
help users understand network structures have not been widely
employed in tools for public health.” Our visualization tool
answers this call and presents a novel approach for evaluating
probable spreads of an infectious disease in a closed population
with a known social network.

The radial organization provides a low-level understanding
the dynamics of an infection, and how different parameters
such as vaccination, or quarantine, can affect its spread, as
illustrated in Figure 4.

Several improvements to the model are possible. For ex-
ample, we could take Ti and Tc from a distribution other than
the uniform distribution. We could also create super-spreaders
by picking several agents before or during the simulation,
and by giving them an a-priori probability distribution for

the virulence with which they act. Both the population size
of super-spreaders and their virulence can easily be coded
in the model. The model can also be augmented so that
various scenarios are triggered automatically when a particular
threshold of infection is detected in the simulation. Such
scenarios could involve the cancellation of classes taking place
in amphitheatres, or forcing students to eat their meals in their
dorm room.

We also noted earlier that an interactive visualization could
provide additional information that is available but impossible
to display on a static image. This include offering the user an
interactive menu to modify key SIR and visual parameters, as
is presented in [17]. Other improvements include generating
a full contact path between selected students showing the
identity of the students, the location and time of the contacts.

Finally, we note that our visualization tool could be used
to evaluate various properties of key agents, such as super-
spreaders, and compare simulation outputs to real data in an
effort to find the model parameters best matching observed
behavior. We have however to take Carroll’s advice seriously,
when he and his coauthors state [11] that visualization tools
also risk misleading users due to misinterpretation or cognitive
overload. Sometimes, simpler is better.

The code for the agent-based simulator can be found on
this repository [18].
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