
Simple and Compact Indexing for Efficient KNN Search  

in High Dimensional Feature Space  

 

Zaher Al Aghbari 

Department of Computer Science, 

College of Sciences, University of Sharjah, 
Sharjah, UAE 

zaher@sharjah.ac.ae 

Ayoub Al-Hamadi 

Institute for Electronics, Signal Processing and 

Communications, IESK, University Magdeburg,  

Magdeburg, Germany 

Ayoub.Al-Hamady@ovgu.de

 

 
Abstract—In this paper, we propose a technique to find the 

exact KNN image objects to a given query object in high 

dimensional space.  The proposed technique clusters the 

images using a self-organizing map algorithm and then it 

projects these clusters into points in a linear space based on 

their distances from a selected reference point.  The projected 

points in a linear space are then organized in a simple, compact 

and yet fast index structure, called array-index. Unlike most 

indexes that support KNN search, the array-index requires a 

storage space that is linear in the number of projected points.  

The experiments show that the proposed technique is more 

efficient and robust to dimensionality as compared to other 

well known techniques due to its simplicity and compactness. 

Keywords-KNN search; image search; efficient indexing; 

dimensionality reduction; image clustering.  

I.  INTRODUCTION 

Content-based retrieval of similar objects in a high 
dimensional feature space is important to many database 
applications. That is if an application is managing a database 
of N objects, given a query object q, the application should 
be able to return the K-Nearest Neighbors (KNN) objects in 
the database that are most similar to q.  Finding KNN objects 
is one of the most expensive, but essential, operations in 
high-dimensional database applications. 

In large databases, given a query q, finding the KNN 
answer set by a linear scan method is prohibitively 
expensive, particularly, if the database objects are high 
dimensional.  Even with the existing indexing structures the 
response time of finding KNN answer set is equal to, or 
higher than, that of a linear scan due to a well-known 
phenomenon called curse of dimensionality ‎[6]‎[22].   
Therefore, there is an essential need for efficient KNN search 
techniques.  In this paper, we propose a technique that speeds 
up the KNN search of high-dimensional objects as compared 
to well-known methods, such as the R*-tree ‎[3], SR-tree ‎[14] 
and linear scan 

Our approach is based on clustering the multi-

dimensional objects (e.g., image data) using a self-

organizing map (SOM) algorithm and then projecting the 

clusters into a linear (1-dimensional) distance space in 

which the projected clusters are ordered based on their 

similarity to a chosen reference point, R.  These projected 

points in the linear space are inserted into the array-

index ‎[1]. Since the points in the arrary index are sorted, 

search for similar points to a given query can be achieved by 

a binary search whose complexity is O(logNc ), where NC is 

the number of indexed points.  The search for KNN images 

start at the most similar cluster, called wining cluster (WC), 

to a given query and then proceeds to the left and right of 

the WC.  The search continues till checking new clusters do 

not result in any new KNN images on both sides.  This 

method retrieves exact KNN answer images to a given 

query image. More details of this technique can be found 

in ‎[23]. 

Due to the small size of the index, our method requires 

a storage space that is linear in the number of generated 

clusters. As shown by the experiments, the proposed 

technique requires a search time that is much lower than that 

of the well known indexing structures R*-tree, SR-tree and 

linear scan, especially at high dimensions, which are 

bottlenecks for most KNN search algorithms.     

The rest of this paper is organized as follows: Section 2 

presents the related work.  Section 3 discusses data 

clustering and the KNN search algorithm.  The experiments 

are discussed in Section 4.  Finally, we conclude the paper 

in Section 6. 

II. RELATED WORK 

Most works on finding the exact, or approximate, KNN 

points in a database to a given query point  have provided 

good solutions for the low-dimensionality case, but for the 

high-dimensionality case there have been very little progress. 

To project high-dimensional objects to a lower dimensional 

space, some indexing structures such as the grid-file ‎[18], 

K-D-tree ‎[4] or LSD-tree ‎[12] partition the data space into 

disjoint regions regardless of data clusters.  On the other 

hand, data partitioning approaches like R*-tree‎[3], SR-

tree ‎[14] or X-tree ‎[7] divide the data space according to the 

distribution of points in these data partition trees.  Both the 

space and data partitioning approaches aim at speeding up 

the KNN search by pruning the irrelevant partitions to the 

given query. Generally, these approaches work well at low 

dimensions, but their performance degrades as the 

dimensionality increases ‎[8].   

To reduce the effect of high-dimensionality on KNN 

search, some methods apply “dimensionality‎ reduction”‎

1Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications



techniques on the data and then insert the data into the 

indexing trees.  The QBIC system ‎[11] of IBM uses a 

bounding method to map the high-dimensional color 

histograms of images into points in a 3-dimensional space.  

Faloutsos et. al ‎[9] used the Discrete Fourier Transform 

(DFT) to map subsequences of a time series into points in a 

6-dimensional space.     

Space-filling curve methods like the Z-order 

curve ‎[20] or Hilbert curve ‎[10] map the d-dimensional 

points into a one-dimensional space, i.e., d
  R1.  

Generally, space-filling curve methods are suitable for 

approximate KNN search, but not exact KNN search. A 

filter based approach such as the VA-file ‎[22] divides the 

data space into 2
b
 rectangular cells, where b denotes a user 

specified number of bits.  The VA-file is an array of these 

compact approximations of points.  
In summary, the current KNN search approaches, which 

are classified above, work well in low-dimensional spaces; 
however, their performance degrades in high-dimensional 
spaces.  In high-dimensional spaces, there has not been a 
satisfying solution for the KNN search problem.  Towards 
finding a satisfying solution, the proposed technique 
improves performance of the KNN search by clustering the 
image data and then projecting those clusters into points in a 
linear space.  From these projected points, a simple index is 
built that supports efficient KNN search for images. 

III. EFFICIENT KNN SEARCH 

A. Image Representation 

We use a wavelet transform to decompose an image into 
several frequency bands and then compute a feature vector 
from the coefficients of the low frequency band.  
Particularly, we use the Haar wavelets because it is the 
fastest to compute and simplest to implement as compared to 
the other wavelet bases.  The significant features of the 
image are concentrated in the low frequency band, thus 
allowing the image coefficients to be truncated, keeping only 
a few coefficients that sufficiently represent the image.  
Moreover, such truncation process improves discrimination 
power because the process of matching feature vectors is 
focused on the significant features of images. 

B. SOM-based Clustering 

SOM is an unsupervised neural network that maps high-

dimensional input data 
n
 onto a usually two-dimensional 

output space while preserving the similarities between the 
data items ‎[16]. The SOM consists of nodes (neurons) 
arranged in a two-dimensional grid. 

Clustering qualities of the self-organizing maps (SOM) 

are comparable to other clustering methods, and additionally 

SOMs offer better representation of clustered data ‎[19]. The 

SOMs are well known for their superiority in clusters' 

visualization of very large and high dimensional image 

databases due to the SOM property of preserving the 

clusters' structure within the data as well as inter-cluster 

similarity ‎[13].  Due to this property, we chose to cluster the 

feature vectors of images by a SOM.   

C. KNN Search Method 

The proposed technique indexes the clusters of images 
rather than the images themselves.  After clustering the 
images using the SOM method, the array-index ‎[1] is 
constructed by the following steps:   

(i) Select a reference point (R): For the image database 
that is used in our experiments, we found that selecting a 
center cluster as a reference cluster leads to a slightly faster 
search time than other selection schemes. 

(ii) Compute the distance D(R, mi) between R and each 
cluster’s‎representative‎codebook vector, mi :   

(iii) Project the cluster points into a linear space (array-
index) based on the computed distances : The SOM clusters 
are projected into a linear space by inserting the computed 
distances D(R,mi) into the array-index.  Along with each 
distance, a pointer to the best-matching-list of the 
corresponding cluster is set.  The best-matching-list of 
cluster Ci is a list of the points that are associated with Ci and 
sorted according to their Euclidean distances from mi.  
Hence, the array-index contains a list of clusters sorted based 
on their distances D(R, mi) and each cluster contains a 
pointer to a list of points sorted based on their distances D(pj, 
mi).  Also, for every Ci, we compute its radius ri that reflect 
the size of Ci.  The constructed array-index is very small in 
size since it only contains three fields (distance, pointer, and 
radius) for every generated cluster.  Therefore, all, or most, 
of the array-index can be put in main memory; thus, 
eliminating, or minimizing, (depending on the number of 
clusters and size of main memory) the disk operations during 
the search. 

D. KNN Search: Flow Control 

The proposed KNN search algorithm starts by finding the 
WC, which is a cluster with the most similar codebook 
vector to q, by computing D(R, q) and projecting this 
distance on the array-index. The WC will be the left or right 
cluster to D(R, q), whichever closer to q, and in case of tie 
either choice will do.  Then, as shown in Fig. 1, the 
algorithm continues the search for similar clusters on both 
the left and right directions of WC.  During the KNN search 
we employ 4 conditions to control the flow and speed up the 
search process ‎[1]: 

 Cluster Pruning Condition to prune dissimilar clusters. 

 Cluster Ending Condition to end the search as soon as 
all KNN points are retrieved and further checking of 
new clusters does not result in new KNN answer 
points. 

 Point Pruning Condition to prune dissimilar points 
(images) in the currently visited cluster. 

 Point Ending Condition to end the search for candidate 
points in the currently visited cluster if further checking 
will not result in new KNN candidate points. 

 

2Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications



 

Figure 1. Searching to the left and right of the winner cluster (WC) 

 

E. KNNSearch Algorithm 

To find the exact KNN points to a given q,  the 

KNNsearch algorithm first finds the WC, which is a cluster 

whose mi is the most similar to q, within the array-index.  

Then, the visitCluster() function is called to visit the found 

WC and update KNN_list with the points associated with the 

WC.  Lptr and Rptr are pointers used to traverse the array-

index toward the left and the right of WC, respectively. Thus, 

after finding WC, the algorithm initializes Lptr and Rptr to 

point to WC.   

    The traverseLeft() and traverseRight() functions traverse 

to the left and right of WC, respectively, till one or both 

traversal paths are ended.  If both traversal directions (left 

and right) are ended, the search stops and then the 

KNNsearch algorithm returns the KNN_list, which contains 

the exact KNN points to the given q.  Otherwise, if both 

traversal direction (left and right) are not ended, the 

distances DL(q, mLptr) and DR(q, mRptr) are computed and the 

visitCluster() function is called to update the KNN_list with 

either the left, or right, current clusters (the one with the 

smaller distance from q), then the traversal in the opposite 

direction is blocked temporarily, so that the next iteration of 

the algorithm fetches the next partition in the direction of 

the closer cluster (the one with the smaller distance).  When 

the left traversal is ended and the search is advancing only 

in the right direction, the KNN_Search algorithm updates 

the KNN_list with the next qualifying cluster on the right 

direction.  Similarly, when the right traversal is ended and 

the search is advancing only in the left direction, the 

KNN_Search algorithm updates the KNN_list with the next 

qualifying cluster on the left direction.  Finally, when the 

search stops, the KNN_list is returned with the exact KNN 

answer points. 

 
The array-index speeds up the KNN search as follows: 

i) Finding the WC takes log2 Nc distance comparisons 

since the proposed technique uses a binary search as 

compared to a brute force method, which requires NC 

distance comparisons. 

ii) In the KNN search, the left and right traversal is ended 

as soon as the exact KNN answer points have been 

retrieved by the ending condition without the need to 

traverse the whole array-index. Thus, normally, only a 

small portion of the database is traversed to find the 

exact KNN answer points. 

iii) Since the points associated with a cluster are sorted by 

their distances from the mi, the ending condition ends 

the search at a certain point p beyond which there will 

be no KNN candidates.  

IV. EXPERIMENTS 

We performed our experiments on collected images from 
publicly available image databases: H

2
 Soft image databases 

and Stanford University database lab. The size of the 
collected image database is 80,000 artificial and natural 
images that span the following categories: landscapes, 
animals, buildings, people, plants, CG, etc.  Where 50% of 
the images (40000 images) are used for training the SOM 
and the other 50% is used for testing.  The image size is 
fixed at 128x128 pixels.  Although the experiments are 
conducted on image vectors, the proposed algorithm can be 
applied on any high-dimensional vectors. 

We extracted the color feature of each image using the 

Haar wavelets.  The color space used in this paper is the 

YIQ since it exploits certain characteristics of the human 

eye, where Y represents the luminance information and I 

and Q represent the chrominance information ‎[2]‎[17].  The 

YIQ color feature for each image is represented by a d-

dimensional vector.  To demonstrate the efficiency of our 

KNN search algorithm, we generated 3 databases with 

different dimensionalities: 3, 12, and 48 dimensions by 

applying a 7-level, 6-level, and 5-level decomposition, 

respectively, of the Haar wavelet transform on the image 

data. To show the feasibility of our technique and its 

tolerance to high dimensions, we chose the 3, 12 and 48 

dimensions since they represent a low, medium and high 

dimensionality, respectively, of the feature space. 
From each database (3, 12, and 48 dimensions), we 

generated different data sets 1000, 5000, 10000, 20000, 
30000, 40000 vectors in both the training and test databases.  
Each of these data sets was clustered by a SOM.  The 
different dimensions were generated via applying Haar 
wavelets on the images. 

To analyze the effect of dimensionality on the KNN 

search time, we measured the KNN search time of data sets 

of different sizes and different dimensionalities, as shown in 

Fig. 2.  First, we randomly selected 10 query images from 

the database and issued a query to retrieve the KNN answer 

images (where K=1 and K=50) for each query image from 

each of the different data sets and different dimensionalities.  

The KNN search times shown in Fig. 2.left and Fig. 2.right 

are the average results of 10 queries.  It is clear that the 

KNN search time increases as the dimensionality increases.  

That is because the volumes of clusters increase as the 

dimensionality increases causing a greater degree of overlap 

between clusters; thus, more clusters are visited during the 

search.  Moreover, the KNN search time increases as the 

value of K increases.  That is obvious because larger values 

of K lead to more clusters' visits; thus, larger percentage of 

the database is accessed to answer a query.    

To prove the above reasoning, we measured the 

percentage of the non-empty clusters (associated with one or 

more images) accessed to retrieve the KNN images to each 

of the randomly selected queries at different 

R

WC q

3Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications



dimensionalities and different values of K (see Fig. 3).   

Clearly, as the dimensionality increases and/or the value of 

K increases a bigger percentage of the database is accessed 

(more clusters are visited). 
According to ‎[15]‎[22] and as verified by our experiments 

(see Fig. 4), most KNN search algorithms are outperformed 

by a linear scan method especially at high dimensions ( 12 
dimensions) of real (non-uniformly distributed) databases, 
such as image databases.  We compared the proposed 
technique with other well known methods (R*-tree, SR-tree 

and linear scan), which serve as a stick yard to evaluate the 
proposed technique, in terms of KNN search time versus the 
number of dimensions. The KNN search of the R*-tree and 
SR-tree methods is implemented based on the algorithm 
presented in ‎[21].  Fig. 4 shows the comparison between the 
four methods for K=1 and K=50 using a test database of 
40000 images.  Notice that the scale of the y-axis of Fig. 10 
is logarithmic. 

 

 

 
Figure 2. Average KNN time versus database size when (left) K=1 and (right) K=50. 

 

 
Figure 3. The percentage of the accessed database (visited nodes) versus database size when (left) K=1 and (right) K=50. 

 

 
Figure 4. Comparison between the array-index, a linear scan, R*-tree and SR-tree methods in terms of KNN search time versus number of dimensions: (left) 

for K=1 and (right) for K=50. 

 
 

Obviously, the proposed technique outperforms the R*-

tree, SR-tree and linear scan methods at all dimensions and 

all variations of the value of K.  At low dimensions and low 

values of K (dimensions = 3 and K = 1), the R*-tree and SR-

tree generate their least disk operations; thus, they 

outperform the linear scan method.  However, as the 

dimensionality increases and/or the value of K increases the 

4Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications



disk operations of the R*-tree and SR-tree methods increase 

and hence they are outperformed by a linear scan.  Due to 

the simple and compact structure of the array-index used by 

our technique, it generates no disk operations and thus it 

results in a significant performance gain over the R*-tree 

and SR-tree methods.  Also, the proposed technique 

outperforms the linear scan method, on the average of the 

value of K, by 81% at 3 dimensions, 77% at 12 dimensions 

and 70% at 48 dimensions.  Notice that the KNN search 

time of the linear scan methods increases linearly with the 

number of dimensions and the KNN search time of the R*-

tree and SR-tree increase exponentially with the number of 

dimensions.  On the other hand, the proposed technique 

shows more robustness to the number of dimensions since 

the KNN search time only increases slightly as the 

dimensionality increases.   
 

 
 

V. CONCLUSION 

We presented a simple and efficient technique to retrieve 
exact KNN points for a given query.  The proposed 
technique is based on clustering the data and then indexing 
the clusters' representative vectors instead of the data points 
themselves; thus, reducing the size the index structure.   
Although, in this paper, we used an image database and a 
SOM algorithm as examples of a multi-dimensional data and 
a clustering technique, respectively, the technique can be 
adapted to any multi-dimensional data and any clustering 
method.  Even though the paper only presents the KNN 
search algorithm, the range search can be easily 

implemented.  Given q a range query , the search algorithm 
first finds the WC, next it retrieves all clusters that overlap 
with this range on both sides of the WC as a candidate set.  
Finally, the candidate set is refined by retrieving only the 

points pi that satisfy the range condition |D(q, pi)|‎≤‎.  The 
projection of clusters into a linear space and the compactness 
of the index are the main reasons behind the fast KNN search 
time as compared to other known methods.  The experiments 
show that the proposed technique is faster and more robust to 
dimensionality as compared to other well known techniques 
due to its simplicity and compactness. 

REFERENCES 

 
[1] Z. Al Aghbari,. “Array-index: A Plug&Search K Nearest 

Neighbors Methods for High-Dimensional Data,” Journal of 
Data & Knowledge Engineering, Vol 52, no.3,  pp 333-352, 
Mar. 2005. 

[2] Z. Aghbari, K. Kaneko, and A. Makinouchi, "New Indexing 
Method for Content-Based Video Retrieval and Clustering for 
MPEG Video Database," International Symposium on Digital 
Media Information Base (DMIB'97), p Nov.1997, pp.140-
149. 

[3] N.Beckmann, H.Kriegel, R.Schneider, and B.Seeger, “R*-
tree: An Efficient and Robust Access Method for Points and 
Rectangles,” ACM SIGMOD, May 1990, pp. 322-331.  

[4] J.L.Bentley, “Multidimensional Binary Search Trees in 
Database‎ Applications,” IEEE Trans. on Software 
Engineering, SE- vol. 5, no. 4, July 1979, pp.333-340. 

[5] S.Berchtold, C.Bohm, D.Keim, and H.P.Kriegel, “A Cost 
Model for Nearest Neighbor Search in High-Dimensional 
Data Spaces,” ACM SIGACT-SIGMOD-SIGART, 1997. 

[6] S.Berchtold, B.Ertl, D.Keim, H.P.Kriegel, and T.Seidl, “Fast 
Nearest Neighbor Search in High-Dimensional Space,”  Int`l 
conf. on Data Eng. (ICDE), 1998. 

[7] S.Berchtold, D.Keim, and H.P.Kriegel, “The X-tree: An Index 
Structure for High-Dimensional Data,” VLDB 1996. 

[8] C.Faloutsos, “Searching Multimedia Databases By Content,” 
Kluwer Academic Publishers, Boston, USA, 1996. 

[9] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast 
Subsequence Matching in Time-Series Databases,” ACM 
SIGMOD, 1994.  

[10] C.Faloutsos and S.Roseman, “Fractals for Secondaru Key 
Retrieval,” 8th ACM SIGACT-SIGMOD-SIGART 
Symposium on Principles of Database Systems (PODS), 
March 1989. 

[11] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, 
B. Dom, M. Gorkani, J. Hafner, D, Lee, D. Perkovic, D. 
Steele, and P. Yanker, “Query by Image and Video Content: 
The‎QBIC‎System,” IEEE, Sept. 1995. 

[12] A.Henrich and H-W.Six, P.Widmayer, “The LSD tree: Spatial 
Access to multidimensional Point and Non-Point Objects,” 
Proc. of 15th VLDB, 1989. 

[13] J.Himberg, “A SOM based cluster visualization and its 
application for false coloring,” International Joint Conf. in 
Neural Networks, 2000. 

[14] N.Katayama and S.Satoh, “The SR-tree: An Index Structure 
for High-Dimensional Nearest Neighbor Queries,” ACM 
SIGMOD, May 1997.   

[15] J.M.Kleinberg, “Two Algorithms for Nearest Neighbor 
Search in High Dimensions,” 29th ACM Symposium on 
Theory of Computing, 1997. 

[16] T.Kohonen, “Self-Organizing Maps,” Springer-Verlag, 1997. 
2nd extended edition. 

[17] M. Kubo, Z. Aghbari, K-S Oh, and A. Makinouchi, "Content-
Based Image Retrieval Technique using Wavelet-Based Shift 
and Brightness‎Invariant‎Edge‎Feature,”  International Journal 
on Wavelets, Multiresolution and Information Processing 
(IJWMIP), vol.1, no.2,  2003, pp. 163-178.   

[18] J.Nievergelt, H.Hinterberger, and K.Sevcik, “The grid file: 
An Adaptable Symmetric‎ Multikey‎ File‎ Stucture,” ACM 
Transaction on Database Systems, vol. 9, no. 1, 1984, pp. 38-
71.  

[19] K. S. Oh, Z. Aghbari, and P-K. Kim, “Fast k-NN Image 
Search with Self-Organizing‎Maps,” CIVR 2002. 

[20] J.Orenstein, “Spatial Query Processing in an Object-Oriented 
Database System,” Proc. ACM SIGMOD, May 1986. 

[21] N.Roussopoulos, S.Kelley, and F.Vincent, “Nearest Neighbor 
Queries,” ACM SIGMOD, 1995. 

[22] R.Weber, H-J.Schek, and S.Blott, “A Quantitative Analysis 
and Performance Study for Similarity-Search Methods in 
High-Dimensional Spaces,” Proc. of the 24th VLDB, USA, 
1998. 

[23] Z. Al Aghbari and A. Al-Hamadi, “Efficient‎KNN‎Search‎by‎
Linear Projection of Image Clusters,” Wiley International 
Journal of Intelligent Systems, Vol. 26, no. 9, 2011, pp. 844-
865.

  

 

5Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications


