
Network Functions Evaluation of Hardware Accelerated NFV Platform in View of 

5G Requirements  

 

Athanasia-Nancy Alonistioti  

Department of Informatics & Telecommunications 

National Kapodistrian University of Athens 

Athens, Greece 

email: nancy@di.uoa.gr 

                                        

               

 
Abstract— Network Function Virtualization (NFV) enables the 

implementation of “softwarized” network functions, using a 

shared hardware substrate. However, such functions are 

expected to offer performances comparable to native hardware 

environments. Therefore, increasing the performance of 

"software-based" Network Functions (NFs) that are executed 

on commodity hardware servers is an emerging challenge that 

should be addressed to fulfill the vision of NFV. Hardware 

accelerators, such as Many Integrated Core Architectures 

(MICs), Graphic Processor Units (GPUs) and Field 

Programmable Gate Arrays (FPGAs) are a valuable asset that 

can be paired with commodity servers to boost up network 

services performance. In this paper, we present an analysis of 

two commonplace network functions: a) Routing, b) Firewall 

and evaluate their implementation in an NFV middlebox 

combining software based network functions along with 

hardware accelerated ones in view of their applicability for 5G 

and interworking with Broadband Forum (BBF) network 

segments. Finally, we present detailed experimental results of 

CPU, GPU and FPGA solutions for these functions (routing, 

firewall and DPI) in order to evaluate their performance and 

verify their suitability for incorporation in hardware-

accelerated NFV platforms.  

Keywords- 5G; Network Function Virtualization; Network 

services. 

I. INTRODUCTION  

Virtualization is the ability to implement a functionality 
separated from the hardware and simulated as a “virtual 
instance”. Modern networks increasingly rely on advanced 
network processing functions for a wide spectrum of crucial 
functions ranging from security (firewalls, Intrusion 
Detection Systems (IDS), etc.), traffic shaping (rate limiters, 
load balancers), dealing with address space exhaustion 
(Network Address Translation (NAT)) or improving the 
performance of network applications (traffic accelerators, 
caches, proxies), to name a few. 

Middleboxes are defined as intermediary boxes 
performing these network functions and represent the defacto 
approach for network evolution in response to changing 
performance, security, and policy compliance requirements. 
NFV brings a new era in network virtualization by involving 
the implementation of software-based middleboxes that 
implement such NFs in software and can run on standard 

server hardware. Such NFV middleboxes are suitable nodes 
for implementing a virtualization scheme in the basis of 
“Network Function as a Service (VNFaaS)” as defined in the 
NFV standardization process [1]. ICT research community 
seeks to address this issue [2] by shifting software solutions 
running on top of modern multi-core systems that have good 
flexibility and programmability, but they inherently lack high 
parallelism and quickly become the performance bottleneck 
for more compute-intensive applications, to a decoupling 
from dedicated hardware solutions. For example, even the 
best multi-core software algorithms today for routing and 
firewall can only achieve a rate of up to 30 Gbps [6], which 
is an order of much less than the widely deployed 100 Gbps 
links used in large Internet Service Provider backbones and 
Data Center networks. Moreover, taking into consideration 
that the performance vision in the era of 5G wireless 
networks is to achieve a 10Gbps individual user experience 
[3], the Internet Service Provider backbones and Data Center 
networks will boost their bandwidth needs in the scale of 
Tbps. Therefore, increasing the performance of "software-
based" network services that are executed on commodity 
hardware servers is an emerging challenge that should be 
addressed to fulfill the vision of "software-based" network 
services through NFV. Modern commodity servers can be 
paired with hardware accelerators (Many Integrated Core 
Architectures (MICs), Graphic Processor Units (GPUs) and 
Field Programmable Gate Arrays (FPGAs) to boost up their 
performance. Such accelerators are a valuable asset and can 
be exploited to offload on demand the "software-based" 
network services that cannot comply with high performance 
demanding NFV environments. In this direction, the work 
presented in this paper explores the pairing of modern 
hardware accelerator (MICs, GPUs, and FPGAs) with 
commodity hardware to build a scalable hardware 
accelerated NFV platform to speed up NFs and support NF 
reallocation to different accelerators on demand. Important 
NFs to be considered in this paper are a) Routing and b) 
Firewall. These are very important NFs in view also of the 
needs for Broadband Forum (BBF) and 5G 3GPP 
interworking for the seamless application provision and QoS 
requirements between the involved network segments [14]. 

The rest of this paper is organized as follows. Section II 
presents related work and in parallel examines the considered 
NFs, their characteristics, their challenges and the 

72Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies



 

 

applicability of hardware acceleration on them. Section III 
presents experimental results to evaluate and compare the 
performance of software and hardware assisted 
implementations of these use cases. Finally, Section IV 
concludes this paper.  

II. NETWORK FUNCTIONS: RELATED WORK 

IDENTIFICATION AND NFV CHALLENGES 

In this section, we present the two aforementioned NFs a) 
Routing, b) Firewall. An overview of algorithmic schemes, 
applicability of hardware acceleration, advantages, related 
work and NFV tradeoffs are discussed for each use case. 

A. Routing 

IP Router functionalities are grouped into two categories, 
packet processing and packet forwarding. Routing table 
lookup is the most critical packet processing algorithm and 
has been extensively discussed in the literature, as it is 
considered the main bottleneck in router performance [4]. 
Therefore, we focus on routing table lookup process, which 
is the main performance bottleneck and we omit discussing 
updating process. Key metrics used to evaluate routing table 
lookup performance are searching time, dynamic updates 
and memory requirements. In software routing table lookup 
schemes [4], tries are the dominant solution for the 
organization of IP Router Forward Information Base (FIB) 
and the service of IP lookup requests in virtualized 
environments [5]. Multibit tries are a subcategory of tries 
that achieve a speedup of the lookup process as multi-bit 
tries examine strides of bits at a time and lower total memory 
accesses, as shown in Fig. 1. 

 

Figure 1.  Multi-bit trie representation of a FIB. 

Moreover, further speedup can be achieved by the 
processing of “IP request” in large batches if parallelism in 
lookup process can be implemented. Towards this direction, 
GPUs can instantiate thousands or threads in parallel that can 
be exploited to boost performance in trie lookup process. In 
addition, there are three characteristics in IP table lookup 
process that make GPU implementations a tempting 
alternative [6], [7]. 

•IP requests in large batches: In real routers, IP requests 
can form batches of more than 216 concurrent requests. 

However, the bigger the size of a batch, the better is the 
utilization of GPU computing capabilities. 

•IP requests locality: In real traffic conditions, IP requests 
present repetition (e.g., UDP flows, TCP bursts). This feature 
boosts performance in GPU, since accessing adjacent 
memory positions is extremely fast in GPU oriented 
implementations. 

•GPU memory coalescence: extremely large FIBs (i.e., 
more levels in a trie) do not always mean more references in 
memory and thus lower lookup speed. Due to coalescence in 
GPU memory, the size of each level of the trie also affects 
the performance in parallel lookup. 

On the other hand, one of the deficiencies of GPU is that 
host memory and GPU are separate units and thus transfer of 
data between host and device memory is inevitable. In order 
to alleviate time consuming I/O transactions, batch of 
requests can be divided into several groups executed on 
independent kernels on different streams in order to achieve 
I/O transactions pipelining [8]. Hardware-based routing table 
lookup schemes [9] fall in two categories: TCAM-based 
(TernaryContent Addressable Memory) and SRAM-based 
(Static Random Access Memory) solutions. 

B. Firewall 

Firewalls usually respond in synergy with IP routers. 
Firewall architectures have the same unique scope; to 
examine packet headers under a hierarchical set of rules and 
either discard or accept them. An indicative example of 
firewall policy rules is presented in Fig. 2. Without loss of 
generality, we will focus on the most used but simplest 
architecture of firewalls, the stateless firewall, to present the 
algorithmic schemes for purely software and hardware 
accelerated approaches along with their advantages and 
tradeoffs. 
 

Figure 2.  Firewall Rules. 

The main pitfall in software-based firewall solutions is 
the linear search of the ruleset for every packet (ruleset may 
exceed 1K rules in many cases). Even though, linear search 
is a non-sophisticated searching algorithm, it is followed by 
open source and commercial products. Firewall rules usually 
are dominated by TCP protocol rules. For example, a typical 
distribution with regards to the protocols is: 

75% TCP, 14% UDP, 4% ICMP, 6%, 1% other [13]. 
Taking into consideration that firewall rules are examined 
sequentially and UDP rules are usually positioned at the 
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bottom of the hierarchical list, the performance of firewall 
degrades sharply. Towards this direction research efforts 
propose several optimization approaches such as rule 
reordering, multilevel filtering, statistical analysis and data 
mining techniques to predict the rules best suit to every 
packet, etc. Since firewalls usually work in synergy with IP 
routers, GPU is a promising alternative for firewall as well 
and firewall implementations can exploit the GPU features 
that are also exploited for routing schemes to speed up their 
performance. 

Hardware-based firewall schemes are also either TCAM-
based or SRAM-based solutions. TCAM solutions can 
perform fast parallel searches over all entries in one clock 
cycle but are not scalable to bigger rulesets. SRAM-based 
solutions are more scalable but cannot perform parallel 
searches. 

However, when combined with pipelining and bit vector 
(BV) splitting algorithms [11] they can perform parallel 
searches on individual fields of a packet header to increase 
performance. Finally, when firewall schemes combine BV 
splitting algorithms, deep pipelining and multiport RAMs in 
modern FPGAs, these hardware implementations can 
achieve high performance by processing up to two packets 
per clock cycle. 

III. EXPERIMENTAL RESULTS 

In this section, we examine the three considered NFs 
(routing, firewall, DPI) that are included in the NFV 
middlebox. We evaluate the achieved performance both in 
CPU, GPU and FPGA implementations of the above 
described algorithms for these NFs. We have utilized the 
implementations of [7] for routing and firewall CPU and 
GPU implementations, enhanced by essential modification to 
address the challenges that are discussed in Section 3. Our 
purpose is to evaluate the throughput of IP lookup and 
firewall rule traversal algorithms independently, without 
examining additional overheads from NIC packet buffering. 
Considered implementations are composed of three 
consecutive phases: i) pre-shading, ii) shading and iii) post-
shading. Pre- and post-shading phases run on CPU worker 
threads and perform the actual packet batching, host-to-
device and device-to-host batch transfers (in case of GPU 
implementation) and other miscellaneous tasks. Shading 
process, which realizes the actual NFs functionality is 
executed either on a single core CPU implementation, or is 
offloaded to GPU and performed by GPU master threads. 
Our FPGA routing implementation is based on the 
architecture that is proposed in [9]. The routing FPGA 
architecture implements a full binary search trie (BST) for 
the IP look up process by exploiting FPGA’s embedded 
memories. Pipelining is used to increase the throughput. Our 
firewall FPGA implementation is based on the architecture 
that is proposed in [11]. A memory optimized Field Split Bit 
Vector (FSBV) was implemented that utilize TCAM/CAM 
for rule fields with a very small number of unique values 
compared with the ruleset size. Moreover, multiple bits (k bit 
stride) inspection was exploited to reduce pipeline length and 
increase the achieved performance [12].  

In order to achieve realistic case study conditions, we 
have exploited real network traffic measurements so as to 
highlight the benefits and peculiarities of each of the three 
NFs and their provided solutions, either software or 
hardware based. Regarding the IP routing NF, our purpose 
was to examine the effectiveness of FIB storage and FIB 
traversal. For these reasons, we have exploited CAIDA FIB 
records so as to construct FIB tries with varying size. In case 
of software and GPU solutions, multi-bit tries guarantee 
balanced tries with minimum depth extension, and FIB 
entries storage in coalescenced memory positions. Regarding 
the firewall NF, our purpose was to construct firewall rules 
that conform to typical protocol distribution [13] and 
examine realistic firewall rules cardinality. Moreover, 
DefCOM provide us with various traffic patterns (TCP/UDP 
intensive, TCP/UDP balanced), so as to examine firewall 
performance under normal and malicious traffic conditions 
(DoS). In Fig. 3 and Fig. 4 respective results are presented. 

Figure 3.   Routing scheme performance analysis:  scaling packet batch 

size. 

 

Figure 4.  Routing scheme performance analysis: scaling trie entries 
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In case of routing NF, Figure 3 shows that scaling in 
batch size boosts up GPU configurations and FPGA and 
CPU present stable performance. GPU routing 
implementations achieve a peak performance of more than 
500Mpkts/s and FPGA routing implementations can achieve 
a peak performance of 330 Mpkts/s while CPU-only 
implementations can achieve a performance of 49Mpkts/s. 
Moreover, GPU implementation that utilizes 2 streams has 
better performance compared to the single stream GPU 
implementation especially in case of heavy traffic (~12% 
improvement). GPU implementations outperform CPU ones 
in all cases, presenting up to ~10x acceleration in heavy 
workloads (65K packets per batch). The use of 4 GPU 
streams is not efficient in low workload conditions and 
achieve slightly better throughput (compared to GPU with 2 
streams) in traffic congestion. Finally, FPGA 
implementations have significantly higher throughput in 
most traffic conditions but are outperformed from GPU 
implementations in extremely heavy traffic conditions (65K 
packets per batch). In Figure 4, we also examine the 
achieved performance in correlation with the FIB entries. 
There is a 3x performance acceleration in GPU 
implementation when compared with the CPU 
implementation when large FIBs are utilized regardless of 
the trie factor (either 1-stride or 4-stride multi-bit tries in 
both use cases). Additionally, GPU implementation that 
exploits 4-stride trie has better performance compared to 
GPU implementation that utilizes 1-stride due to memory 
coalescence. In case of CPU implementation, the 
performance degrades for more complex trie structures. 
Finally, for FPGA implementation, the performance is stable 
even when large FIBs are utilized.  

We have evaluated the memory utilization for both GPU 
and FPGA implementation. The GPU implementation 
utilizes up to 50% of the available memory in our GPU card 
even for the larger FIB set that we have examined. In 
contrary, the FPGA routing implementation dominates our 
chip in large FIB sets since the 256K FIB set needs about 
95% of the chip embedded RAM. 

Experimental results for the firewall NF when scaling 
both the packet batch size and the firewall ruleset size are 
shown in Fig. 5 and Fig. 6, respectively. GPU firewall 
implementations achieve a peak performance of more than 
35Mpkts/s and FPGA firewall implementations can achieve 
a peak performance of 32 Mpkts/s while CPU-only 
implementations can achieve a performance of only 2.48 
Mpkts/s. The experimental results show a significant 
performance boost in GPU implementation when large 
packet batches are utilized. Moreover, the utilization of 
multiple GPU streams further improves the achieved 
performance. FPGA firewall implementation has stable 
performance that is not correlated with packet batch size 
scaling and is significantly higher than the CPU and GPU 
implementations in small batch sizes .In large batch sizes, 
the GPU implementation outperforms the FPGA 
implementation. When the firewall ruleset increases, the 
achieved performance is seriously affected in both CPU and 
GPU implementations as depicted in Fig. 6. Finally, since 
the FPGA implementation builds a parallel hardware 

structure for every rule, its performance is not affected by the 
number of the firewall rules. Finally, in case of heavy traffic 
load (65K packets per batch) and large input batches GPU 
outperforms FPGA implementation for real traffic. 

 

Figure 5.  Firewall scheme performance analysis: scaling packet batch 

size. 

 

Figure 6.  Firewall scheme performance analysis:  scaling firewall ruleset 

size. 

Concerning the resource utilization of these 
implementations, we have evaluated the memory utilization 
for both GPU and FPGA implementation. The GPU 
implementation utilizes almost 2% of the available memory 
in our GPU card even for the larger input batches that we 
have examined. The FPGA FSBV firewall implementation 
needs about 18% of the chip embedded RAM even for the 
larger implemented ruleset (1024 rules) since the chosen 
architecture is optimized for memory utilization. 

The acquired results confirm the feasibility to consider 
the virtualization of such NFs in the 5G domain, both in the 
terms of operational performance, scalability but also in 
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terms of their reconfigurability and dynamicity such 
implementations entail, enabling transparent integration and 
service continuity between 5G 3GPP and BBF network 
segments. 

IV. CONCLUSIONS 

We have presented an analysis of two commonplace 
network functions: a) Routing, b) Firewall in the context of 
NFV and function “softwarization”. Experimental results for 
CPU, GPU and FPGA solutions for these functions have 
been evaluated for their performance to verify the 
abovementioned functions suitability for incorporation in 
hardware-accelerated NFV platforms. The results have 
shown that there are several benefits in scaling, 
reconfiguration and operational efficiency without 
compromising performance for the virtualization of NFs 
studied in the presented work, especially considering the 
requirements for 5G. As the studied NFs are very important 
n view also of the needs for Broadband Forum (BBF) and 5G 
3GPP interworking for the seamless application provision 
and QoS requirements between the involved network 
segments, the results confirm the applicability of such 
solutions in the 5G domain. 
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