
A Solution for Bufferbloat Problem in Upload TCP Communication

over IEEE 802.11n WLAN Only by Modifying Access Point

Masataka Nomoto, Celimuge Wu, Satoshi Ohzahata, and Toshihiko Kato

University of Electro-Communications

Tokyo, Japan

e-mail: noch@net.is.uec.ac.jp, clmg@is.uec.ac.jp, ohzahata@is.uec.ac.jp, kato@is.uec.ac.jp

Abstract—IEEE 802.11n Wireless Local Area Networks

(WLANs) suffer from Bufferbloat problem such that the round-

trip delay increases in upload Transmission Control Protocol

(TCP) communications when the Media Access Control (MAC)

level data rate is low such as 6.5 Mbps. This problem degrades

user level quality of service for communications sharing the

WLAN transmission queue. In order to resolve it, several

methods are proposed including a method based on active queue

management, our previous method reducing the MAC

retransmission limit at low MAC level data rates, and a method

stopping sending TCP level data when the queue contains more

than a specific number of packets. However, those methods

need to be implemented in data sending stations. In this paper,

we propose a new method resolving Bufferbloat problem by

providing an effect similar to our previous method at a data

receiving access point. This decreases the congestion window

size in the sending side TCP and can reduce the delay. This

paper also shows the results of the performance evaluation by

implementing the proposed method in an access point.

According to the results, the proposed method decreases the

Round-Trip Time (RTT) for low MAC data rates and does not

reduce the TCP throughput. It does not give any influences on

the TCP throughput for the stations supporting the

conventional methods for Bufferbroat problem.

Keywords- Wireless LAN; IEEE 802.11n; TCP; Dymamic

Rate Switching; Bufferbloat Problem; Block Acknowledgment.

I. INTRODUCTION

WLANs conforming to the IEEE 802.11n standard [1]
have adopted new physical and MAC technologies. They
include Multiple-Input and Multiple-Output (MIMO), the
channel bonding, the frame aggregation, and the Block
ACKnowledgment (Block ACK).

On the other hand, similarly with the conventional IEEE
WLAN standards, IEEE 802.11n supports multiple data rates
and the dynamic rate switching to use the optimal data rate
between a STAtion (STA) and an Access Point (AP). When
an STA is located close to an AP and the radio condition is
good, the high data rate such as 300 Mbps can be used. But,
when an STA moves to the location far from an AP and the
receiving radio signal strength becomes weak, the data rate
gets lower, for example down to 6.5 Mbps.

When an STA communicates by TCP while it is using a
low data rate, the packet losses do not increase, but the RTT
increases largely, up to several seconds [2]. This long delay
is considered as a sort of Bufferbloat problem, which is
discussed widely in the networking community [3]-[5].

In order to solve this problem, there are some proposals
[6]-[8]. All of them intend to decrease TCP traffic load when

packets in a WLAN transmission queue pile up and the
transfer delay increases. They are classified into two
categories. One is a scheme that generates packet losses
intentionally against increased transfer delay, which in turn
decreases TCP congestion window (cwnd). CoDel [6], which
is an active queue management based method, uses a packet-
sojourn time in a transmission queue as a control parameter,
and drops a packet in the situation when packets stay too long
in the queue. In our previous paper [2], we inferred that one
of the reasons for the large queuing delay is the powerful data
retransmission function in 802.11n MAC level, which uses the
frame aggregation and the Block ACK. So, we proposed a
method that intentionally weakens the capability of
retransmission realized by Block ACK frames, only when the
data rate is low in TCP communications [7]. It increases the
possibility of TCP packet losses at low data rate. The second
category is a scheme that TCP stops sending data segments
when many packets are stored in a MAC level transmission
queue. An example is TCP small queues [8], which is
implemented in the Linux operating system with 3.6 and later
versions. For resolving Bufferbloat problem in upload TCP
communications, all of those methods require to be
implemented in every STA. The Linux operating system
implements CoDel and/or TCP small queues, but as far as we
know, the Windows and MAC operating systems do not
implement either of them.

In this paper, we propose a new method which resolves
Bufferbloat problem by providing an effect at a receiving side
access point, which is similar to reducing the MAC level
retransmission limit in STAs when the data rate is low. This
decreases cwnd in the sending side and can reduce the delay.
This paper also shows the results of the performance
evaluation by implementing the proposed method in a
Personal Computer (PC) based AP. According to the results,
the proposed method decreases RTT for low MAC data rates
and does not reduce the TCP throughput. It does not give any
influences on the TCP throughput for STAs supporting CoDel
or TCP small queues.

The rest of this paper is organized as follows. Section II
explains the frame aggregation and Block ACK procedures
and the related work. Section III describes the proposed
method, and Section IV gives the results of performance
evaluation. In the end, Section V concludes this paper.

II. PROCEDURE OF 802.11N AND RELATED WORK

This section describes the high throughput data transfer
function of 802.11n and the related work on Bufferbloat
problem.

8Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

mailto:%7d@net.is.uec.ac.jp

A. Frame aggregation and Block ACK in 802.11n WLAN

IEEE 802.11n allows multiple data frames (called MAC
Protocol Data Units: MPDUs) to be aggregated and sent
together in order to increase the efficiency of data sending (see
Figure 1). The whole transmitted frame is called Aggregation
MPDU (A-MPDU), and is a collection of A-MPDU
subframes, each of which includes an MPDU delimiter, and
MPDU body, and a padding. An MPDU delimiter contains
the MPDU length, a Cyclic Redundancy Check (CRC) to
detect bit errors within the delimiter itself. A padding consists
of 0 through 3 bytes, which makes the length of an A-MPDU
subframe a multiple of 4 bytes.

The IEEE 802.11n standard adopts an acknowledgment
scheme called High Throughput (HT)-immediate Block ACK.
When a receiver receives an A-MPDU, it replies a Block ACK
frame which contains a Block ACK Bitmap parameter
indicating whether it correctly receives a MPDU with a
specific sequence number. The Bitmap indicates receipt or
non-receipt of 64 MPDUs. The data sender retransmits non-
received MPDUs according to the Bitmap. When a Block
ACK frame itself is lost, the whole A-MPDU is retransmitted
by timeout.

These procedures are implemented by the WLAN device
drivers and WLAN hardware at the data sender and receiver.
The details are shown in Figure 2. At the data sender side, the
device driver selects MPDUs to be aggregated in an A-MPDU.
They include some retransmitted MPDUs determined by the
Block ACK Bitmap. The device driver also determines the
retry-out of MPDUs independently if the retransmission count
of the MPDU reaches the retransmission limit. On the other
hand, the WLAN hardware at the sender side realizes the
actual formatting and sending out of A-MPDUs, timeout
retransmission of A-MPDUs, and reporting of Block ACK
Bitmap to the device driver.

At the data receiver side, the WLAN hardware handles the
reporting of received MPDUs to the device driver and the

sending of Block ACKs. The hardware also notifies the
device driver of the information on MPDUs with CRC error.
On the other hand, the device driver handles the sequencing
of MPDUs and the retry-out decisions. The retry-out decision
at the data receiver side is realized by the timeout basis, not
by counting the MPDU retransmissions.

B. Related work

(1) CoDel
As described above, CoDel uses a packet-sojourn time in

the queue. Specifically, when any packet stays in the queue
longer than a specific duration, called target in CoDel, during
a predefined interval, called interval in CoDel, the last packet
in the queue is dropped. As for the value of target, 5 msec is
used in [6]. The interval takes 100 msec at the beginning of
the procedure, and if a packet is dropped, the value is
decreased in inverse proportion to the square root of the
number of drops since the dropping state started.

(2) Decreasing retransmission limit at low data rate
The second method is our previous proposal, which is

based on the MAC level retransmission limit adjustment. It
aims at causing an MPDU loss intentionally by setting the
retransmission limit to some value between 2 and 8 when the
data rate is smaller than 100 Mbps, and use 10, which is the
default value, when the data rate is larger than 100 Mbps [7].

(3) TCP small queues
In an ordinary TCP communication, data that an

application sent are stored in the send socket buffer and
transferred under the limitation of advertised window and
cwnd. In contrast, TCP small queues is a method that transfers
TCP data segments by taking account of the status of
transmission queues within the operating system scheduler
and the WLAN device driver [8]. When the total size of TCP
data segments stored in those transmission queues becomes a
specific threshold (128 Kbytes in the default setting), new data
generated by applications are not handled in TCP and keep
staying in the send socket buffer. After the TCP data size
stored in the transmission queue becomes smaller than the
threshold, TCP module resumes the processing of data stored
in the send socket buffer. As a result, TCP small queues can
suppress the queuing delay without invoking intentional
packet losses even if a low data rate is used.

As described above, all of those methods resolve
Bufferbloat problem over 802.11n WLAN, but they need to
be implemented in individual STAs. Although the recent
versions of Linux implement CoDel and TCP small queues, it
is expected that some of the major operating systems, such as
Windows and Mac OS, support neither of them.

III. PROPOSAL

The primary goal of our proposal is to resolve Bufferbloat
problem in upload TCP communications over 802.11n
WLANs only by modifying an AP, which is an MPDU
receiver. We adopt a method similar with our previous
proposal, which increases MPDU losses by decreasing the
MAC level retransmission limit when the data rate is low. The
retransmission of lost MPDUs is controlled only by data
senders; by STAs not APs in the upload data transfer. The

MPDU
delimiter

WLAN
data frame
（MPDU）

PAD
PLCP preamble,
PLCP header

MPDU
delimiter

WLAN
data frame
（MPDU）

PAD
MPDU

delimiter

WLAN
data frame
（MPDU）

PAD

A-MPDU

A-MPDU subframe PLCP: physical layer convergence protocol,
MPDU: MAC protocol data unit,
A-MPDU: Aggregation MPDU, PAD: padding

Figure 1. Format of A-MPDU.

 Selecting MPDUs to be
aggregated.

 Selecting MPDUs to be
retransmitted based on
Block ACK Bitmap.

 Determining retry-out of
MPDU sending.

 Formatting and transmitting
A-MPDUs.

 Timeout retransmission and
reporting it to device driver.

 Reporting Bitmap in
received Block ACK.

D
evice D

river
W

L
A

N
 H

ardw
are

Data Sender Side

 Ordering recived MPDUs.

 Determining retry-out of
MPDUs.

 Reporting received MPDUs
to device driver (including
MPDUs with bit errors).

 Sending Block ACK frames.

Data Receiver Side

Figure 2. Send/Receive processing of A-MPDUs.

9Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

proposed method emulates the limited number of
retransmissions only at an AP working as an MPDU receiver,
for MPDUs including TCP segments transferred in a low data
rate. This will increase the loss possibility of MPDUs and
invoke the cwnd shrinking. This section describes detailed
design of the proposed method.

A. Design principles

In order to design the proposed method, we have adopted
the following principles. The first one is that we design the
proposed method under the restriction to implement it inside
the WLAN device driver. As described in the previous section,
the retransmission of MPDUs and the sending of Block ACK
are implemented in the WLAN hardware. So, the device
driver at data receiver side cannot control the MPDU
retransmission behavior that a data sender goes up to the
retransmission limit. So, we adopt an approach that, when
MAC level data rate is low, the receiver side device driver
behaves as if retry-out occurred in response to a smaller
retransmission count, and goes further to handling the
following MPDUs. The retransmission count used as the
retry-out limit is called a retry-out index in this paper.

The second principle is that we utilize the information
reported from the WLAN hardware to the device driver as
much as possible. As described above, the WLAN hardware
reports the sequence number of an MPDU which suffers from
transmission error (with CRC error). The proposed method
uses this information as far as it maintains consistency with
other information.

Figure 3 shows the idea of our proposal. STA and Access
Point is connected through WLAN, and Access Point has an
access to Ethernet. Figure 3 (a) shows the idea of our previous
proposal [7]. The retransmission limit is set to 1 in STA.
Frame 3 is transferred with CRC error twice, and so it is
handled as a retry-out event. As a result, Access Point relays
Frame 4 to Ethernet without sending Frame 3. Figure 3 (b)
shows the idea of the method proposed in this paper. While
STA has a large retransmission limit, Access Point supposes
that it is 1. So, at the timing of the second erroneous reception
(the first retransmission) of Frame 3, it is handled as if the
retry-out happens (pseudo retry-out), and the next frame
(Frame 4) is relayed to Ethernet. Even if Frame 3 is received
correctly later, it is ignored.

B. Detailed design

The followings give the details on how to implement the
proposed method.

(1) Retry-out index
The value of retry-out index is selected as shown in Table

I. The value are the same as the retransmission limits used in
our previous proposal [7]. The smoothed data rate used for
the retry-out index selection is calculated according to the
exponential moving average with coefficient 0.25. That is, the
smoothed data rate in Table I is calculated by the following
equation at each of MPDU reception.

𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 ←
0.75 × 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 (𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)

+ 0.25 × 𝑑𝑎𝑡𝑎 𝑟𝑎𝑡𝑒 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑀𝑃𝐷𝑈

(2) Estimation of retransmission count
An AP, an MPDU receiver, estimates the retransmission

count per MPDU basis. The estimation is done based on the
signaling of MPDUs with CRC error from the WLAN
hardware. That is, when an MPDU with CRC error is reported,
the proposed method increases (or set to 1) the estimated count
of receiving this specific MPDU supposing that the signaled
number of MPDU is correct. The retransmission count is the
estimated receiving count minis one. It should be noted that
the retransmission count covers both the Block ACK based
MPDU retransmission and the timeout based A-MPDU
retransmission.

(3) Handling as lost frames when reaching retry-out index
When an MPDU is received with CRC error and it

contains a TCP segment, the estimated retransmission count
is compared with the retry-out index. If the count reaches the
retry-out index, the MPDU is marked as a lost frame. If there
are any buffered MPDUs waiting for being reported to the
upper layer whose sequence numbers follow the number of
the MPDU marked as lost, they will be reported to the upper
layer. Even though an MPDU is marked as lost, an STA
continues the retransmission until its retransmission limit, and
so an AP may receive such an MPDU.

(4) Non-error MPDU handling
When an AP receives an MPDU without any errors, it

takes one of the followings. If the MPDU is marked as lost, it
is ignored. (Note that a Block ACK is sent by the WLAN
hardware.) Otherwise, if the MPDU is an in-sequence one, it
is reported to the upper layer. Otherwise, it is buffered within
the WLAN device driver for waiting in-sequence MPDUs.

C. Example of behavior at AP

Figure 4 shows an example of behavior at AP supporting
the proposed method. The first row in the table indicates
received A-MPDUs; A-MPDU(1) through A-MPDU(7). The
second row indicates the sequence number assigned to
individual MPDUs; 1 to 10. The slash mark over the number
means that the corresponding MPDU is received with CRC
error. For example, A-MPDU(1) includes five MPDUs, and
among them, MPDUs with sequence number 2 and 4 are
received with CRC error.

Figure 3. Idea of our proposal.

Access
Point

STA

1

2

3

4

3

5

Retry-out

1

2

4

5

WLAN Ethernet

(a) STA side control (b) AP side control

Access
Point

STA

1

2

3

4

3

5

pseudo retry-out

1

2

4

5

WLAN Ethernet

3
ignore

TABLE I. RETRY-OUT INDEX.

Smoothed data rate (Mbps) 25～50 50～100 100～～25

Retry-out index 5 8
out of
scope2

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

Each cell in the table shows how the MPDU given in the
second row is handled. The sequence number is indicated in
the first column in the table. Non-blank cells mean the
followings:

 Mark ✔ means the user data contained in the received

MPDU is reported to the upper layer.
 “Keep” means that the received MPDU is buffered

within the device driver.
 “Ignore” means that the user data in the received MPDU

is ignored.
 “Lost” means that the received MPDU is marked as a

lost frame.
 The number in a cell corresponds to the estimated

retransmission count.
In this example, we suppose the retry-out index is two. In

the beginning, A-MPDU(1) contains five MPDUs, among
which MPDU-2 and 4 has CRC error. So, MPDU-1 is
reported to the upper layer and MPDU-3 and 5 are buffered.
For MPDU-2 and 4, the estimated retransmission count is set
to 0.

Similarly, for A-MPDU(2), the estimated retransmission
count of MPDU-6 is set to 0, and MPDU-7 and 8 are buffered.

A-MPDU(3) is an example of the case where a whole A-
MPDU is corrupted. In this case, the information on MPDU
sequence numbers is also reported to the device driver, which
we have confirmed actually. As a result, the values of
estimated retransmission count for MPDU-2, 4, 9 and 10 are
incremented to 1 or set to 0, respectively.

A-MPDU(4) is a timeout based retransmission of A-
MPDU(3), in which MPDU-2 and 9 are correctly received and
MPDU-4 and 10 are corrupted. The receipt of MPDU-2
makes user data within MPDU-2 and 3 reported to the upper
layer. MPDU-9 is buffered, and the estimated retransmission
count for MPDU-4 and 10 is incremented. Since the count for
MPDU-4 reaches 2 (retry-out index), MPDU-4 is handled as
a lost frame at this time. Since buffered MPDU-5 follows the
MPDU marked as lost (MPDU-4), its user data is reported to
the upper layer.

Then, A-MPDU(5) containing only MPDU-6 is received.
Since this is an in-sequence MPDU and MPDU-7 through 9
are buffered within the device driver, user data contained in
all of those MPDUs are reported to the upper layer.

Next, A-MPDU(6) containing MPDU-4 and 10 is received,
and MPDU-4 is again corrupted. Since MPDU-4 is marked

as lost, its retransmission count is just incremented and user
data in MPDU-10 is passed to the upper layer.

In the end, A-MPDU(7) containing MPDU-4 correctly is
received. For MPDU-4, the WLAN hardware sends a Block
ACK, but the device driver just ignores it.

In this way, an AP, an MPDU receiver, sets the retry-out
index to the smaller value than the retransmission limit at an
STA, an MPDU sender, and handles an MPDU as a lost frame
earlier than an STA.

IV. PERFORMANCE EVALUATION

This section describes the results of experiments
measuring the TCP throughput and the RTT of Ping (Internet
Control Message Protocol (ICMP) Echo request/response) in
the situation where Bufferbloat problem occurs. More
specifically, the following points are examined.
 Whether the proposed method suppresses the increase of

RTT or not. As for STA, we use PCs which run the
Linux operating system, Windows and Mac OS.

 Whether MPDU losses introduced by the proposed
method reduce the TCP throughput or not.

 Whether the proposed method gives any influence or not
to the TCP throughput of STAs implementing CoDel or
TCP small queues.

A. Experimental settings

Figure 5 shows the network configuration of our
experiment. An STA and an AP use 5GHz band WLAN
conforming to IEEE 802.11n. The AP and a server are
connected via Gigabit Ethernet link through a bridge, which
provides just bridging in this experiment.

The experiment is performed in a two-storied Japanese
style house built of wood. The server, the AP and the bridge
are located in the 2nd floor. The STA is located at various
locations in the 1st and 2nd floors, and the stairs between them.
The distance between the STA and the AP is about 1.2 meter
at the nearest position and about 10 meter at the far most
position. At one position, the STA is fixed and performs TCP
and Ping communications for 60 seconds.

The AP is implemented using a Linux PC. For STA, we
prepared a Linux PC, a Windows PC and a Mac PC. The
specification of the AP and the STA is given in Table II. As
for the Linux PC, we prepared three versions; a PC without
any methods preventing Bufferbloat problem, a PC with TCP

Figure 4. Example behavior of proposed method. .

11Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

small queues, and a PC with CoDel. As for the PC with TCP
small queues, we used a Linux PC with version 3.13 as it is.
As for the PC without any methods, we used a Linux PC with
version 3.13 by setting the queue limit to 10,000 packets,
which is large enough to suppress the function of TCP small
queues. As for the PC with CoDel, we used a Linux PC with
large TCP small queues’ limit by adding the function of CoDel.

B. Results of performance evaluation

In the experiment, we executed a 60 sec TCP data transfer
from STA to AP, and a 60 sec Ping communication invoked
by STA, simultaneously. TCP data transfer is done by use of
iperf [11]. In the Ping communication, STA sends a Ping
request (ICMP Echo request packet) once a second. For one
measurement run, we measured the average of TCP
throughput, Ping RTT, and transmission queue length in
WLAN driver. As for the last item, we measured only for a
Linux PC.

As for the parameter which characterizes the position of
the STA, we used the average data rate for all A-MPDUs
transmitted during a 60 sec communication. We mapped the
measured values with the average data rate. This is a similar
approach with our previous paper [7].

Figure 6 shows the result of average Ping RTT versus
average data rate. One plot in the graph corresponds an
average during one measurement run. “none”, “tsq” and

“codel” indicate the results of Linux PC without any methods,
Linux PC with TCP small queues, and Linux PC with Codel,
respectively. “windows” and “mac” indicate the results of
Windows PC and Mac PC, respectively.

Figure 6 (a) shows that, in the case the proposed method
is not introduced in the AP, the Ping RTT of Linux PC without
any methods, Windows PC, and Mac PC becomes large when
the average data rate is lower than 20 Mbps. The worst case
is around 700 msec. In Linux PC with TCP small queues or
CoDel, the Ping RTT is around 200 msec when the average
data rate is lower than 20 Mbps.

These results mean that Windows 10 and Mac OS X do
not support any mechanisms to prevent Bufferbloat problem,
and that TCP small queues and CoDel can suppress the
increase of delay.

Figure 6 (b) shows that, when the proposed method is
implemented in the AP, all of Linux PCs, Windows PC and
Mac PC do not suffer from large delay even if the average data
rate is lower than 20 Mbps. Especially, the reduction of Ping
RTT is clear for Linux PC without any methods, Windows PC
and Mac PC, which do not care about Bufferbloat problem.
This result means that the proposed method is effective for
preventing the increase of delay caused by Bufferbloat
problem.

Figure 7 shows the result of average WLAN transmission
queue length versus average data rate, in Linux PCs. In the
case the proposed method is not introduced, around 600
packets are stored in transmission queue for any data rate in a
Linux PC without any methods (Figure 7 (a)). This length is
considered as cwnd in TCP communication [2]. On the other
hand, in a Linux PC introducing TCP small queues or CoDel,
the average queue length is reduced to around 100 packets,
and as a result, the delay is reduced.

Figure 5. Experiment configuration.

TABLE II. SPECIFICATION OF AP AND PC.

Linux PC Windows PC MacAP

model Mac Book ProLenovo ThinkPad X61

kernel Linux 3.13.0 Window 10
Mac OS
10.11Linux 3.2.38

WLAN MAC IEEE 802.11n (5GHz)

TCP congestion
control

CUBIC TCP
[9] Default method of OSー

AP software ー ー ー
Hostapd

0.7.3

NIC BroadcomNEC Aterm WL300NE-AG

Driver Default software of OSath9k [10]

(a) Without proposed method in AP.

(b) With proposed method in AP.

Figure 6. Average Ping RTT vs. average data rate.

12Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

Figure 7 (b) shows that, when the proposed method is
introduced, the average queue length in STA is suppressed to
less than 50 packets when the average data rate is lower than
50 Mbps. As a result, the delay is also suppressed. When the
average data rate is higher than 50 Mbps, the average queue
length increases in a PC without any methods, but it is not a
problem because the Ping RTT itself is small as shown in
Figures 6 (a) and 6 (b).

Figure 8 shows the result of average TCP throughput
versus average data rate. As shown in Figure 8 (a), the TCP
throughput is not affected by Bufferbloat problem. Besides,
Figure 8 (b) shows that the result of TCP throughput is similar
for both cases with and without the proposed method installed
in the AP. This means that the proposed method does not
influence the TCP throughput of STAs implementing TCP
small queues or CoDel.

V. CONCLUSIONS

This paper has proposed a new method that is installed
only at an IEEE 802.11n AP and can reduce the delay in
upload TCP communications. The proposed method realizes
similar effect with decreasing the retransmission limit at low
MAC level data rate. The proposed method can prevent
Bufferbloat problem in upload TCP communication without
modifying sender side STAs at all. This paper also presented
the detailed performance evaluation. The results clarified that
the proposed method surely reduces the Ping RTT from STA
when TCP bulk data transfer co-exists, that it does not reduce
the TCP throughput, and that it does not give any influence to
that of STAs implementing TCP small queues or CoDel,
which are well-known methods for resolving Bufferbloat
problem.

REFERENCES

[1] IEEE Standard for Information technology,”Local and metropolitan
area networks Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications,” 2012.

[2] M. Nomoto, T. Kato, C. Wu, and S. Ohzahata, “Resolving Bufferbloat
Problem in 802.11n WLAN by Weakening MAC Loss Recovery for
TCP Stream,” Proc.12th IASTED PDCN, pp. 293-300, Feb. 2014.

[3] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”
ACM Queue, Virtualization, vol. 9, no.11, pp. 1-15, Nov. 2011.

[4] M. Allman, “Comments on Bufferbloat,” ACM SIGCOMM Computer
Communication Review, vol.43, no.1, pp. 31-37, Jan. 2013.

[5] A. Showail, K., Jamshaid, and B. Shihada, “An Empirical Evaluation
of Bufferbloat in IEEE 802.11n Wireless Networks,” Proc. IEEE
WCNC ’14, pp. 3088-3093, Apr. 2014.

[6] K. Nichols and V. Jacobson, “Controlling Queue Delay,” ACM Queue,
Networks, vol.10, no.5, pp. 1-15, May 2012.

[7] M. Nomoto, C. Wu, S. Ohzahata, and T. Kato, “Resolving Bufferbloat
in TCP communication over IEEE 802.11n WLAN by Reducing MAC
Retransmission Linit at Low Data Rate,” in Proc. ICN 2017, pp. 69-74,
Apr. 2017.

[8] E. Dumazet, “[PATCH v3 net-next] tcp: TCP Small Queues,” Jul. 2012,
http://article.gmame.org, [retrieved: Aug. 2017].

[9] I. Rhee and L. Xu, “CUBIC: a new TCP-friendly high-speed TCP
variant,” SIGOPS Operating Systems Review, vol.42, no. 5, pp. 64-74,
July 2008.

[10] ath9k Linux Wireless, http://wireless.kernel.org/en/
users/Drivers/ath9k, [retrieved: Aug. 2017].

[11] iperf, https://github.com/esnet/iperf, [retrieved: Aug. 2017].

(a) Without proposed method in AP.

(b) With proposed method in AP.

Figure 7. Average transmission queue length vs. average data rate.

(a) Without proposed method in AP.

(b) With proposed method in AP.

Figure 8. Average TCP throughput vs. average data rate.

13Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

