
TCP Vegas-L An Adaptive End-to-End Congestion Control Algorithm

over Satellite Communications

Lianqiang Li, Jie Zhu and Ningyu He
Department of Electronic Engineering, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China

Emails: {sjtu_llq, zhujie, NingyuHe_ruby}@sjtu.edu.cn

Abstract—Satellite communications is one of the wireless commu-
nication technologies, which is widely spread all over the world.
Vegas is a kind of the Transmission Control Protocols (TCPs) over
satellite communications. However, there are some shortcomings
with this protocol, such as being less aggressive and unfair. These
would penalize its performance over satellite communications to
a certain extent by taking into account the long round trip time
and high packet error rates. In this paper, an adaptive end-
to-end congestion control algorithm (Vegas-L) is proposed to
overcome these issues. Vegas-L can take full advantage of the
historical information of network to divide network conditions
into more detailed states, then carry out some adaptive and
reasonable adjustments according to the specific network state.
Simulation results show that Vegas-L is not only able to improve
the aggressiveness to gain high throughput but also has the ability
to enhance its fairness over satellite networks.

Keywords–satellite communications; wireless communications;
TCP Vegas; aggressiveness; throughput; fairness

I. INTRODUCTION

With the continuous development of satellite communica-
tions, their advantages, such as global coverage, bandwidth
flexibility and access convenience have been gradually re-
flected [1]–[3]. However, satellite environments have some
intrinsic characteristics including long round trip time (RTT)
and high packet error rate (PER) [4], which would degrade
the performance of traditional transport layer protocol heavily
[5], such as TCP Reno [6]. Some studies have demonstrated
that TCP Vegas [7] outperforms TCP Reno with respect to
the overall network utilization, throughput and packet loss
[8]–[11]. As a result, Consultative Committee for Space Data
Systems (CCSDS) has set TCP Vegas as a part of the Space
Communications Protocol Standard Transport Protocol (SCPS-
TP).

However, there are two main issues with original Vegas
over satellite communications. One is that Vegas is too con-
servative to increase its congestion window size (Cwnd) to
gain satisfying throughput. The other is unfairness when it
competes with Reno. To cope with these shortcomings, several
enhanced variants of Vegas have been proposed like Vegas-A
[12] and Veno [13]; they increase throughput and fairness by
enhancing Vegas’s aggressiveness. The strategies employed by
them may work in some cases, but they are not general for
different PER satellite environments.

In this paper, inspired by the variation of throughput used
in Vegas-A, we propose an adaptive end-to-end congestion
control algorithm called TCP Vegas-L. Vegas-L will employ
more historical information of network to adjust Cwnd and
other key variables according to the specific network state.
Also, Vegas-L does not add any new parameters and only needs

some modifications on the sending ends. Simulation results
prove that the proposed Vegas is competitive and even better
than Vegas, Vegas-A and Veno over satellite communications
under different PER environments.

The rest of this paper is organized as follows. Section
II provides a brief description of related works. Section III
introduces the proposed Vegas-L. Section IV presents the
performance of evaluation under different PER environments
over satellite networks. Finally, we summarize the conclusions
and present our future research direction in section V.

II. RELATED WORKS

There are some variants of Vegas that have been proposed
to solve the above issues over satellite communications. We
will review Vegas, Vegas-A and Veno. They would be studied
in this paper. Among them, Vegas-A is the referenced version
of Vegas-L.

A. Vegas
Vegas is a delay based congestion control algorithm. It is

not bias against connections with long RTTs, which is crucial
to satellite communications. There are three key variables
Cwnd, α and β. The latter two are the thresholds of extra
data to be kept in the network. The pivotal mechanism of it
is that Vegas uses measured RTT to calculate the difference
(Diff) between expected throughput (Expected_Th) and
actual throughput (Actual_Th) to estimate the congestion
level in the early stage. The core algorithm behind it can be
expressed as follows:

Expected_Th = Cwnd/Base (1)

Actual_Th = Cwnd/RTT (2)

Diff = (Expected_Th−Actual_Th)Base (3)

Cwnd =

Cwnd+ 1, if Diff < α

Cwnd, if α < Diff < β

Cwnd− 1, if Diff > β

(4)

where Base is the minimum RTT of observation. The thresh-
olds α and β employed by Vegas are fixed, with default values
to be 1 and 3.

B. Vegas-A
The main idea of Vegas-A is that rather than fix key

variables, they could be adjusted dynamically [12]. Vegas-
A uses the difference between present round trip throughput
(Th_(i)) and the throughput of last round trip (Th_(i − 1))
to adjust its congestion control mechanism more flexibly. The
core algorithm of Vegas-A is shown in Figure 1.

1Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

Input: Th_(i) and Th_(i− 1)
Output: Cwnd(i+ 1), α and β

1: if α<Diff<β then
2: if Th_(i)>Th_(i-1) then
3: Cwnd(i+ 1)=Cwnd(i)+1, α=α+1, β=β+1
4: else
5: No update of Cwnd(i+ 1), α and β
6: end if
7: else if Diff<α then
8: if α>1 then
9: if Th_(i)>Th_(i-1) then

10: Cwnd(i+ 1)=Cwnd(i)+1
11: else
12: Cwnd(i+ 1)=Cwnd(i)-1, α=α-1, β=β-1
13: end if
14: else if α=1 then
15: Cwnd(i+ 1)=Cwnd(i)+1
16: end if
17: else if Diff>β then
18: if α>1 then
19: Cwnd(i+ 1)=Cwnd(i)-1, α=α-1, β=β-1
20: else
21: No update of Cwnd(i+ 1), α and β
22: end if
23: end if

Figure 1. Vegas-A Congestion Control Algorithm

Where Cwnd(i) is the congestion window size under the
current round trip, Cwnd(i+1) is the congestion window size
of the next round trip.

C. Veno

Veno is a combination of Vegas and Reno. It uses original
Vegas’s estimation algorithm to carry out early detection of
network congestion. But unlike Vegas, the estimation algorithm
is only used for adjusting the increase/decrease coefficient of
the Reno congestion control algorithm [14].

Compared with original Vegas, there are two enhancements
adopted by Veno. On one hand, the sender will probe network
resources very conservatively when the estimation algorithm
indicates a congestion state. On the other hand, Veno will
have the ability to determine whether the loss of data is
due to network congestion or channel errors to a certain
extent. The second enhancement is very important for satellite
communications as Veno would not ascribe all the losses to
congestion under a high PER environment.

III. TCP VEGAS-L

As we were studying the above algorithms, we realized
that none of them has enough network status information. In
other words, the utilization of historical information of the
three algorithms is not sufficient. Taking into account their
deficiencies, Vegas-L brings the network probing capability
into its congestion avoidance phase by employing the recent
network status and the far time network status simultaneously.

First, let us declare a number of variables. In Vegas-L, we
use Th_(i−2) to denote the throughput of two RTTs before.
The difference between Th_(i) and Th_(i−1) is Diff_Now

while the difference between Th_(i − 1) and Th_(i − 2) is
Diff_Before. They are shown as follows:

Diff_Now = Th_(i)− Th_(i− 1) (5)

Diff_Before = Th_(i− 1)− Th_(i− 2) (6)

Vegas-L employes the variables to classify network circum-
stances into 6 cases and carries out some adaptive adjustments.
The adjustments are shown in Figure 2.

Input: Diff_Now and Diff_Before
Output: Cwnd(i+ 1), α and β

1: if Diff_Now>0 then
2: if Diff_Before>0 then
3: if Diff_Now>Diff_Before then
4: Case 1
5: else
6: Case 2
7: end if
8: else
9: Case 3

10: end if
11: else
12: if Diff_Before>0 then
13: Case 4
14: else
15: if Diff_Now>Diff_Before then
16: Case 5
17: else
18: Case 6
19: end if
20: end if
21: end if

Figure 2. Vegas-L Congestion Control Algorithm

Case 1: The network has just experienced the growth of
throughput for two consecutive RTTs. Furthermore, the value
of increased in the second RTT is bigger than that in the first
one. We can judge that the network is experiencing a rapid
growth phase and the remaining bandwidth is sufficient, so
we adjust the growth rate of Cwnd, α and β as twice as the
condition of Th_(i) > Th_(i− 1) in Vegas-A.

Case 2: Even if the network has just experienced the
growth of throughput for two consecutive RTTs, the value
of increased throughput in the second RTT is smaller than
that in the first one. We could infer that the network is ex-
periencing a slow growth phase and the remaining bandwidth
is not abundant, so we just follow the strategy of Vegas-A as
Th_(i) > Th_(i− 1).

Case 3: In this case, the throughput has just come from
the reduction phase to the growth phase. There is a slight
improvement in the network condition, but the remaining
bandwidth would not be too much. So we set the growth rate
of Cwnd, α and β more moderately. As a result, they are half
of Vegas-A’s strategy as Th_(i) > Th_(i− 1).

Case 4: In this case, the throughput has just come from
the growth phase to the reduction phase. There is a slight
deterioration in the network condition, but the degree of
congestion level would not be very serious. So we set the

2Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

reduction rate of Cwnd, α and β to be half of Vegas-A’s
strategy as Th_(i) < Th_(i− 1).

Case 5: In spite of network has just experienced the reduc-
tion of throughput for two consecutive RTTs, the throughput
reduced in the second RTT is smaller than that in the first one.
It indicates that network begins to relieve its congestion level.
We just keep the strategy of Vegas-A as Th_(i) < Th_(i−1).

Case 6: The network has just experienced the reduction
of throughput for two consecutive RTTs. Moreover, the
throughput reduced in the second RTT is bigger than that in
the first one. We can assume that the network is experiencing a
very congested phase. As a result, the reduction rate of Cwnd,
α and β are set to be as twice as Vegas-A’s strategy when
Th_(i) < Th_(i− 1).

These more particular network states and adaptive adjust-
ments will enable Vegas-L to gain better performance over
satellite communications.

IV. PERFORMANCE EVALUATION

We use Network Simulator 2 (ns2.35) [15] to validate
the effectiveness of Vegas-L. The simulation settings and
simulation results are shown as follows.

A. Simulation Settings

The employed satellite network topology is expressed
in Figure 3. The first ground launching node is placed in
Beijing (39.4◦N,116.4◦E), corresponding receiver is in New
York (40.7◦N,74◦W). The first data flow is attached with
original Vegas, Vegas-A, Veno and Vegas-L respectively. The
second ground launching node is collocated at Shanghai
(31.2◦N,121.5◦E) and receiver is collocated at Washington
(28.9◦N,77◦E). The second data flow is attached with the
enhanced Reno, NewReno [16].

Figure 3. The satellite network topology

The bandwidth of links are set as 5Mbps. The link type
is LL/Sat while the queue management type of node buffer
is DropTail. TCP packet size is 1024 bytes. Simulation lasts
for 1000 seconds to get steady results. We evaluate the
performance by considering two circumstances. In the first one,
PER is low, just 10−6, and the PER is as high as 10−3 in
the second one.

B. Simulation Results
The dynamics of Cwnd is the basic metric for evaluat-

ing a congestion control algorithm. It could reflect real-time
network state during the simulation. The evolution of Cwnds
of Vegas, Vegas-A, Veno and Vegas-L under different PER
environments over the satellite network is shown in Figure 4.

0 200 400 600 800 1000

Time(s)

0

100

200

300

C
w

n
d

(P
k

ts
)

Vegas

0 200 400 600 800 1000

Time(s)

0

100

200

300

C
w

n
d

(P
k

ts
)

Vegas-A

0 200 400 600 800 1000

Time(s)

0

100

200

300

C
w

n
d

(P
k

ts
)

Veno

0 200 400 600 800 1000

Time(s)

0

200

400

C
w

n
d

(P
k

ts
)

Vegas-L

(a) The dynamics of Cwnd under low PER environment

0 200 400 600 800 1000

Time(s)

0

100

200

C
w

n
d

(P
k

ts
)

Vegas

0 200 400 600 800 1000

Time(s)

0

100

200

C
w

n
d

(P
k

ts
)

Vegas-A

0 200 400 600 800 1000

Time(s)

0

50

100

150

C
w

n
d

(P
k

ts
)

Veno

0 200 400 600 800 1000

Time(s)

0

100

200

C
w

n
d

(P
k

ts
)

Vegas-L

(b) The dynamics of Cwnd under high PER environment

Figure 4. The dynamics of Cwnds under different PERs environments

By observing Figure 4(a), we can see that the performance
of Cwnd of Vegas-L under the low PER environment is the
best one. More concretely, the Cwnds of these algorithms are
similar to each other in the first 150 seconds. Then there are
some fluctuations in original Vegas, Vegas-A and Veno. On
the contrary, Vegas-L begins to enter a steady growth phase.
There is little fluctuation in its Cwnd. Furthermore, the steady
value of Vegas-L is 350 packets, which is not only 200% larger
than that in original Vegas but also larger than those in Vegas-
A and Veno. Next, we can also see from Figure 4(b) that
the performance of all four algorithms has declined under the
high PER environment. There are more dense fluctuations.
The values of Cwnd are much smaller than those in low
PER environment. However, from the whole point of view,
the Cwnd value of Vegas-L is still similar to Vegas and Veno.
Their performance is tied for the best one, which is better than
Vegas-A.

The performance of Cwnd is related to strategies used by
the protocols. As far as Vegas and Vegas-A are concerned,
their congestion control algorithms are relatively conservative.
As a result, their Cwnds change gradually in low PER
environment. Veno is the combination of Vegas and Reno. It
also has the intrinsic of loss-based algorithms to gain network
resources aggressively. Vegas-L is not as sensitive and dull as
Vegas, it could be more active to adjust its Cwnd according to

3Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

specific network state. Consequently, Veno and Vegas-L will
have some sharp fluctuations in Cwnds when the PER is low.
The performance of Cwnd which degrades with the increases
of PER over satellite network is unavoidable. But Vegas-
L is always gaining the best performance either under low
PER environment or under high PER environment. The good
performance of Vegas-L is due to that Vegas-L not only always
monitors the satellite network status but also improves its
Cwnd and other key variables adaptively. Vegas-L inherits the
stability from Vegas. As contrast, the performance of Vegas-
A is the worst one in the high PER environment. Although
Vegas-A also inherits the stability from Vegas, the congestion
control algorithm employed by Vegas-A is too fragile to ensure
a good performance in a high PER environment over satellite
communications.

Network throughput is another basic metric to show the
effectiveness of a congestion control algorithm. The final
average throughput of the four algorithms under different
PER environments over the satellite network is shown in
Figure 5.

1.1

3.2

1.7

2.7

2.1
2

2.9

1.5

Vegas NewReno Vegas-A NewReno Veno NewReno Vegas-L NewReno
0

0.5

1

1.5

2

2.5

3

3.5

T
h

ro
u

g
h

p
u

t(
M

p
b

s)

(a) The average throughput under low PER environment

0.6

0.5

0.2

0.5

0.8

0.5

0.6

0.5

Vegas NewReno Vegas-A NewReno Veno NewReno Vegas-L NewReno
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
h

ro
u

g
h

p
u

t(
M

p
b

s)

(b) The average throughput under high PER environment

Figure 5. The average throughput under different PER environments

As illustrated in Figure 5(a), the throughput of Vegas
is 1.1Mbps under low PER environment over the satellite
network. The throughput is improved in Vegas-A and Veno,
but the highest one is Vegas-L with 2.9Mbps. We could also
find that the throughput of NewReno varies widely under low
PER environment. It reaches 3.2Mbps when competes with
original Vegas while only gains 1.5Mbps when competes with
Vegas-L. As shown in Figure 5(b), all of these algorithms’ per-
formance becomes poor with the increases of PER. Among
them, Vegas-A decreases rapidly, its throughput is the smallest
one. Conversely, Veno is the largest one, followed by original

Vegas and Vegas-L. The throughput of NewReno is always
0.5Mbps when it competes with variants of Vegas under high
PER environment.

The performance of throughput is corresponding to the
values of their Cwnds. Vegas-L has more historical infor-
mation, detailed network states and dynamical strategies. It
would not revise its Cwnd recklessly. In consequence, Vegas-
L has a better Cwnd, which leads to better throughput under
different PERs over the satellite network. These phenomena
also demonstrate that Vegas-L has much better aggressiveness.

The fairness index is closely related to throughput. In this
paper, we use Jain’s fairness index [17], which is defined as
Eq.7:

f(x1, x2, . . . , xn) = (

n∑
i=1

xi)
2/(n

n∑
i=1

x2i) (7)

where n represents the number of data flows and xi is the
throughput of the ith data flow. The results are shown in Figure
6.

80.74

95.09
99.94

90.81

Vegas Vegas-A Veno Vegas-L
0

20

40

60

80

100

F
ai

rn
es

s/
%

(a) The fairness under low PER environment

99.18

84.48

94.94
99.18

Vegas Vegas-A Veno Vegas-L
0

20

40

60

80

100

F
ai

rn
es

s/
%

(b) The fairness under high PER environment

Figure 6. The fairness under different PER environments

It is clear from Figure 6(a) that the fairness index of
original Vegas is just 80.74%, which is the smallest one. The
fairness performance is enhanced in Vegas-A, Veno and Vegas-
L. Particularly, the fairness index of Veno is as high as 99.94%.
As shown in Figure 6(b), the fairness performance of original
Vegas and Vegas-L are tied for the best one under high PER
environment over the satellite network, followed by Veno.
Compared with them, Vegas-A owns the worst performance.

We should point out that the throughput of Vegas-L is
larger than the throughput of corresponding NewReno under
low PER circumstance. Vegas-L not only has the ability to

4Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

share bandwidth equally with NewReno but also can occupy
a leading role, which results in the ordinary fairness perfor-
mance. Similarly, Veno has the ability to distinguish whether
packet loss is due to network congestion or channel errors.

V. CONCLUSIONS

In this paper, we have proposed an adaptive end-to-end
congestion control algorithm called TCP Vegas-L for satellite
communications. It can take full advantage of more historical
information to adjust its congestion control strategies dynam-
ically. The modifications introduced by Vegas-L are related
to specific network state. After a comprehensive comparison
of original Vegas, Vegas-A, Veno and Vegas-L, we can draw
some conclusions as follows:

1) Vegas-L could gain outstanding performance in terms
of Cwnd, throughput and fairness under low PER
environment over satellite communications.

2) Vegas-L is able to gain satisfying performance with
respect to Cwnd, throughput and fairness under high
PER environment over satellite communications.

3) Vegas-L is competitive and even better than Vegas,
Vegas-A and Veno over satellite communications
under different PER environments.

However, there is still some room to improve the perfor-
mance of Vegas-L. On the one hand, adjusting the aggres-
siveness and fairness of Vegas according to particular state of
network is a novel method, but how to optimize its strategies
is still worth studying. On the other hand, we could see
that the performance of Vegas-L under high PER satellite
environment is not the best one; how to modify Vegas-L to
make it more suitable for high PER satellite environments
would be another challenge.

ACKNOWLEDGEMENT

This work is supported by Shanghai Aerospace Science
and Technology Innovation Foundation of China (grant No.
SAST2015039) and the National Natural Science Foundation
of China (grant Nos.11433002 and 61371147).

REFERENCES

[1] L. Li, H. You, J. Zhu, and Y. Yang, “A novel design on multi-layer
satellite constellation,” Journal of Shanghai Normal University, vol. 45,
no. 2, 2016, pp. 248–252.

[2] L. Li, J. Zhu, Y. Yang, and Z. Hu, “Evaluation of tcp congestion control
algorithms on satellite ip networks,” Journal of Aerospace Shanghai,
vol. 33, no. 6, 2016, pp. 109–114.

[3] Q. Zhao, H. Zhou, and H. Deng, “An enhanced vegas congestion control
algorithm based on beidou navigation system,” IEICE Communications
Express, vol. 1, no. 7, 2012, pp. 275–281.

[4] L. Yang, D. Wei, C. Pan, and K. Wang, “Congestion control algorithm
based on dual model control over satellite network,” in Wireless
Communications & Signal Processing (WCSP), 2015 International
Conference on. IEEE, 2015, pp. 1–6.

[5] H. Obata, K. Tamehiro, and K. Ishida, “Experimental evaluation of
tcp-star for satellite internet over winds,” in 2011 Tenth International
Symposium on Autonomous Decentralized Systems. IEEE, 2011, pp.
605–610.

[6] V. Jacobson, “Modified tcp congestion avoidance algorithm,” end2end-
interest mailing list, 1990.

[7] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “Tcp vegas: New
techniques for congestion detection and avoidance,” vol. 24, no. 4, 1994,
pp. 24–35.

[8] S. A. Nor, A. N. Maulana, F. A. A. Nifa, M. N. M. Nawi, and
A. Hussain, “Performance of tcp variants over lte network,” in AIP
Conference Proceedings, vol. 1761, no. 1. AIP Publishing, 2016, pp.
020–021.

[9] E. Abolfazli and V. Shah-Mansouri, “Dynamic adjustment of queue
levels in tcp vegas-based networks,” Electronics Letters, vol. 52, no. 5,
2016, pp. 361–363.

[10] J. Qu, “An enhanced tcp vegas algorithm based on route surveillance and
bandwidth estimation over geo satellite networks,” in 2010 International
Conference on Measuring Technology and Mechatronics Automation,
vol. 1. IEEE, 2010, pp. 464–467.

[11] M. Nirmala and R. V. Pujeri, “Evaluation of tcp congestion control
algorithms on different satellite constellations,” in Advanced Computing
and Communication Systems (ICACCS), 2013 International Conference
on. IEEE, 2013, pp. 1–7.

[12] K. Srijith, L. Jacob, and A. L. Ananda, “Tcp vegas-a: Improving the
performance of tcp vegas,” Computer communications, vol. 28, no. 4,
2005, pp. 429–440.

[13] C. P. Fu and S. C. Liew, “Tcp veno: Tcp enhancement for transmission
over wireless access networks,” IEEE Journal on selected areas in
communications, vol. 21, no. 2, 2003, pp. 216–228.

[14] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-to-host
congestion control for tcp,” IEEE Communications surveys & tutorials,
vol. 12, no. 3, 2010, pp. 304–342.

[15] “The network simulator 2.35,” http://www.http://www.isi.edu/nsnam/.
[16] S. Floyd, T. Henderson, and A. Gurtov, “The newreno modification to

tcp’s fast recovery algorithm,” 2004.
[17] R. Jain, A. Durresi, and G. Babic, “Throughput fairness index: An

explanation,” Tech. rep., Department of CIS, The Ohio State University,
Tech. Rep., 1999.

5Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

