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Abstract – The Transmission Control Protocol (TCP) is  a
traffic carrier protocol and the only one that counts for 
reliability. TCP incorporates a sliding window mechanism which 
controls the traffic flow from source to destination. The behavior 
of the window is of critical importance to TCP’s performance.
TCP operates on an end-to-end basis, based on routes provided 
by a routing algorithm. Reliability issues dictate the need of 
alternate routes serving either as backup routes or as load 
balancing routes. The exact role of alternate routes is defined by 
the network manager. We point out that large scale topologies 
are more close to real networks in many aspects, and so they 
deserve more attention.  We study the TCP window’s behavior 
for two major TCP versions and we address design issues,
constraints and tradeoffs for large scale, similar to real, network 
topologies.

Keywords-Transmission Control Protocol (TCP); Congestion 
avoidance and control; Sliding Window mechanism; Network 
Simulator NS2; Network topology.

I. INTRODUCTION

Nowadays, billions of people are connected to each other, 
usually via internet. There are two common used traffic 
carriers used for carrying all this traffic. The Transmission 
Control Protocol (TCP) and the User Datagram Protocol 
(UDP). TCP main goal is to reliably carry users’ traffic from 
source to destination. As no one can guarantee links’ integrity 
and limit possible losses or packet delays, TCP’s reliability 
feature lies on a mechanism that can check the received data 
for errors and/or missing packets. TCP checks the received 
packets, informs the source and, if needed, requests
retransmission of specific data packets.

TCP not only merits for reliable data transmission but also 
tries to control the flow of data in order to avoid congestion, 
by incorporating a sliding window mechanism. TCP’s sliding 
window mechanism tries to serve as many users with as much 
traffic as possible. Sometimes the total amount of traffic posed 
by users may exceed networks’ capacity. If this happens, long 
delays and high packet losses naturally occur, slowing down 
the network and degrading its performance.

So, there is a trade off between throughput and delay-
losses which has to be judged carefully.  

Last but not least, TCP counts for fairness, meaning that it 
treats all users the same, thus ensuring that all users get a fair 
share of bandwidth.

TCP operates on an end-to-end basis, transmitting on routes 
provided by a routing algorithm. Generally, a routing 
algorithm finds the best route from a source node to a 

destination one. However, in an Internet provider’s core 
network serving millions of clients, reliability issues dictate 
the need of alternate routes. Alternate routes may be standing 
by, to be used in case of a failure, or can be simultaneously 
used with the best ones for load balancing. This is due to the 
network manager to decide. 

Alternate routes have to be defined prior to transmission, 
because, when serving millions of connections and a link fails,
you do not have the luxury (of time) to wait for the routing 
algorithm to calculate new routes. So, alternate routes must be 
known before the network starts transmission and must be 
used accordingly to the manager’s decisions. Other issues to 
be taken care of are how to define alternate routes, how many 
should they be and how different from the basic route and 
from other alternate routes should, or can, be.

This work is organized as follows: Section II deals with 
the congestion avoidance basics used in TCP networks. 
Sections III presents some of the existing TCP versions. 
Section IV describes the network topology. Section V 
comments and discusses issues on topology design. Section VI
presents the simulation results. Finally in Section VII, we 
present the conclusion and thoughts for future work.

II. CONGESTION AVOIDANCE BASICS

If users enter a network in an uncontrolled manner, the 
amount of traffic to be carried may exceed the total network 
capacity.  In this case, the effective throughput (thus the 
number of packets that manage to reach their destinations with 
success) decreases and may approach zero. The phenomenon 
during which throughput declines towards zero is called 
congestion collapse [7].

The main goal of congestion avoidance and congestion 
control algorithms is to prevent a network from congestion 
collapse. The main mechanism evolved towards this goal is 
the sliding window mechanism.

As defined in [7], the congestion window is a TCP sender’s 
estimate of the number of data packets which the network can 
manage to transmit towards destination, without causing 
congestion. In this case, we must note that flow control aims 
to prevent the destination’s buffer from overflow and uses the 
so-called receiver window. Since usually the end (receiving) 
systems can process the delivered packets faster than the 
network can transmit them, it is assumed that the congestion 
window (and not the receiver window) is the main network 
load limiting factor. So, one easily can understand that the 
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behavior of the congestion window is of critical importance to 
TCP’s performance.

III. TCP VERSIONS

TCP as an end-to-end protocol relies on information 
gathered at the two network ends. So the communication 
subnet is viewed like a black box [7].  As mentioned earlier 
TCP tries to avoid congestion in order to avoid congestion 
collapse. Another TCP main objective is to maintain fairness
that is to equally divide the available network capacity among 
the bandwidth competing users.

A table giving the main features of the various TCP 
variants can be found in [7], where we also can found an 
evolutionary graph of various TCP versions.

TCP versions can be categorized [7] as Reactive ones, 
which base their decisions on detection of losses, and 
Proactive ones, which base their decisions on delay 
measurements.

A. TCP Tahoe
Proposed by V. Jacobson in [1], TCP Tahoe is based on 

the original TCP specification RFC 793 [8]. It consists of two 
mechanisms the Slow Start and the Congestion Avoidance. 

The window’s increase policy is triggered by the in-time 
reception of an ACK (acknowledgment) which probably 
means that the network is coping well with the current traffic, 
and so, naturally, traffic can be increased.

This congestion avoidance algorithm was found quite 
effective [1] [7]. Its only drawback is its relatively slow 
discovery and use of the network’s capacity due to the 
conservative nature of the additive increase policy. Also, the 
combination of Slow Start and Congestion Avoidance 
mechanisms result in good behaviour regarding fairness [7].

B. TCP Reno 
TCP Tahoe sets the congestion window equal to one upon 

a packet loss, why? Because it “smells” congestion and feels 
that the session must limit the amount of data that poses into 
the network. However, this policy is rather strict and can 
sometimes lead to major throughput degradation, punishing 
the users for the lost packet they experienced.  

So Jacobson et al. [8] renew the Slow Start and Congestion 
Avoidance mechanisms to count for different congestion states 
of the network. 

A major congestion network state is defined as the state 
where the network can hardly deliver any packets. In this case 
a decrease mechanism should be strict in an effort to quickly 
deal with this unwanted state.

A minor congestion network state is defined as the state 
where the network can and does deliver some packets. This 
case is triggered by a supposed loss packet, based on duplicate 
ACKs evidence. 

In this case we prefer a less strict decrease mechanism. 
This less strict mechanism is used in TCP Reno and is 

called Fast Recovery [7] [9].

Incorporating Slow Start, Congestion Avoidance, Fast 
recovery and Fast retransmit TCP Reno shows a significantly 
better performance and achieves higher throughputs. TCP 
slow start approach is also discussed in [2].

C. TCP Vegas
TCP Vegas was presented by Brakmo and Peterson in [6]. 
As noted in [6], TCP Vegas aims to measure and 

accurately control a “right” amount of extra traffic in the 
network. Extra traffic would not otherwise have been accepted 
in the network.

TCP Vegas uses a proactive mechanism in order to replace 
the reactive Congestion Avoidance algorithm. 

As shown in [7], TCP Vegas has the advantage of 
achieving rate stabilization in a steady state. Rate stabilization 
together with the absence of unwanted oscillations of the 
window size, can lead to higher values of throughput.

Other TCP versions are TCP Africa [3] which is a delay-
sensitive congestion avoidance approach incorporated in 
networks of high bandwidth delay product (BDP) and 
Compound TCP (CTCP) [10] which a synergy of delay-based 
and loss-based approach. 

IV. LARGE SCALE NETWORK TOPOLOGY: WHY AND 
WHERE?

TCP variants have been extensively simulated. However, 
in many studies [3] [4] [6] [7] [10] [13], the topologies tested 
are somewhat small (and sometimes trivial). In [4], a four-
node backbone network topology with numerous nodes 
attached to the four nodes is used. In [11], a larger topology is
tested but with a relatively small network core, and in [13], a
fat-tree network topology is used with the question of how it 
can be applied in data center networks.

As mentioned in [3] several modern applications such as 
supercomputer grids and large biological simulations often 
have the need to transfer data between different continents. So, 
naturally, data need to travel through several nodes, and,
apparently, large topologies.

Also, large telecommunication and internet regional 
providers operate on their private networks which are usually 
expanded all over the country. Other large institutions with 
Wide Area Private Networks (such as banks) also operate over 
a large area.

For all the above reasons we decided to simulate TCP 
versions over a large scale network topology, which was first 
introduced in [5] and also used in other studies [12]. By large 
we mean a network that is close to a regional network 
provider’s backbone network, for example, a provider
operating in a medium sized country (i.e. in Europe, not 
China!) who can use these 19 nodes to locate a router (or a 
Layer-3 switch) in each of the major country’s cities.

Large scale networks provide a realistic simulation 
environment as they are close to real ones. They have real 
world’s characteristics and if suitably modified can match 
exactly real networks of providers and/or banks. Figure 1 
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shows the topology of the network used and Figure 2 shows 
the 32 sessions simulated.

Fig. 1: The large scale network topology used

Fig. 2: Network’s traffic matrix

More specifically, if the topology is to be used for 
simulating a real network, the sessions must be modified to 
reflect the common case in such networks, where a central 
node is always the capital of the country, and all other nodes 
have a connection (direct or via other nodes) to it. Network 
reliability issues dictate the need of alternative routes for every 
communicating node pair. 

So, a problem of defining the alternative routes arises. This 
problem is rather complicated as the network manager need 
not only to define the alternate routes but also guarantee that 
the network will continue to transmit in the case of more than 
one link failure. Moreover, the alternate routes must be chosen 
in a manner that, in case of a failure, they will not pose more 
traffic in certain links that are already heavy loaded.

V. ISSUES ON LARGE SCALE NETWORK TOPOLOGY 
DESIGN

A network manager in a major communications provider 
expanded over a whole country faces many problems. As in 
real life, a manager cannot start designing from a white sheet, 
because various constraints usually pre-exist and make the 
design more complex.

For example, in a network expanded in a whole country
(i.e., internet provider network, bank network, universities 
network), usually (if not always) the major cities are hosting 
the major network nodes. Moreover, the country’s capital 
usually hosts the central network node (or nodes). Although 
nobody suggests not do, a manager usually do not pose a 
network node in the middle of nowhere. So? So, there exists a 
somewhat predefined network topology and the only design 
freedom is designing the connections between the “existing” 
cities-nodes.

One of the first questions to be answered is which type of 
topology to use. To answer, one must first answer another 
question: What exactly a network manager expects from a 
topology?

As serving thousands or millions of customers and/or 
connections, what one mostly wants from a topology is fault 
tolerance. Speed and availability may wait a little. So, a large 
scale network topology for a major communications provider 
must have alternative routes assuring connectivity even in the 
event of a failure. By “must have” we mean that the 
alternative routes have to be specified and standing-by as the 
network operates. Why? Because in case of a failure, with 
millions of connections being served, the network does not 
have time to waste and it would be a small disaster to wait for 
a routing algorithm to run (again) and calculate new routes.

Another question is how many failures must the topology
be able to successively overcome?

As noted before, a common practice is that the network 
central core node (or nodes) are usually placed in the 
country’s capital, i.e., Athens for Greece, Rome for Italy and 
so on, following the well known “All roads lead to Rome”.

So, usually the central network node is predefined and 
there exist network nodes which have to connect to the central 
node. How will the manager do that?

A. Geographical constraints
A known rule in backbone networks is that each network 

node must have at least two connections, each one connected 
to a different core node, obviously for reliability reasons. 
However, sometimes this is not easily achievable. Suppose a 
city is located high in the mountains or in a somehow isolated 
island (i.e., Kastelorizo in Greece), having only one major city 
in nearby distance and all others either far away or 
geographically difficult to reach and connect.

An alternative to this difficult situation is to use two 
separate links from city to city. These separate links must 
preferably follow a totally different route. Why? Because if 
placed side-by-side they are both vulnerable to the same 
failure if something goes wrong at their common route. So,

From node To nodes

n1 n9, n19
n2 n18
n3 n4, n11, n17
n4 n3, n10, n13
n5 n12
n6 n14
n7 n16
n8 n15
n9 n1, n19
n10 n4, n13
n11 n3
n12 n5
n13 n4, n10, n17
n14 n6
n15 n8
n16 n7, n18
n17 n3, n13
n18 n2, n16
n19 n1, n9

Traffic Matrix 32 sessions 
Source/Destination
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one have to connect cities which cannot (due to geographical 
or economical restraints) have duplicate links with other 
cities/nodes, with dual or triple links with the same city/node, 
providing that these links follow different routes. How 
different? Surface morphology, distance, accessibility and cost 
will decide.

This technique can “save lives”, meaning that can make 
the ring topology tolerant to single, double or even triple link  
failures, as it acts like a whole backup network.

B. Ring Topology
Classical ring topology offers a reliability feature over a 

single failure. If a single link failure occurs, communication 
between all nodes is still achievable through the remaining 
active part of the ring. Figure 3 notes that, although for clarity 
reasons the ring network is shown as a rectangular one.

Fig. 3: A ring network experiencing a single link failure 
can still transmit packets.

But what if two link failures occur? Then you have a big 
problem, as your ring is separated in two parts, as in Figure 4.

Fig. 4: A ring network experiencing a double link failure 
is separated in two parts.

This problem can be solved by adding a network node in 
the middle of the ring. This node, if connected by two other 
nodes, as shown in Figure 5, technically divides the original 
ring into two sub-rings. This topology can tolerate two 
simultaneous network link failures, if each one of them is in 
different sub-ring. If the two link failures occur in the same 
sub-ring, the nodes between failures are isolated from the 
other nodes.

Also, if one (of the two) link failure occurs on the common 
part of the two sub-rings, communication from every node to 
every other node will be still achievable.

Fig. 5: A ring network divided in two internal rings.

C. Star topology
Naturally, capital’s central node is the center of a star 

topology and all other cities-nodes are directly connected with 
it. Again, the only freedom one has is to choose the link 
connections. Fault tolerance reasons dictate the need of at least 
two links connecting each node with the central node. Also, as 
noted earlier in the ring topology analysis, it is a safer 
technique (although obviously more expensive) to use 
different routes for the links connecting each city-node to the 
central node.

So, one has to install two or more links between peripheral 
cities-nodes and the central node/nodes, each one of them 
preferably following different physical route.

D. Final decisions
So, finally, the topology is chosen and network links are 

installed. After that, the routing algorithm specifies the
optimal and the alternative routes from all sources to all 
destinations. One big dilemma is whether the alternative 
routes should be used concurrently with the optimal ones, or 
should be used only as backup, thus stand-by and be used only 
in case of a failure.

The concept of using multiple routes to split traffic more 
efficiently over the available network capacity has been 
extensively explored by many researchers. One of the most 
analytical design called mTCP, is presented by Zhang et al in 
[14] and efficiently faces all problems raised.

Nowadays networks’ response and speed are not a major 
problem. However, if it becomes (not temporarily, but for a 
long time), adding some high bandwidth links is generally a 
fair and cheap, in the long run, solution. A network manager 
except from failures (the frequency of which have to be 
examined), speed and availability must also merit for 
simplicity of protocols and algorithms used. So, an easy and 
“clean” solution would be to choose the second alternative to 
the big dilemma, which is to let the alternative routes standing 
by and send traffic to them only in case of a failure.

In this case it would helpful the alternative routes to be as 
“different” as possible from the optimal ones and, at the same 
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time, do not use links used by other active routes. An 
interesting and relatively simple approach for finding non-
overlapping and disjointed routes is presented at [14].

VI. SIMULATION RESULTS

We conducted various simulations to observe and verify 
the behavior of the congestion window, the packet loss 
probability and the total throughput. We used NS2 and the 19
node network topology described in section 4. All links was 
set to 20 Mbps, links’ propagation time was set to 10ms, and 
drop-tail type of queue was used. Standard NS2 packet size of 
1000 bytes was used. As a means to avoid starting the window 
size from one in a lightly loaded network and the algorithm 
being slow in gaining bandwidth, we set the initial window 
size advertised by the receiver to various predefined values at 
the range from 10 to 100 packets. 

Figures 6 and 7 show the window size versus time for TCP 
Reno and TCP Vegas respectively for initial window size of 
twenty (20) packets, for six (6), (2, 14, 18, 19, 24, 32) more 
representative of the topology, sessions. We observe that for 
TCP Reno the congestion window can reach large values in 
some flows. Which are these flows? Obviously these are flows 
that are not using same links with others, or in other words 
flows operating at a less crowded part of the network.

Fig. 6: The congestion window in time, 6/32 flows (TCP Reno)

Let’s now focus on Flow 14 (blue colour at Figures 6, 7) 
which has mode n9 as source node and node n1 as destination. 
Thus Flow 14 transmits from a “central” node to a peripheral 
one. If it was a real internet provider’s network, node n9 as the 
central node, would represent the capital of the country, and 
node n1 a nearby city. As Flow 14 is close to the central node, 
uses common routes with other sessions, and so, it cannot 
reach high window values. Why? Because TCP counts for 
fairness, and so, it divides equally the available bandwidth to
the competing users on Flow’s 14 links.

Fig. 7: The congestion window in time, 6/32 flows (TCP Vegas)

Total network statistics for TCP Reno and TCP Vegas,  for 
all tested initial advertised window sizes follow, Tables 1 & 2. 

Both TCP Reno and Vegas manage to send approximately 
the same amount of data packets all over the network. TCP 
Vegas due to its higher sensitivity manages to keep packet 
losses lower and so results to lower packet loss probabilities, 
as shown in Figure 8. One special characteristic of TCP Vegas 
is that it is hardly affected by the initial window size 
advertised by the receiver as because of its delay based 
mechanism it immediately senses network’s capacity and 
adjusts the window size accordingly. TCP Vegas ends with 
lower packet loss probabilities for the same throughput, and,
so, seems a better choice.

We observe that rising the initial advertised (by the 
receiver) window size beyond a mid-range value (at about 50-
60) does not bring any benefits, because in this case we 
practically pose big loads at the beginning of network’s 
operation. TCP congestion control reacts to these big loads 
and limits them quickly. So, we end up with higher packet loss 
probabilities, while the total gain in throughput is marginal.

Fig. 8: Packet Loss Probability vs Initial window size 

for TCP Reno and TCP Vegas.
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TABLE 1: TOTAL NETWORK STATISTICS, TCP RENO

TCP Reno 

Init 
WS 

 

Sent 
packets 

 

Received_
packets 

 

 
 

Lost 
packets 

 

 
 

Packet   
Loss 

Prob*10-3 

 
Average 
Throug
hput[kb

ps] 
10 3114834 3114834 0 0 124585 

20 5635813 5633828 1985 0,352212 225473 

30 6904954 6899838 5116 0,740917 276289 

40 7801538 7793820 7718 0,989292 311092 

50 8368958 8359581 9377 1,12045 333815 

60 8810732 8799548 11184 1,269361 351547 

70 9016960 9003685 13275 1,472226 359587 

80 9264323 9250711 13612 1,469292 370031 

90 9304494 9291314 13180 1,41652 371485 

100 9291425 9277248 14177 1,525815 371886 

TABLE 2: TOTAL NETWORK STATISTICS, TCP VEGAS

TCP Vegas 

Init 
WS 

 

Sent 
packets 

 

Received_
packets 

 

 
 

Lost 
packets 

 

 
 

Packet   
Loss 

Prob*10-3 

 
Average 
Throug
hput[kb

ps] 
10 3116546 3116546 0 0 124610 

20 5730241 5729683 558 0,097378 229124 

30 7177305 7176492 813 0,113274 287016 

40 8093051 8092230 821 0,101445 323621 

50 8717150 8716294 856 0,098197 348557 

60 8883430 8882725 705 0,079361 355232 

70 9070137 9069304 833 0,09184 362268 

80 9237489 9236605 884 0,095697 369345 

90 9220422 9219505 917 0,099453 368156 

100 9240714 9239887 827 0,089495 369496 

Generally speaking, it is not a good idea to let critical 
factors take large values in order to gain some benefits in a 
specific performance measure (with Higher is Better 
relationship). This policy, due to trade-offs, will probably lead 
to an equal (if not higher) degradation of another contradicting 
performance measure and the final result will be worse. This is 
a “rule” that comes true not only in computer networks but 
also in many aspects of engineering and life.

VII. CONCLUSION AND FUTURE WORK

We studied TCP Reno and TCP Vegas in a large scale 
network topology. Both versions prevented severe congestion, 
while TCP Vegas showed better performance. 

Also, we commented on large scale network topologies. A 
big dilemma faced is whether to use the alternative routes 
concurrently with the optimal ones, or let them standing-by 
and use them only in case of a failure. Both options are well 
used in Greece major telecommunication networks. In either 
case, algorithms for defining the alternative routes, like the 
one proposed in [14], must be investigated. 

If one chooses to concurrently transmit on alternative-
backup routes except from the obvious overhead added, will 
also, most probably, face packet re-ordering problems. Packet 
re-ordering in TCP results in major performance degradation 
[13], and is another area of interest.

We are currently working on the problem of efficiently 
choosing, using and administrating the alternative non-
overlapping backup routes in a large, close to real, network 
topology.
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