
Network Functions Evaluation of Hardware Accelerated NFV Platform in View of

5G Requirements

Athanasia-Nancy Alonistioti

Department of Informatics & Telecommunications

National Kapodistrian University of Athens

Athens, Greece

email: nancy@di.uoa.gr

Abstract— Network Function Virtualization (NFV) enables the

implementation of “softwarized” network functions, using a

shared hardware substrate. However, such functions are

expected to offer performances comparable to native hardware

environments. Therefore, increasing the performance of

"software-based" Network Functions (NFs) that are executed

on commodity hardware servers is an emerging challenge that

should be addressed to fulfill the vision of NFV. Hardware

accelerators, such as Many Integrated Core Architectures

(MICs), Graphic Processor Units (GPUs) and Field

Programmable Gate Arrays (FPGAs) are a valuable asset that

can be paired with commodity servers to boost up network

services performance. In this paper, we present an analysis of

two commonplace network functions: a) Routing, b) Firewall

and evaluate their implementation in an NFV middlebox

combining software based network functions along with

hardware accelerated ones in view of their applicability for 5G

and interworking with Broadband Forum (BBF) network

segments. Finally, we present detailed experimental results of

CPU, GPU and FPGA solutions for these functions (routing,

firewall and DPI) in order to evaluate their performance and

verify their suitability for incorporation in hardware-

accelerated NFV platforms.

Keywords- 5G; Network Function Virtualization; Network

services.

I. INTRODUCTION

Virtualization is the ability to implement a functionality
separated from the hardware and simulated as a “virtual
instance”. Modern networks increasingly rely on advanced
network processing functions for a wide spectrum of crucial
functions ranging from security (firewalls, Intrusion
Detection Systems (IDS), etc.), traffic shaping (rate limiters,
load balancers), dealing with address space exhaustion
(Network Address Translation (NAT)) or improving the
performance of network applications (traffic accelerators,
caches, proxies), to name a few.

Middleboxes are defined as intermediary boxes
performing these network functions and represent the defacto
approach for network evolution in response to changing
performance, security, and policy compliance requirements.
NFV brings a new era in network virtualization by involving
the implementation of software-based middleboxes that
implement such NFs in software and can run on standard

server hardware. Such NFV middleboxes are suitable nodes
for implementing a virtualization scheme in the basis of
“Network Function as a Service (VNFaaS)” as defined in the
NFV standardization process [1]. ICT research community
seeks to address this issue [2] by shifting software solutions
running on top of modern multi-core systems that have good
flexibility and programmability, but they inherently lack high
parallelism and quickly become the performance bottleneck
for more compute-intensive applications, to a decoupling
from dedicated hardware solutions. For example, even the
best multi-core software algorithms today for routing and
firewall can only achieve a rate of up to 30 Gbps [6], which
is an order of much less than the widely deployed 100 Gbps
links used in large Internet Service Provider backbones and
Data Center networks. Moreover, taking into consideration
that the performance vision in the era of 5G wireless
networks is to achieve a 10Gbps individual user experience
[3], the Internet Service Provider backbones and Data Center
networks will boost their bandwidth needs in the scale of
Tbps. Therefore, increasing the performance of "software-
based" network services that are executed on commodity
hardware servers is an emerging challenge that should be
addressed to fulfill the vision of "software-based" network
services through NFV. Modern commodity servers can be
paired with hardware accelerators (Many Integrated Core
Architectures (MICs), Graphic Processor Units (GPUs) and
Field Programmable Gate Arrays (FPGAs) to boost up their
performance. Such accelerators are a valuable asset and can
be exploited to offload on demand the "software-based"
network services that cannot comply with high performance
demanding NFV environments. In this direction, the work
presented in this paper explores the pairing of modern
hardware accelerator (MICs, GPUs, and FPGAs) with
commodity hardware to build a scalable hardware
accelerated NFV platform to speed up NFs and support NF
reallocation to different accelerators on demand. Important
NFs to be considered in this paper are a) Routing and b)
Firewall. These are very important NFs in view also of the
needs for Broadband Forum (BBF) and 5G 3GPP
interworking for the seamless application provision and QoS
requirements between the involved network segments [14].

The rest of this paper is organized as follows. Section II
presents related work and in parallel examines the considered
NFs, their characteristics, their challenges and the

72Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

applicability of hardware acceleration on them. Section III
presents experimental results to evaluate and compare the
performance of software and hardware assisted
implementations of these use cases. Finally, Section IV
concludes this paper.

II. NETWORK FUNCTIONS: RELATED WORK

IDENTIFICATION AND NFV CHALLENGES

In this section, we present the two aforementioned NFs a)
Routing, b) Firewall. An overview of algorithmic schemes,
applicability of hardware acceleration, advantages, related
work and NFV tradeoffs are discussed for each use case.

A. Routing

IP Router functionalities are grouped into two categories,
packet processing and packet forwarding. Routing table
lookup is the most critical packet processing algorithm and
has been extensively discussed in the literature, as it is
considered the main bottleneck in router performance [4].
Therefore, we focus on routing table lookup process, which
is the main performance bottleneck and we omit discussing
updating process. Key metrics used to evaluate routing table
lookup performance are searching time, dynamic updates
and memory requirements. In software routing table lookup
schemes [4], tries are the dominant solution for the
organization of IP Router Forward Information Base (FIB)
and the service of IP lookup requests in virtualized
environments [5]. Multibit tries are a subcategory of tries
that achieve a speedup of the lookup process as multi-bit
tries examine strides of bits at a time and lower total memory
accesses, as shown in Fig. 1.

Figure 1. Multi-bit trie representation of a FIB.

Moreover, further speedup can be achieved by the
processing of “IP request” in large batches if parallelism in
lookup process can be implemented. Towards this direction,
GPUs can instantiate thousands or threads in parallel that can
be exploited to boost performance in trie lookup process. In
addition, there are three characteristics in IP table lookup
process that make GPU implementations a tempting
alternative [6], [7].

•IP requests in large batches: In real routers, IP requests
can form batches of more than 216 concurrent requests.

However, the bigger the size of a batch, the better is the
utilization of GPU computing capabilities.

•IP requests locality: In real traffic conditions, IP requests
present repetition (e.g., UDP flows, TCP bursts). This feature
boosts performance in GPU, since accessing adjacent
memory positions is extremely fast in GPU oriented
implementations.

•GPU memory coalescence: extremely large FIBs (i.e.,
more levels in a trie) do not always mean more references in
memory and thus lower lookup speed. Due to coalescence in
GPU memory, the size of each level of the trie also affects
the performance in parallel lookup.

On the other hand, one of the deficiencies of GPU is that
host memory and GPU are separate units and thus transfer of
data between host and device memory is inevitable. In order
to alleviate time consuming I/O transactions, batch of
requests can be divided into several groups executed on
independent kernels on different streams in order to achieve
I/O transactions pipelining [8]. Hardware-based routing table
lookup schemes [9] fall in two categories: TCAM-based
(TernaryContent Addressable Memory) and SRAM-based
(Static Random Access Memory) solutions.

B. Firewall

Firewalls usually respond in synergy with IP routers.
Firewall architectures have the same unique scope; to
examine packet headers under a hierarchical set of rules and
either discard or accept them. An indicative example of
firewall policy rules is presented in Fig. 2. Without loss of
generality, we will focus on the most used but simplest
architecture of firewalls, the stateless firewall, to present the
algorithmic schemes for purely software and hardware
accelerated approaches along with their advantages and
tradeoffs.

Figure 2. Firewall Rules.

The main pitfall in software-based firewall solutions is
the linear search of the ruleset for every packet (ruleset may
exceed 1K rules in many cases). Even though, linear search
is a non-sophisticated searching algorithm, it is followed by
open source and commercial products. Firewall rules usually
are dominated by TCP protocol rules. For example, a typical
distribution with regards to the protocols is:

75% TCP, 14% UDP, 4% ICMP, 6%, 1% other [13].
Taking into consideration that firewall rules are examined
sequentially and UDP rules are usually positioned at the

73Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

bottom of the hierarchical list, the performance of firewall
degrades sharply. Towards this direction research efforts
propose several optimization approaches such as rule
reordering, multilevel filtering, statistical analysis and data
mining techniques to predict the rules best suit to every
packet, etc. Since firewalls usually work in synergy with IP
routers, GPU is a promising alternative for firewall as well
and firewall implementations can exploit the GPU features
that are also exploited for routing schemes to speed up their
performance.

Hardware-based firewall schemes are also either TCAM-
based or SRAM-based solutions. TCAM solutions can
perform fast parallel searches over all entries in one clock
cycle but are not scalable to bigger rulesets. SRAM-based
solutions are more scalable but cannot perform parallel
searches.

However, when combined with pipelining and bit vector
(BV) splitting algorithms [11] they can perform parallel
searches on individual fields of a packet header to increase
performance. Finally, when firewall schemes combine BV
splitting algorithms, deep pipelining and multiport RAMs in
modern FPGAs, these hardware implementations can
achieve high performance by processing up to two packets
per clock cycle.

III. EXPERIMENTAL RESULTS

In this section, we examine the three considered NFs
(routing, firewall, DPI) that are included in the NFV
middlebox. We evaluate the achieved performance both in
CPU, GPU and FPGA implementations of the above
described algorithms for these NFs. We have utilized the
implementations of [7] for routing and firewall CPU and
GPU implementations, enhanced by essential modification to
address the challenges that are discussed in Section 3. Our
purpose is to evaluate the throughput of IP lookup and
firewall rule traversal algorithms independently, without
examining additional overheads from NIC packet buffering.
Considered implementations are composed of three
consecutive phases: i) pre-shading, ii) shading and iii) post-
shading. Pre- and post-shading phases run on CPU worker
threads and perform the actual packet batching, host-to-
device and device-to-host batch transfers (in case of GPU
implementation) and other miscellaneous tasks. Shading
process, which realizes the actual NFs functionality is
executed either on a single core CPU implementation, or is
offloaded to GPU and performed by GPU master threads.
Our FPGA routing implementation is based on the
architecture that is proposed in [9]. The routing FPGA
architecture implements a full binary search trie (BST) for
the IP look up process by exploiting FPGA’s embedded
memories. Pipelining is used to increase the throughput. Our
firewall FPGA implementation is based on the architecture
that is proposed in [11]. A memory optimized Field Split Bit
Vector (FSBV) was implemented that utilize TCAM/CAM
for rule fields with a very small number of unique values
compared with the ruleset size. Moreover, multiple bits (k bit
stride) inspection was exploited to reduce pipeline length and
increase the achieved performance [12].

In order to achieve realistic case study conditions, we
have exploited real network traffic measurements so as to
highlight the benefits and peculiarities of each of the three
NFs and their provided solutions, either software or
hardware based. Regarding the IP routing NF, our purpose
was to examine the effectiveness of FIB storage and FIB
traversal. For these reasons, we have exploited CAIDA FIB
records so as to construct FIB tries with varying size. In case
of software and GPU solutions, multi-bit tries guarantee
balanced tries with minimum depth extension, and FIB
entries storage in coalescenced memory positions. Regarding
the firewall NF, our purpose was to construct firewall rules
that conform to typical protocol distribution [13] and
examine realistic firewall rules cardinality. Moreover,
DefCOM provide us with various traffic patterns (TCP/UDP
intensive, TCP/UDP balanced), so as to examine firewall
performance under normal and malicious traffic conditions
(DoS). In Fig. 3 and Fig. 4 respective results are presented.

Figure 3. Routing scheme performance analysis: scaling packet batch

size.

Figure 4. Routing scheme performance analysis: scaling trie entries

74Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

In case of routing NF, Figure 3 shows that scaling in
batch size boosts up GPU configurations and FPGA and
CPU present stable performance. GPU routing
implementations achieve a peak performance of more than
500Mpkts/s and FPGA routing implementations can achieve
a peak performance of 330 Mpkts/s while CPU-only
implementations can achieve a performance of 49Mpkts/s.
Moreover, GPU implementation that utilizes 2 streams has
better performance compared to the single stream GPU
implementation especially in case of heavy traffic (~12%
improvement). GPU implementations outperform CPU ones
in all cases, presenting up to ~10x acceleration in heavy
workloads (65K packets per batch). The use of 4 GPU
streams is not efficient in low workload conditions and
achieve slightly better throughput (compared to GPU with 2
streams) in traffic congestion. Finally, FPGA
implementations have significantly higher throughput in
most traffic conditions but are outperformed from GPU
implementations in extremely heavy traffic conditions (65K
packets per batch). In Figure 4, we also examine the
achieved performance in correlation with the FIB entries.
There is a 3x performance acceleration in GPU
implementation when compared with the CPU
implementation when large FIBs are utilized regardless of
the trie factor (either 1-stride or 4-stride multi-bit tries in
both use cases). Additionally, GPU implementation that
exploits 4-stride trie has better performance compared to
GPU implementation that utilizes 1-stride due to memory
coalescence. In case of CPU implementation, the
performance degrades for more complex trie structures.
Finally, for FPGA implementation, the performance is stable
even when large FIBs are utilized.

We have evaluated the memory utilization for both GPU
and FPGA implementation. The GPU implementation
utilizes up to 50% of the available memory in our GPU card
even for the larger FIB set that we have examined. In
contrary, the FPGA routing implementation dominates our
chip in large FIB sets since the 256K FIB set needs about
95% of the chip embedded RAM.

Experimental results for the firewall NF when scaling
both the packet batch size and the firewall ruleset size are
shown in Fig. 5 and Fig. 6, respectively. GPU firewall
implementations achieve a peak performance of more than
35Mpkts/s and FPGA firewall implementations can achieve
a peak performance of 32 Mpkts/s while CPU-only
implementations can achieve a performance of only 2.48
Mpkts/s. The experimental results show a significant
performance boost in GPU implementation when large
packet batches are utilized. Moreover, the utilization of
multiple GPU streams further improves the achieved
performance. FPGA firewall implementation has stable
performance that is not correlated with packet batch size
scaling and is significantly higher than the CPU and GPU
implementations in small batch sizes .In large batch sizes,
the GPU implementation outperforms the FPGA
implementation. When the firewall ruleset increases, the
achieved performance is seriously affected in both CPU and
GPU implementations as depicted in Fig. 6. Finally, since
the FPGA implementation builds a parallel hardware

structure for every rule, its performance is not affected by the
number of the firewall rules. Finally, in case of heavy traffic
load (65K packets per batch) and large input batches GPU
outperforms FPGA implementation for real traffic.

Figure 5. Firewall scheme performance analysis: scaling packet batch

size.

Figure 6. Firewall scheme performance analysis: scaling firewall ruleset

size.

Concerning the resource utilization of these
implementations, we have evaluated the memory utilization
for both GPU and FPGA implementation. The GPU
implementation utilizes almost 2% of the available memory
in our GPU card even for the larger input batches that we
have examined. The FPGA FSBV firewall implementation
needs about 18% of the chip embedded RAM even for the
larger implemented ruleset (1024 rules) since the chosen
architecture is optimized for memory utilization.

The acquired results confirm the feasibility to consider
the virtualization of such NFs in the 5G domain, both in the
terms of operational performance, scalability but also in

75Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

terms of their reconfigurability and dynamicity such
implementations entail, enabling transparent integration and
service continuity between 5G 3GPP and BBF network
segments.

IV. CONCLUSIONS

We have presented an analysis of two commonplace
network functions: a) Routing, b) Firewall in the context of
NFV and function “softwarization”. Experimental results for
CPU, GPU and FPGA solutions for these functions have
been evaluated for their performance to verify the
abovementioned functions suitability for incorporation in
hardware-accelerated NFV platforms. The results have
shown that there are several benefits in scaling,
reconfiguration and operational efficiency without
compromising performance for the virtualization of NFs
studied in the presented work, especially considering the
requirements for 5G. As the studied NFs are very important
n view also of the needs for Broadband Forum (BBF) and 5G
3GPP interworking for the seamless application provision
and QoS requirements between the involved network
segments, the results confirm the applicability of such
solutions in the 5G domain.

ACKNOWLEDGMENT

The author gratefully acknowledges the NKUA and
HUAWEI collaboration project in SDN and the fruitful
inputs and comments from the relevant colleagues related to
the presented results.

REFERENCES

[1] ETSI GS NFV 001,"Network Functions Virtualisation

(NFV):Use Cases". [Online]. Available from:
http://www.etsi.org/technologiesclusters/technologies/nfv
[retrieved 11,2012].

[2] V. Sekar, N. Egi, S. Ratnasamy, M.K. Reiter, and G. Shi,
"Design and implementation of a consolidated middlebox
architecture", Proc. 9th USENIX conference on Networked
Systems Design and Implementation (NSDI), 2012, p.24-38.

[3] “5G: A Technology Vision”, Position paper, Huawei,
[Online]. Available from:
www.huawei.com/ilink/en/download/HW_314849 [retrieved:
9,2017].

[4] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous,
"Survey and Taxonomy of IP Address Lookup Algorithms",
IEEE Network: The Magazine of Global Internetworking
archive, vol. 15, no. 2, pp 8-23, March 2001.

[5] S. Haoyu, M. Kodialam, H. Fang, and T. V.Lakshman,
"Efficient Trie Braiding in Scalable Virtual Routers,"
IEEE/ACM Transactions on Networking, vol. 20, no. 5, pp.
1489-1500, Oct. 2012.

[6] M. Dobrescu, N. Egi, K. Argyraki, B. G. Chun, K. Fall, G.
Iannaccone, A. Knies, M. Manesh, S. Ratnasamy,
"RouteBricks: exploiting parallelism to scale software
routers", ACM Symposium on Operating Systems Principles
(SOSP), 2009, p. 15-28, ISBN: 978-1-60558-752-3.

[7] S. Han, K. Jang, K. Park, and S. Moon, "PacketShader: a
GPU-accelerated software router", ACM SIGCOMM
Computer Communication conference (SIGCOMM), pp. 195-
206, 2010.

[8] W. Sun and R. Ricci, "Fast and flexible: parallel packet
processing with GPUs and click", 9th ACM/IEEE symposium
on Architectures for networking and communications systems
(ANCS), pp. 25-36, 2013.

[9] H. Le and V. K. Prasanna, "Scalable High Throughput and
Power Efficient IP-Lookup on FPGA", 17th IEEE
Symposium on Field Programmable Custom Computing
Machines (FCCM), April 2009, p. 167- 174 , ISBN: 978-0-
7695-3716-0.

[10] U. Mustafa, M. M. Masud, Z. Trabelsi, T. Wood, and
Z.Al.Harthi, "Firewall performance optimization using data
mining techniques," 9th International Wireless
Communications and Mobile Computing Conference
(IWCMC), pp. 934-940, 2013.

[11] T. Ganegedara and V. K. Prasanna, "Stridebv 400g+ single
chip packet classification", IEEE Conference on High
Performance Switching and Routing (HPSR), pp. 1-6, 2012.

[12] H. J. Jung, Z. K. Baker, and V. K. Prasanna, "Performance of
FPGA implementation of bit-split architecture for intrusion
detection systems", 20th International Parallel and Distributed
Processing Symposium (IPDPS), 2006, p. 124-124, DOI:
10.1109/IPDPS.2006.1639434.

[13] D. Rovniagin and A. Wool, "The geometric efficient
matching algorithm for firewalls", IEEE Transactions on
Dependable and Secure Computing, vol. 8, no. 1, pp. 147–
159, 2011.

[14] Broadband Forum TR-203 “Interworking between Next
Generation Fixed and 3GPP Wireless Networks” Issue: 1
Issue Date: August 2012, [Online]. Available from:
https://www.broadband-forum.org/technical/download/TR-
203.pdf .

76Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

http://www.etsi.org/technologiesclusters/technologies/nfv
http://www.huawei.com/ilink/en/download/HW_314849
https://www.broadband-forum.org/technical/download/TR-203.pdf
https://www.broadband-forum.org/technical/download/TR-203.pdf

