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Abstract—In this paper, we present a conceptual Spatial
Trajectory Planning (STP) method using Rapid Random Trees
(RRT) planner, generating visibility motion primitives in
urban environments using Inverse Reinforcement Learning
(IRL) approach. Visibility motion primitives are set by using
Spatial Visibility Clustering (SVC) analysis. Based on the STP
planning method, we introduce IRL formulation and analysis
which learns the value function of the planner from
demonstrated trajectories and generates spatial visibility
trajectory planning.
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I. INTRODUCTION

Spatial clustering in urban environments is a new spatial
field from trajectory planning aspects [1]. The motion and
trajectory planning fields have been extensively studied over
the last two decades [2][4][6]. The main effort has focused
on finding a collision-free path in static or dynamic
environments, i.e., in moving or static obstacles, using
roadmap, cell decomposition, and potential field methods
[11].

The path-planning problem becomes an NP-hard one,
even for simple cases such as time-optimal trajectories for a
system with point-mass dynamics and bounded velocity and
acceleration with polyhedral obstacles [7].

Path planning algorithms can be distinguished as local
and global planners. The local planner generates one, or a
few, steps at every time step, whereas the global planner uses
a global search to the goal over a time-spanned tree.
Examples of local (reactive) planners are [9][14]. These
planners are too slow, do not guarantee safety and neglect
spatial aspects.

Efficient solutions for an approximated problem were
investigated by LaValle and Kuffner, addressing non-
holonomic constraints by using the Rapidly Random Trees
(RRT) method [15][16]. Over the years, many other semi-
randomized methods were proposed, using evolutionary
programming [5][18].

The randomized sampling algorithms planner, such as
RRT, explores the action space stochastically. The RRT
algorithm is probabilistically complete, but not

asymptotically optimal [13]. The RRT* planner challenges
optimality by a rewiring process each time a node is added to
the tree. However, in cluttered environments, RRT* may
behave poorly since it spends too much time deciding
whether to rewire or not.

Overall, only a few works have focused on spatial
analysis characters integrated into trajectory planning
methods such as visibility analysis or spatial clustering
methods [11].

Our research contributes to the spatial data clustering
field, where, as far as we know, visibility analysis has
become a leading factor for the first time. The SVC method,
while mining the real pedestrians' mobility datasets, enables
by a visibility analysis to set the number of clusters.

Analyzing pedestrian's mobility from a spatial point of
view mainly focused on route choice [3], simulation model
[19] and agent-based modeling [12].

The efficient computation of visible surfaces and
volumes in 3D environments is not a trivial task. The
visibility problem has been extensively studied over the last
twenty years, due to the importance of visibility in GIS and
Geomatics, computer graphics and computer vision, and
robotics. Accurate visibility computation in 3D environments
is a very complicated task demanding a high computational
effort, which could hardly have been done in a very short
time using traditional well-known visibility methods.

The exact visibility methods are highly complex, and
cannot be used for fast applications due to their long
computation time. Previous research in visibility
computation has been devoted to open environments using
Digital Elevation Model (DEM), representing raster data in
2.5D (Polyhedral model), and do not address, or suggest
solutions for, dense built-up areas.

Most of these works have focused on approximate
visibility computation, enabling fast results using
interpolations of visibility values between points, calculating
point visibility with the Line of Sight (LOS) method [7].
Lately, fast and accurate visibility analysis computation in
3D environments has been presented [10].

In this paper, we present, for the first time as far as we
know, a unique conceptual Spatial Trajectory Planning
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(STP) method based on RRT planner. The generated
trajectories are based on visibility motion primitives set by
SVC Optimal Control Points (OCP) as part of the planned
trajectory, which takes into account exact 3D visible
volumes analysis clustering in urban environments.

The proposed planner includes obstacle avoidance
capabilities, satisfying dynamics' and kinematics' agent
model constraints in 3D environments, guaranteeing
probabilistic completeness. The generated trajectories are
dynamic ones and are regularly updated during daylight
hours due to SVC OCP during daylight hours. STP
trajectories can be used for tourism and entertainment
applications or for homeland security needs.

In the following sections, in Section II, we introduce the
RRT planner and our extension for a spatial analysis case,
such as 3D visibility. In Section III, we present the STP
planner, using RRT and SVC capabilities. In the last section
of the paper, we present the Inverse Reinforcement Learning
(IRL) approach and algorithm based on the proposed STP
planning method, learning the value function of the planner
from demonstrated trajectories.

II. SPATIAL RAPID RANDOM TREES

In this section, the RRT path planning technique is
briefly introduced with spatial extension. RRT can also deal
with high-dimensional spaces by taking into account
dynamic and static obstacles including dynamic and non-
holonomic robots' constraints.

The main idea is to explore a portion of the space using
sampling points in space, by incrementally adding new
randomly selected nodes to the current tree's nodes.

RRTs have an (implicit) Voronoi bias that steers them
towards yet unexplored regions of the space. However, in
case of kinodynamic systems, the imperfection of the
underlying metric can compromise such behavior. Typically,
the metric relies on the Euclidean distance between points,
which does not necessarily reflect the true cost-to-go
between states. Finding a good metric is known to be a
difficult problem. Simple heuristics can be designed to
improve the choice of the tree state to be expanded and to
improve the input selection mechanism without redefining a
specific metric.

A. RRT Stages

The RRT method is a randomized one, typically growing
a tree search from the initial configuration to the goal,
exploring the search space. These kinds of algorithms consist
of three major steps:

1. Node Selection: An existing node on the tree is chosen
as a location from which to extend a new branch.
Selection of the existing node is based on probabilistic
criteria such as metric distance.

2. Node Expansion: Local planning applied a generating
feasible motion primitive from the current node to the
next selected local goal node, which can be defined by
a variety of characters.

3. Evaluation: The possible new branch is evaluated
based on cost function criteria and feasible connectivity
to existing branches.

These steps are iteratively repeated, commonly until the
planner finds feasible trajectory from start to goal
configurations, or other convergence criteria.

Figure 1. The RRT algorithm: (A) Sampling and node selection steps;
(B) Expansion step.

A simple case demonstrating the RRT process is shown in
Figure 1. The sampling step selects Nrand, and the node
selection step chooses the closest node, Nnear, as shown in
Figure 1.A. The expansion step, creating a new branch to a
new configuration, Nnew, is shown in Figure 1.B. An example
for growing RRT algorithm is shown in Figure 2.

Figure 2. Example for growing RRT algorithm.

B. Spatial RRT Formulation

We formulate the RRT planner and revise the basic RRT
planner for a 3D spatial analysis case for a continuous path
from initial state xinit to goal state xgoal:

1. State Space: A topological space, X.
2. Boundary Values:

initx X and
goalx X .

3. Free Space: A function : { , }D X true false that determines

whether ( ) freex t X where
freeX consist of the attainable

states outside the obstacles in a 3D environment.
4. Inputs: A set, U, contains the complete set of attainable

control efforts ui, that can affect the state.

5. Incremental Simulator: Given a current state, ( )x t , and

input over time interval t , compute ( )x t t .

6. 3D Spatial Analysis: A real value function, f (x; u, OCPi)
which specifies the cost to the center of 3D visibility
volumes cluster points (OCP) between a pair of points
in X .
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C. Spatial RRT Formulation

We present a revised RRT pseudo code described in Table
I, for spatial case generating trajectory T, applying K steps
from initial state xinit. The f function defines the dynamic
model and kinematic constraints, = f (x; u, OCPi), where u
is the input and OCPi sets the next new state and the
feasibility of following the next spatial visibility clustering
point.

TABLE I. SPATIAL RRT PSEUDO CODE

Generate Spatial RRT (xinit; K; )
T.init (xinit);
For k = 1 to K do

xrand random.state();
xnear nearest.neighbor (xrand; T );
u select.input (xrand; xnear);
xnew new.state (xnear; u; ; f);
T.add.vertex (xnew);
T.add.edge (xnear; xnew; u);

End
Return T

III. SPATIAL TRAJECTORY PLANNING (STP)

Next, we present a conceptual STP method based on RRT
planner. The method generates visibility motion primitives in
urban environments. The STP method is based on a RRT
planner extending the stochastic search to specific OCP.
These primitives connecting between nodes through OCP are
defined as visibility primitives.

A common RRT planner is based on greedy
approximation to a minimum spanning tree, without
considering either path lengths from the initial state or
following or getting close to specific OCP. Our STP planner
consist of a tree's extension for the next time step with
probability to goal and probability to waypoint, where
trajectories can be set to follow adjacent points or through
OCP. The planner includes obstacle avoidance capabilities,
satisfying dynamics' and kinematics' agent model constraints
in 3D environments. As we demonstrated in the previous
section, the OCP are dynamic during daylight hours. Due to
OCP's dynamic character, the generated trajectory is also a
dynamic one during daylight hours.

We present our concept addressing the STP method
formulating planner for a UGV model, integrating OCP's as
part of the generated trajectories along with obstacle
avoidance capability.

Figure 3. Four-Wheeled Car Model with Front-Wheel Steering [17]

A. Dynamic Model

In this section, we suggest an Unmanned Ground Vehicle
(UGV) dynamic model based on the four-wheeled car
system with rear-wheel drive and front-wheel steering [17].
This model assumes that only the front wheels are capable of
turning and the back wheels must roll without slipping, and
all the wheels turn around the same point (rotation center)
which is co-linear with the rear axle of the car, as can be seen
in Figure 3, where L is the length of the car between the front
and rear axles. rt is the instantaneous turning radius.

Thus, the UGV dynamic model can be described as:

= (1)

The state vector, x, is composed of two position variables (x,
y) and an orientation variable, θ. The x-y position of the car 
is measured at the center point of the rear axle. The control
vector, u, consists of the vehicle’s velocity, v, and the angle
of the front wheels, ϕ, with respect to the car's heading. 

B. Search Method

Our search is guided by following spatial clustering
points based on 3D visible volumes analysis in 3D urban
environments, i.e., Optimal Control. The cost function for
each next possible node (as the target node) consists of
probability to closest OCP, POCPi , and probability to random
point, Prand .

In case of overlap between a selected node and obstacle
in the environment, the selected node is discarded, and a new
node is selected based on POCPi and Prand. Setting the
probabilities as POCPi =0.9 and Prand=0.1, yield to the
exploration behavior presented in Figure 4.
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Figure 4. STP Search Method: (A) Start and Goal Points; (B) Explored
Space to the Goal Through OCP

C. STP Planner Pseudo-Code

We present our STP planner pseudo code described in
Table II, for spatial case generating trajectory T with the
search space method presented in the Section V.B. The
search space is based on POCPi and Prand. We apply K steps
from initial state xinit. The f function defines the dynamic
model and kinematic constraints, = f (x; u), where u is the
input and OCPi are local target points between start and goal
states.

TABLE II. STP PLANNER PSEUDO CODE

STP Planner (xinit; xGoal ;K; ; OCP)
T.init (xinit);
xrand random.state();
xnear nearest.neighbor(xrand; T );
u select.input(xrand; xnear);
xnew new.state.OCP (OCP1; u; ; f);
While xnew xGoal do

xrand random.state();
xnear nearest.neighbor(xrand; T );
u select.input(xrand; xnear);
xnew new.state.OCP (OCPi; u; ; f);
T.add.vertex(xnew);
T.add.edge(xnear; xnew; u);

end
return T;

Function new.state.OCP (OCPi;u; ; f)
Set POCPi , Set Prand

p uniform_rand[0..1]
if 0 < p < POCPi

return xnew = f(OCPi,u, );
else

if POCPi < p < Prand+ POCPi

then
return RandomState();
end.

D. Completeness

Motion-planning and search algorithms commonly
describe 'complete planner' as an algorithm that always
provides a path planning from start to goal in bounded time.
For random sampling algorithms, 'probabilistic complete
planner' is defined as: if a solution exists, the planner will
eventually find it by using random sampling. In the same

manner, the deterministic sampling method (for example,
grid-based search) defines completeness as resolution
completeness.

Sampling-based planners, such as the STP planner, do
not explicitly construct search space and the space's
boundaries, but exploit tests with preventing collision with
obstacles and, in our case, taking spatial considerations into
account. Similarly, to other common RRT planners, which
share similar properties with the STP planner, our planner
can be classified as a probabilistic complete one.

IV. STP-IRL ALGORITHM

In most Reinforcement Learning (RL) systems, the state
is basically agent’s observation of the environment. At any
given state the agent chooses its action according to a policy.
Hence, a policy is a road map for the agent, which
determines the action to take at each state. Once the agent
takes an action, the environment returns the new state and
the immediate reward. Then, the agent uses this information,
together with the discount factor to update its internal
understanding of the environment, which, in our case, is
accomplished by updating a value function. Most methods
are using the use well-known simple and efficient greedy
exploration method maximizing Q-value.

In case of velocity planning space as part of spatial
analysis planning, each possible action is a possible velocity
in the next time step, that also represents a viewpoint. The Q-
value function is based on greedy search velocity, with
greedy local search method. Based on that, the Temporal-
Difference (TD) [10] and the State-Action-Reward-Action
(SARSA) [21] methods for Reinforcement Learning (RL)
can be used, generating a visible trajectory in 3D urban
environment.

A. Markov Decision Processes (MDP)

The standard Reinforcement Learning set-up can be
described as an MDP, consisting of:

 A finite set of states S, comprising all possible

representations of the environment.

 A finite set of actions A, containing all possible

actions available to the agent at any given time.

 A reward function R = ψ(st ,at ,st+1), determining

the immediate reward of performing an action at

from a state st, resulting in st+1.

 A transition model T(st , at , st+1) = p(st+1| st ,at),

describing the probability of transition between

states st and st+1when performing an action at.

B. Temporal Difference Learning

TD learning interpolates ideas from Dynamic
Programming (DP) and from Monte Carlo methods. TD

Goa Goa

OCOC

A) B)
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algorithms are able to learn directly from raw experiences
without any particular model of the environment.

While in Monte Carlo methods an episode needs to reach
completion to update a value function, Temporal-Difference
learning is able to learn (update) the value function within
each experience (or step). The price paid for being able to
regularly change the value function is the need to update
estimations based on other learnt estimations (recalling DP
ideas). While in DP a model of the environment’s dynamic is
needed, both Monte Carlo and TD approaches are more
suitable for uncertain and unpredictable tasks.

Since TD learns from every transition (state, reward,
action, next state, next reward) there is no need to
ignore/discount some episodes as in Monte Carlo algorithms.

C. STP Using Inverse Reinforcement Learning

In this section, we present the Inverse Reinforcement
Learning (IRL) approach based on the proposed Spatial RRT
planning method. It considers that the value function f is
related to each point x. The Spatial RRT planner seeks to
obtain the trajectory T* that is based on visibility motion
primitives set by SVC Optimal Control Points (OCP) as part
of the planned trajectory, which takes into account exact 3D
visible volumes analysis clustering in urban environments,
based on optimizing the value function f along T.

The generated trajectories are then represented by a set of
discrete configuration points T = {x1,x2,··· ,xN}.
Without loss of generality, we can assume that the value
function for each point can be expressed as a linear
combination of a set of sub-value functions, that will be
called features . The cost of path T is then

the sum of the cost for all points in the path. Particularly, in
the RRT, the value is the sum of the sub-values of moving
between pairs of states in the path:

(2)

Based on the number of demonstration trajectories D, D =
{ζ1,ζ2,··· ,ζD}, by using IRL, weights ω can be set for
learning from demonstrations and setting similar planning
behavior. As was shown by [10][21], this similarity is
achieved when the expected value of the features for the
trajectories generated by the planner is the same as the
expected value of the features for the given demonstrated
trajectories:

(3)

Applying the Maximum Entropy Principle [22] to the IRL
problem leads to the following form for the probability
density for the trajectories returned by the demonstrator:

(4)

where Z(ω) is a normalization function that does not depend 
on ζ. One way to determine ω is maximizing the (log-) 
likelihood of the demonstrated trajectories under the
previous model:

L(D|ω) = −Dlog(Z(ω)) + (5)

The gradient of the previous log-likelihood with respect to

ω is given by:

(6)

As mentioned in [22], this gradient can be intuitively
explained. If the value of one of the features for the
trajectories returned by the planner is higher than the value
in the demonstrated trajectories, the corresponding weight
should be increased to increase the value of those
trajectories. The main problem with the computation of the
previous gradient is that it requires to compute the expected
value of the features E(f(ζ)) for the generative distribution
(4). We suggest setting large amount of D cased, with
relative w values for our planner characters, as seen in Table
III.

TABLE III. STP-IRL PLANNER PSEUDO CODE

STP - IRL Planner
Setting Trajectory S Examples D, D= T*.init (xinit);
Calculate function features Weight, w
fD AverageFeatureCount(D);
w random_init();
Repeat

for each T* do

for rrt_repetitions do

      ζi ← getRRTstarPath(T*,ω) 

     f(ζi) ← calculeFeatureCounts(ζi)

end for

fRRT (T*)←  ζi))/rrt_repetitions

end for
fRRT ←( )/s

 ← fRRT - fD

w ←UpdatedWeigths (
Until convergence, Return w
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V. CONCLUSIONS

In this paper, we have presented a unique planner concept,
STP, generating trajectory in 3D urban environments based
on the UGV model. The planner takes into account obstacle
avoidance capabilities and passes through optimal control
points calculated from spatial analysis. The spatial analysis
defines the number of clusters in a dataset based on an
analytic visibility analysis, named SVC.

Based on SVC and STP analysis, we presented an Inverse
Reinforcement Learning (IRL) approach based on the
proposed STP planning method, learning the value function
of the planner from the demonstrated trajectories.

Future research will also include performances and
algorithm complexity analysis for STP and SVC methods.
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