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Abstract—IEEE 802.11n Wireless Local Area Networks 

(WLANs) suffer from Bufferbloat problem such that the round-

trip delay increases in upload Transmission Control Protocol 

(TCP) communications when the Media Access Control (MAC) 

level data rate is low such as 6.5 Mbps.  This problem degrades 

user level quality of service for communications sharing the 

WLAN transmission queue.  In order to resolve it, several 

methods are proposed including a method based on active queue 

management, our previous method reducing the MAC 

retransmission limit at low MAC level data rates, and a method 

stopping sending TCP level data when the queue contains more 

than a specific number of packets.  However, those methods 

need to be implemented in data sending stations.  In this paper, 

we propose a new method resolving Bufferbloat problem by 

providing an effect similar to our previous method at a data 

receiving access point.  This decreases the congestion window 

size in the sending side TCP and can reduce the delay.  This 

paper also shows the results of the performance evaluation by 

implementing the proposed method in an access point.  

According to the results, the proposed method decreases the 

Round-Trip Time (RTT) for low MAC data rates and does not 

reduce the TCP throughput.  It does not give any influences on 

the TCP throughput for the stations supporting the 

conventional methods for Bufferbroat problem. 

Keywords- Wireless LAN; IEEE 802.11n; TCP; Dymamic 

Rate Switching; Bufferbloat Problem; Block Acknowledgment. 

I. INTRODUCTION 

WLANs conforming to the IEEE 802.11n standard [1] 
have adopted new physical and MAC technologies.  They 
include Multiple-Input and Multiple-Output (MIMO), the 
channel bonding, the frame aggregation, and the Block 
ACKnowledgment (Block ACK).   

On the other hand, similarly with the conventional IEEE 
WLAN standards, IEEE 802.11n supports multiple data rates 
and the dynamic rate switching to use the optimal data rate 
between a STAtion (STA) and an Access Point (AP).   When 
an STA is located close to an AP and the radio condition is 
good, the high data rate such as 300 Mbps can be used.  But, 
when an STA moves to the location far from an AP and the 
receiving radio signal strength becomes weak, the data rate 
gets lower, for example down to 6.5 Mbps.   

When an STA communicates by TCP while it is using a 
low data rate, the packet losses do not increase, but the RTT 
increases largely, up to several seconds [2].  This long delay 
is considered as a sort of Bufferbloat problem, which is 
discussed widely in the networking community [3]-[5].   

In order to solve this problem, there are some proposals 
[6]-[8].  All of them intend to decrease TCP traffic load when 

packets in a WLAN transmission queue pile up and the 
transfer delay increases.  They are classified into two 
categories.  One is a scheme that generates packet losses 
intentionally against increased transfer delay, which in turn 
decreases TCP congestion window (cwnd).  CoDel [6], which 
is an active queue management based method, uses a packet-
sojourn time in a transmission queue as a control parameter, 
and drops a packet in the situation when packets stay too long 
in the queue.  In our previous paper [2], we inferred that one 
of the reasons for the large queuing delay is the powerful data 
retransmission function in 802.11n MAC level, which uses the 
frame aggregation and the Block ACK.  So, we proposed a 
method that intentionally weakens the capability of 
retransmission realized by Block ACK frames, only when the 
data rate is low in TCP communications [7].  It increases the 
possibility of TCP packet losses at low data rate.  The second 
category is a scheme that TCP stops sending data segments 
when many packets are stored in a MAC level transmission 
queue.  An example is TCP small queues [8], which is 
implemented in the Linux operating system with 3.6 and later 
versions.  For resolving Bufferbloat problem in upload TCP 
communications, all of those methods require to be 
implemented in every STA.  The Linux operating system 
implements CoDel and/or TCP small queues, but as far as we 
know, the Windows and MAC operating systems do not 
implement either of them.   

In this paper, we propose a new method which resolves 
Bufferbloat problem by providing an effect at a receiving side 
access point, which is similar to reducing the MAC level 
retransmission limit in STAs when the data rate is low.  This 
decreases cwnd in the sending side and can reduce the delay.  
This paper also shows the results of the performance 
evaluation by implementing the proposed method in a 
Personal Computer (PC) based AP.  According to the results, 
the proposed method decreases RTT for low MAC data rates 
and does not reduce the TCP throughput.  It does not give any 
influences on the TCP throughput for STAs supporting CoDel 
or TCP small queues.   

The rest of this paper is organized as follows.  Section II 
explains the frame aggregation and Block ACK procedures 
and the related work.  Section III describes the proposed 
method, and Section IV gives the results of performance 
evaluation.  In the end, Section V concludes this paper.   

II. PROCEDURE OF 802.11N AND RELATED WORK 

This section describes the high throughput data transfer 
function of 802.11n and the related work on Bufferbloat 
problem.   
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A. Frame aggregation and Block ACK in 802.11n WLAN 

IEEE 802.11n allows multiple data frames (called MAC 
Protocol Data Units: MPDUs) to be aggregated and sent 
together in order to increase the efficiency of data sending (see 
Figure 1).  The whole transmitted frame is called Aggregation 
MPDU (A-MPDU), and is a collection of A-MPDU 
subframes, each of which includes an MPDU delimiter, and 
MPDU body, and a padding.  An MPDU delimiter contains 
the MPDU length, a Cyclic Redundancy Check (CRC) to 
detect bit errors within the delimiter itself.  A padding consists 
of 0 through 3 bytes, which makes the length of an A-MPDU 
subframe a multiple of 4 bytes.   

The IEEE 802.11n standard adopts an acknowledgment 
scheme called High Throughput (HT)-immediate Block ACK.  
When a receiver receives an A-MPDU, it replies a Block ACK 
frame which contains a Block ACK Bitmap parameter 
indicating whether it correctly receives a MPDU with a 
specific sequence number.  The Bitmap indicates receipt or 
non-receipt of 64 MPDUs.  The data sender retransmits non-
received MPDUs according to the Bitmap.  When a Block 
ACK frame itself is lost, the whole A-MPDU is retransmitted 
by timeout.   

These procedures are implemented by the WLAN device 
drivers and WLAN hardware at the data sender and receiver.  
The details are shown in Figure 2.  At the data sender side, the 
device driver selects MPDUs to be aggregated in an A-MPDU.  
They include some retransmitted MPDUs determined by the 
Block ACK Bitmap.  The device driver also determines the 
retry-out of MPDUs independently if the retransmission count 
of the MPDU reaches the retransmission limit.  On the other 
hand, the WLAN hardware at the sender side realizes the 
actual formatting and sending out of A-MPDUs, timeout 
retransmission of A-MPDUs, and reporting of Block ACK 
Bitmap to the device driver.   

At the data receiver side, the WLAN hardware handles the 
reporting of received MPDUs to the device driver and the 

sending of Block ACKs.  The hardware also notifies the 
device driver of the information on MPDUs with CRC error.  
On the other hand, the device driver handles the sequencing 
of MPDUs and the retry-out decisions.  The retry-out decision 
at the data receiver side is realized by the timeout basis, not 
by counting the MPDU retransmissions.   

B. Related work 

(1) CoDel 
As described above, CoDel uses a packet-sojourn time in 

the queue.  Specifically, when any packet stays in the queue 
longer than a specific duration, called target in CoDel, during 
a predefined interval, called interval in CoDel, the last packet 
in the queue is dropped.   As for the value of target, 5 msec is 
used in [6].  The interval takes 100 msec at the beginning of 
the procedure, and if a packet is dropped, the value is 
decreased in inverse proportion to the square root of the 
number of drops since the dropping state started.    

(2) Decreasing retransmission limit at low data rate 
The second method is our previous proposal, which is 

based on the MAC level retransmission limit adjustment.  It 
aims at causing an MPDU loss intentionally by setting the 
retransmission limit to some value between 2 and 8 when the 
data rate is smaller than 100 Mbps, and use 10, which is the 
default value, when the data rate is larger than 100 Mbps [7].   

(3) TCP small queues 
In an ordinary TCP communication, data that an 

application sent are stored in the send socket buffer and 
transferred under the limitation of advertised window and 
cwnd.  In contrast, TCP small queues is a method that transfers 
TCP data segments by taking account of the status of 
transmission queues within the operating system scheduler 
and the WLAN device driver [8].  When the total size of TCP 
data segments stored in those transmission queues becomes a 
specific threshold (128 Kbytes in the default setting), new data 
generated by applications are not handled in TCP and keep 
staying in the send socket buffer.  After the TCP data size 
stored in the transmission queue becomes smaller than the 
threshold, TCP module resumes the processing of data stored 
in the send socket buffer.  As a result, TCP small queues can 
suppress the queuing delay without invoking intentional 
packet losses even if a low data rate is used.   

As described above, all of those methods resolve 
Bufferbloat problem over 802.11n WLAN, but they need to 
be implemented in individual STAs.  Although the recent 
versions of Linux implement CoDel and TCP small queues, it 
is expected that some of the major operating systems, such as 
Windows and Mac OS, support neither of them.   

III. PROPOSAL 

The primary goal of our proposal is to resolve Bufferbloat 
problem in upload TCP communications over 802.11n 
WLANs only by modifying an AP, which is an MPDU 
receiver.  We adopt a method similar with our previous 
proposal, which increases MPDU losses by decreasing the 
MAC level retransmission limit when the data rate is low.  The 
retransmission of lost MPDUs is controlled only by data 
senders; by STAs not APs in the upload data transfer.   The 
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Figure 2.  Send/Receive processing of A-MPDUs.   
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proposed method emulates the limited number of 
retransmissions only at an AP working as an MPDU receiver, 
for MPDUs including TCP segments transferred in a low data 
rate.  This will increase the loss possibility of MPDUs and 
invoke the cwnd shrinking.  This section describes detailed 
design of the proposed method.   

A. Design principles 

In order to design the proposed method, we have adopted 
the following principles.  The first one is that we design the 
proposed method under the restriction to implement it inside 
the WLAN device driver.  As described in the previous section, 
the retransmission of MPDUs and the sending of Block ACK 
are implemented in the WLAN hardware.  So, the device 
driver at data receiver side cannot control the MPDU 
retransmission behavior that a data sender goes up to the 
retransmission limit.  So, we adopt an approach that, when 
MAC level data rate is low, the receiver side device driver 
behaves as if retry-out occurred in response to a smaller 
retransmission count, and goes further to handling the 
following MPDUs.  The retransmission count used as the 
retry-out limit is called a retry-out index in this paper.   

The second principle is that we utilize the information 
reported from the WLAN hardware to the device driver as 
much as possible.  As described above, the WLAN hardware 
reports the sequence number of an MPDU which suffers from 
transmission error (with CRC error).  The proposed method 
uses this information as far as it maintains consistency with 
other information.   

Figure 3 shows the idea of our proposal.  STA and Access 
Point is connected through WLAN, and Access Point has an 
access to Ethernet.  Figure 3 (a) shows the idea of our previous 
proposal [7].  The retransmission limit is set to 1 in STA.  
Frame 3 is transferred with CRC error twice, and so it is 
handled as a retry-out event.  As a result, Access Point relays 
Frame 4 to Ethernet without sending Frame 3.  Figure 3 (b) 
shows the idea of the method proposed in this paper.  While 
STA has a large retransmission limit, Access Point supposes 
that it is 1.  So, at the timing of the second erroneous reception 
(the first retransmission) of Frame 3, it is handled as if the 
retry-out happens (pseudo retry-out), and the next frame 
(Frame 4) is relayed to Ethernet.  Even if Frame 3 is received 
correctly later, it is ignored.   

B. Detailed design 

The followings give the details on how to implement the 
proposed method.   

(1) Retry-out index 
The value of retry-out index is selected as shown in Table 

I.  The value are the same as the retransmission limits used in 
our previous proposal [7].  The smoothed data rate used for 
the retry-out index selection is calculated according to the 
exponential moving average with coefficient 0.25.  That is, the 
smoothed data rate in Table I is calculated by the following 
equation at each of MPDU reception.   

𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 ← 
0.75 × 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 (𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠) 

+ 0.25 × 𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑀𝑃𝐷𝑈 

(2) Estimation of retransmission count 
An AP, an MPDU receiver, estimates the retransmission 

count per MPDU basis.  The estimation is done based on the 
signaling of MPDUs with CRC error from the WLAN 
hardware.  That is, when an MPDU with CRC error is reported, 
the proposed method increases (or set to 1) the estimated count 
of receiving this specific MPDU supposing that the signaled 
number of MPDU is correct.  The retransmission count is the 
estimated receiving count minis one.  It should be noted that 
the retransmission count covers both the Block ACK based 
MPDU retransmission and the timeout based A-MPDU 
retransmission.   

(3) Handling as lost frames when reaching retry-out index 
When an MPDU is received with CRC error and it 

contains a TCP segment, the estimated retransmission count 
is compared with the retry-out index.  If the count reaches the 
retry-out index, the MPDU is marked as a lost frame.  If there 
are any buffered MPDUs waiting for being reported to the 
upper layer whose sequence numbers follow the number of 
the MPDU marked as lost, they will be reported to the upper 
layer.  Even though an MPDU is marked as lost, an STA 
continues the retransmission until its retransmission limit, and 
so an AP may receive such an MPDU.   

(4) Non-error MPDU handling 
When an AP receives an MPDU without any errors, it 

takes one of the followings.  If the MPDU is marked as lost, it 
is ignored.  (Note that a Block ACK is sent by the WLAN 
hardware.)  Otherwise, if the MPDU is an in-sequence one, it 
is reported to the upper layer.  Otherwise, it is buffered within 
the WLAN device driver for waiting in-sequence MPDUs.   

C. Example of behavior at AP 

Figure 4 shows an example of behavior at AP supporting 
the proposed method.  The first row in the table indicates 
received A-MPDUs; A-MPDU(1) through A-MPDU(7).  The 
second row indicates the sequence number assigned to 
individual MPDUs; 1 to 10.  The slash mark over the number 
means that the corresponding MPDU is received with CRC 
error.  For example, A-MPDU(1) includes five MPDUs, and 
among them, MPDUs with sequence number 2 and 4 are 
received with CRC error.   

 
Figure 3.  Idea of our proposal. 
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TABLE I. RETRY-OUT INDEX.   

Smoothed data rate (Mbps) 25～50 50～100 100～～25

Retry-out index 5 8
out of 
scope2
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Each cell in the table shows how the MPDU given in the 
second row is handled.  The sequence number is indicated in 
the first column in the table.  Non-blank cells mean the 
followings:   

 Mark ✔ means the user data contained in the received 

MPDU is reported to the upper layer.   
 “Keep” means that the received MPDU is buffered 

within the device driver.   
 “Ignore” means that the user data in the received MPDU 

is ignored.   
 “Lost” means that the received MPDU is marked as a 

lost frame.   
 The number in a cell corresponds to the estimated 

retransmission count.   
In this example, we suppose the retry-out index is two.  In 

the beginning, A-MPDU(1) contains five MPDUs, among 
which MPDU-2 and 4 has CRC error.  So, MPDU-1 is 
reported to the upper layer and MPDU-3 and 5 are buffered.  
For MPDU-2 and 4, the estimated retransmission count is set 
to 0.   

Similarly, for A-MPDU(2), the estimated retransmission 
count of MPDU-6 is set to 0, and MPDU-7 and 8 are buffered.   

A-MPDU(3) is an example of the case where a whole A-
MPDU is corrupted.  In this case, the information on MPDU 
sequence numbers is also reported to the device driver, which 
we have confirmed actually.  As a result, the values of 
estimated retransmission count for MPDU-2, 4, 9 and 10 are 
incremented to 1 or set to 0, respectively.   

A-MPDU(4) is a timeout based retransmission of A-
MPDU(3), in which MPDU-2 and 9 are correctly received and 
MPDU-4 and 10 are corrupted.  The receipt of MPDU-2 
makes user data within MPDU-2 and 3 reported to the upper 
layer.  MPDU-9 is buffered, and the estimated retransmission 
count for MPDU-4 and 10 is incremented.  Since the count for 
MPDU-4 reaches 2 (retry-out index), MPDU-4 is handled as 
a lost frame at this time.  Since buffered MPDU-5 follows the 
MPDU marked as lost (MPDU-4), its user data is reported to 
the upper layer.   

Then, A-MPDU(5) containing only MPDU-6 is received.  
Since this is an in-sequence MPDU and MPDU-7 through 9 
are buffered within the device driver, user data contained in 
all of those MPDUs are reported to the upper layer.   

Next, A-MPDU(6) containing MPDU-4 and 10 is received, 
and MPDU-4 is again corrupted.  Since MPDU-4 is marked 

as lost, its retransmission count is just incremented and user 
data in MPDU-10 is passed to the upper layer.   

In the end, A-MPDU(7) containing MPDU-4 correctly is 
received.  For MPDU-4, the WLAN hardware sends a Block 
ACK, but the device driver just ignores it.   

In this way, an AP, an MPDU receiver, sets the retry-out 
index to the smaller value than the retransmission limit at an 
STA, an MPDU sender, and handles an MPDU as a lost frame 
earlier than an STA.   

IV. PERFORMANCE EVALUATION 

This section describes the results of experiments 
measuring the TCP throughput and the RTT of Ping (Internet 
Control Message Protocol (ICMP) Echo request/response) in 
the situation where Bufferbloat problem occurs.  More 
specifically, the following points are examined.   
 Whether the proposed method suppresses the increase of 

RTT or not.  As for STA, we use PCs which run the 
Linux operating system, Windows and Mac OS. 

 Whether MPDU losses introduced by the proposed 
method reduce the TCP throughput or not.   

 Whether the proposed method gives any influence or not 
to the TCP throughput of STAs implementing CoDel or 
TCP small queues.   

A. Experimental settings 

Figure 5 shows the network configuration of our 
experiment.  An STA and an AP use 5GHz band WLAN 
conforming to IEEE 802.11n.  The AP and a server are 
connected via Gigabit Ethernet link through a bridge, which 
provides just bridging in this experiment.   

The experiment is performed in a two-storied Japanese 
style house built of wood.  The server, the AP and the bridge 
are located in the 2nd floor.  The STA is located at various 
locations in the 1st and 2nd floors, and the stairs between them.  
The distance between the STA and the AP is about 1.2 meter 
at the nearest position and about 10 meter at the far most 
position.  At one position, the STA is fixed and performs TCP 
and Ping communications for 60 seconds.   

The AP is implemented using a Linux PC.  For STA, we 
prepared a Linux PC, a Windows PC and a Mac PC.  The 
specification of the AP and the STA is given in Table II.  As 
for the Linux PC, we prepared three versions; a PC without 
any methods preventing Bufferbloat problem, a PC with TCP 

 
Figure 4.  Example behavior of proposed method.  . 
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small queues, and a PC with CoDel.  As for the PC with TCP 
small queues, we used a Linux PC with version 3.13 as it is.  
As for the PC without any methods, we used a Linux PC with 
version 3.13 by setting the queue limit to 10,000 packets, 
which is large enough to suppress the function of TCP small 
queues.  As for the PC with CoDel, we used a Linux PC with 
large TCP small queues’ limit by adding the function of CoDel.   

B. Results of performance evaluation 

In the experiment, we executed a 60 sec TCP data transfer 
from STA to AP, and a 60 sec Ping communication invoked 
by STA, simultaneously.  TCP data transfer is done by use of 
iperf [11].  In the Ping communication, STA sends a Ping 
request (ICMP Echo request packet) once a second.  For one 
measurement run, we measured the average of TCP 
throughput, Ping RTT, and transmission queue length in 
WLAN driver.  As for the last item, we measured only for a 
Linux PC.   

As for the parameter which characterizes the position of 
the STA, we used the average data rate for all A-MPDUs 
transmitted during a 60 sec communication.  We mapped the 
measured values with the average data rate.  This is a similar 
approach with our previous paper [7].   

Figure 6 shows the result of average Ping RTT versus 
average data rate.  One plot in the graph corresponds an 
average during one measurement run.  “none”, “tsq” and 

“codel” indicate the results of Linux PC without any methods, 
Linux PC with TCP small queues, and Linux PC with Codel, 
respectively.  “windows” and “mac” indicate the results of 
Windows PC and Mac PC, respectively.   

Figure 6 (a) shows that, in the case the proposed method 
is not introduced in the AP, the Ping RTT of Linux PC without 
any methods, Windows PC, and Mac PC becomes large when 
the average data rate is lower than 20 Mbps.  The worst case 
is around 700 msec.  In Linux PC with TCP small queues or 
CoDel, the Ping RTT is around 200 msec when the average 
data rate is lower than 20 Mbps.   

These results mean that Windows 10 and Mac OS X do 
not support any mechanisms to prevent Bufferbloat problem, 
and that TCP small queues and CoDel can suppress the 
increase of delay.   

Figure 6 (b) shows that, when the proposed method is 
implemented in the AP, all of Linux PCs, Windows PC and 
Mac PC do not suffer from large delay even if the average data 
rate is lower than 20 Mbps.  Especially, the reduction of Ping 
RTT is clear for Linux PC without any methods, Windows PC 
and Mac PC, which do not care about Bufferbloat problem.  
This result means that the proposed method is effective for 
preventing the increase of delay caused by Bufferbloat 
problem.   

Figure 7 shows the result of average WLAN transmission 
queue length versus average data rate, in Linux PCs.  In the 
case the proposed method is not introduced, around 600 
packets are stored in transmission queue for any data rate in a 
Linux PC without any methods (Figure 7 (a)).  This length is 
considered as cwnd in TCP communication [2].  On the other 
hand, in a Linux PC introducing TCP small queues or CoDel, 
the average queue length is reduced to around 100 packets, 
and as a result, the delay is reduced.   

 

Figure 5.  Experiment configuration. 

TABLE II.  SPECIFICATION OF AP AND PC. 

  

Linux PC Windows PC MacAP

model Mac Book ProLenovo ThinkPad X61

kernel Linux 3.13.0 Window 10
Mac OS 
10.11Linux 3.2.38

WLAN MAC IEEE 802.11n (5GHz)

TCP congestion 
control

CUBIC TCP 
[9] Default method of OSー

AP software ー ー ー
Hostapd 

0.7.3

NIC BroadcomNEC Aterm WL300NE-AG

Driver Default software of OSath9k [10]

 
(a) Without proposed method in AP.   

 
(b) With proposed method in AP.   

Figure 6.  Average Ping RTT vs. average data rate.    
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Figure 7 (b) shows that, when the proposed method is 
introduced, the average queue length in STA is suppressed to 
less than 50 packets when the average data rate is lower than 
50 Mbps.  As a result, the delay is also suppressed.  When the 
average data rate is higher than 50 Mbps, the average queue 
length increases in a PC without any methods, but it is not a 
problem because the Ping RTT itself is small as shown in 
Figures 6 (a) and 6 (b).   

Figure 8 shows the result of average TCP throughput 
versus average data rate.  As shown in Figure 8 (a), the TCP 
throughput is not affected by Bufferbloat problem.  Besides, 
Figure 8 (b) shows that the result of TCP throughput is similar 
for both cases with and without the proposed method installed 
in the AP.  This means that the proposed method does not 
influence the TCP throughput of STAs implementing TCP 
small queues or CoDel.   

V. CONCLUSIONS 

This paper has proposed a new method that is installed 
only at an IEEE 802.11n AP and can reduce the delay in 
upload TCP communications.  The proposed method realizes 
similar effect with decreasing the retransmission limit at low 
MAC level data rate.  The proposed method can prevent 
Bufferbloat problem in upload TCP communication without 
modifying sender side STAs at all.  This paper also presented 
the detailed performance evaluation.  The results clarified that 
the proposed method surely reduces the Ping RTT from STA 
when TCP bulk data transfer co-exists, that it does not reduce 
the TCP throughput, and that it does not give any influence to 
that of STAs implementing TCP small queues or CoDel, 
which are well-known methods for resolving Bufferbloat 
problem.   
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(a) Without proposed method in AP.   

 
(b) With proposed method in AP.   

Figure 7.  Average transmission queue length vs. average data rate.   

 
(a) Without proposed method in AP.   

 
(b) With proposed method in AP. 

Figure 8.  Average TCP throughput vs. average data rate.   
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