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Abstract— A spatial ontology adds to the components of a 

domain ontology spatial relations and spatial aspects of its 
concepts. Spatial relations are of two types: the metric 
relations and topological relations, expressing a link of 
interconnection between two spatial concepts. In this paper, we 
propose a formal modeling of topological relations of a spatial 
ontology. This formal model is called "meta-OntologicalOnto" 
which is a set of rules written in description logic. The "meta-
OntologicalOnto" is used as a reference during the 
construction of the spatial ontology. The field of application of 
our work is the road domain whose ultimate goal is to obtain a 
road ontology named "OntoRoad". 

Keywords- Spatial Ontology; topological relations; road 
domain; formal rules; meta-OntologicalOnto; OntoRoad. 

I.  INTRODUCTION 

A geographical object is an object modeling a real-world 
phenomenon. It is described by semantic data and geometric 
data. The building of spatial ontologies should allow 
modeling of all properties of spatial objects to meet users' 
needs. This makes the problem of constructing spatial 
ontologies more complex than those of other domain 
ontologies. 

The most known definition of ontology [1] is: ontology is 
a specification of a conceptualization of a knowledge 
domain. This definition shows that domain ontology must 
have a formal aspect. Spatial domain ontology consists of 
concepts with a spatial aspect and spatial relations. Spatial 
aspect of a concept means its graphic shape: Point, Line or 
Polygon. Spatial relations are of two types: the metric 
relations expressing a value of distance or proximity between 
two objects, as beside, near, etc.... between two objects, and 
topological relations expressing a link of interconnection 
between two spatial objects. Topological relations are 
characterized by the property to be preserved under 
topological transformations and describe whether features 
intersect or not, how they intersect, and concepts of overlap, 
neighborhood and inside. They are important for numerous 
practical applications that involve spatial query, spatial 
analysis and spatial reasoning. Referring to the ontology 
definition, it is essential to use formal methods to identify 
and define topological relations in spatial ontologies.  

The formalization of spatial relations is an active research 
field and numerous works deal with the recognition of 
pertinent topological relations. The core models in this 
domain are the Calculus Based Model (CBM) [2], the 9-
Intersections Model (9IM) [3] and the Region Connection 
Calculus (RCC) [4]. All these approaches satisfy the 

requirements that they provide a sound and complete set of 
topological relations between two spatial objects. 

In N-intersection models, a mathematical model, called 
Four-Intersection Model (4IM) [5] that classifies topological 
relations based on the content of the four intersections 
between the boundaries and interiors of the two simple 
geometric features, was derived. A number of variants of this 
model were derived, including Dimension Extended Method 
(DEM) [2] that takes the dimension of the intersection 
components into account, Nine-Intersection Model (9-IM) 
[3] that categorizes binary topological relations based on the 
comparison of nine intersections between the interiors, 
boundaries and exteriors of the two features and finally 
Dimensionally Extended Nine-Intersection model (DE-9IM) 
[6] that introduces the dimension of the intersections into 
9IM.  

The binary topological relation between two objects (A 
and B) in [5], is based upon the intersection of A’s interior 
(A°), boundary (ǝA), and exterior (A‾) with B’s interior (B°), 
boundary (ǝB), and exterior (B‾). The nine intersections 
between the six object parts describe a topological relation 
that can be concisely represented by a 3-3 matrix, called the 
9-intersection model. 

 (1) 

By considering the values empty (Ø) and non empty 
(¬Ø), one can distinguish between 29=512 binary topological 
relations. Only a small subset of them can be realized when 
the objects of concern are embedded [7] [19]. There is a set 
which provides a mutually exclusive and complete coverage 
of topological relations between two regions (Fig. 1), termed 
{Disjoint, Meet, Overlap, equal, Contains, Inside, Covers 
and coveredBy} [8].  

 
Figure 1.  The eight topological relations between two spatial regions and 

their corresponding 9-intersection matrices [2]. 
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The RCC8 model [4] is composed of 8 Jointly 
Exhaustive and Pairwise Disjoint (JEPD) base topological 
relations between two spatial regions A and B. These 
relations are based on the binary primitive C(A,B), which 
means A is connected to B. In the RCC8 context, C(A,B) is 
interpreted as being true when the closure of A and B share a 
point, where A and B are viewed as sets of points. The only 
requirement for the relation C is that it is reflexive and 
symmetric. Using C(A,B) a large number of relations can be 
defined [4]. The set of eight relations {DC, EC, PO, EQ, 
TPP, NTPP, TPPi, NTPPi} constitutes the set of the RCC8 
relations (see Table 1). They are invariant with respect to 
geometric transformations. It is possible to add more 
expressiveness to the RCC relations by introducing 
additional primitives. In [4], 23 relations are defined by 
adding the convex hull as another primitive. This extension 
allows distinguishing different types of “inside” a region. In 
the context of [4], a region is said to be inside another one 
when it is connected to its convex hull, but the regions do not 
overlap.  

TABLE I.  : SOME OF THE RELATIONS DEFINED BY C(A,B). 

 
 
The CBM [2] offers a small set of topological relations 

with high expressiveness:{ Touch, In, Cross, Overlap, 
Disjoint} and three boundary operators, which are proved to 
be mutually exclusive and complete. The capability of CBM 
is equivalent to DE-9IM [6].  

Through the analysis of literature, it can be found that the 
numbers of topological relations differentiated by these 
models can only indicate the capacities of the models but 
nothing about a complete spectrum of all possible 
topological relations. For example, there should be infinite 
number of topological relations for a line and a region. To 
overcome the deficiency of these general models, efforts 
have also been made to develop dedicated models to specific 
types of features, e.g., line-line relations [9, 10], region-
region relations [11, 12] and Line-region relations [13]. 

The field of our works is the road domain; we are 
therefore interested in topological relations supposed being 
relevant in this domain. This paper presents the topological 
relations considered by our approach of building spatial 
ontologies and formally defines these relations. 

 
In the first part of this paper, we present an approach 

of building spatial ontologies which defines a process of 
building adding a new step of spatialization [18] to the 
process of building domain ontologies [14]. In the 
second part of this paper, we present the formal definitions 
of topological relations written in descriptive logic. We 

end this paper with a conclusion and future works we intend 
to achieve. 

II. APPROACH OF BUILDING  A SPATIAL 

ONTOLOGY  

Several studies have been carried on methods for building 
ontologies [21]. We propose an approach for building spatial 
ontologies that defines a process of building with 
two application phases: meta-modeling phase and modeling 
phase. The first phase of meta-modeling defines, for each 
step, a meta-model that will serve as a 
reference then during the second phase of modeling of the 
process. The proposed process is based on the steps of 
the building process of domain ontology [14] and adds an 
intermediate step of definition and explanation of spatial 
relations within geographic applications. To this 
end, our approach is based on the following four steps: 
conceptualization, Spatialization, ontologization and Operati
onalization. (Fig. 2) presents the process of building  
spatial ontologies. 

 

 
Figure 2.   Process of building spatial ontologies. 

The first phase of meta-modeling is to define, for every 
step of ontology construction, a meta-model that will serve 
as reference in the subsequent phase. The conceptualization 
step is to identify a body in the knowledge domain 
and to clarify the conceptual nature (concepts, relations, 
properties and relations of concepts, rules, constraints, etc.) 
of extracted knowledge from the corpus. The use of object-
oriented paradigm for the conceptualization of the 
geographical world has been widely discussed in the 
literature [17]. It consists of definition of geographical 
object, their attributes and their relations. We 
proceeded to study the nature of knowledge may exist 
in a spatial ontology and we considered that it is important 
that a spatial ontology consists of a set of 
concepts characterized by their names and relations between 
concepts. Relations are those supported by the Unified 
Modeling Language (UML) [23] namely association, 
aggregation, composition and generalization. 

The spatialization step is to give tow points: a spatial 
dimension to the concepts of ontology and to clarify 
the spatial relations between them. The spatial aspect of a 
concept is reflected in the graphic form of this concept: Line, 
Point or Polygon. Then we classify the ontology 
concepts according to their graphic shapes. A Point 
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is characterized by a name, an abscissa and an ordinate. A 
Line is characterized by a name, two points: an initial section 
(is) and an end section (es), a direction, a lenght and a 
height. A Polygon is characterized by a name and at least 
three points which form its extremities. Spatial relations are 
of two types: metric relations and topological relations. 
Metric relations fall into two classes: distance relations that 
express a value of distance and unit of measure; 
and proximity relations that express an approximate 
distance between two spatial objects. We characterize 
a topological relation between two spatial concepts by the 
graphic form of the intersection of these two concepts. To 
represent these relations we use the formalism of connection 
to express that two geographical entities share a geographical 
space. Each topological relation is modeled graphically in 
[15] to show the graphic shape of the intersection of two 
spatial objects. (Table 2) lists all topological relations 
supported supported by our approach. 

TABLE II.  SUPPORTED TOPOLOGICAL RELATIONS. 

 
These relations are represented as a graph called "Meta-

topologicalOnto" (Fig. 3). In this meta-model, classes 
represent the graphic shapes of one concept including: Point, 
Line or Polygon; and relations represent the topological 
relations considered in our ontology. After considering the 
spatial relations of our ontology we proceeded to define the 
spatial meta-model "meta-SpatialOnto" which extends the 
conceptual model [16] with spatial relations.  

 
Figure 3.  Topological meta-model of a spatial ontology: “Meta-

topologicalOnto”. 

The third step of the process of building a spatial 
ontology is the ontologization step. It consist to model in a 
formal language the domain properties, the objective is to 
obtain a model in which almost all the ambiguities inherent 
in natural language are lifted. Finally, the operationalization 
is to make operational or functional ontology. First, must 
select the ontology language and the tool to build the 
ontology. 

The modelling phase depends on the domain of the 
ontology and consists to define, for each step of the process 
of building, a model containing the concepts and relations of 
the domain. The result of this phase is a model of a spatial 
ontology instantiable depending on the user data. We chose 
the road domain as field of application of our work. The 
result ontology is called “OntoRoad”.  

 We focus in this paper on the metamodeling phase of the 
ontologization step of process of building a spatial ontology, 
especially we focus on topological relations of spatial 
ontology. Next section will present the formal definitions of 
supported topological relations. 

III.  FORMAL DEFINITIONS OF TOPOLOGICAL RELATIONS 

Various studies have formally defines topological 
relations between spatial objects [19] [20] [22]. However, 
new needs of expressing these relations otherwise have 
arisen, including the need to express the type of the graph 
entity resulting of the intersection of the objects involved 
in the topological relation. 

We define usage rules and we formally written 
topological relations of the ontology using the descriptive 
logic, the set of these rules and these formal definitions is 
called a formal meta-model of a spatial ontology "meta-
OntologicalOnto". 

We define the graphical shapes of a spacial 
object namely: Point, Line and Polygon as 
structures of objects. Thus we write: 

Rule 1: a Point is characterized by a name of string and 
an x and y coordinates of integer: 

Point: �name:x ∶ Stringentiery: entier�   

           (1) 

Rule 2: A Line is characterized by a name of string, by 
the properties ds: start of section and fs: end of section of 
Point, a height of integer and a direction that takes a value of 
the Direction Set which is defined by:  

Direction = {East, Weast, North, South, North-
East, North-Weast, South-East, South-Weast} 

 Line:
��
� ����:��∶ ��� !"#$ !�%�:� ��&� $!∶ #$ !�' ��&� $!(� "�:              )!��"�� *+

,
                  (2) 

 

     Graphic Form  
Topological 

 relation  

Point
/Poin
t  

Point
/Line  

Point/ 
Polygon  

Line/ 
Line  

Line/ 
Polygon  

Polygon/
Polygon  

Equality  x   x  x 
Extremity   x     
Inclusion   x x  x x  x  
Connection    x   x  x  
Jonction     x   
Joint     x   
Meet     x x   
Adjacency     x x   
Superposition     x   
Partial-Recovery       x 
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Rule 3: A Polygon is characterized by a name of string 
and five extremities of Point: e1, e2, e3, e4 and e5. 

polygon:
�/
�
/�

namee1 ∶e2 ∶e3 ∶e4 ∶e5 ∶

StringPointPointPointPointPoint */
+
/,

   (3) 

 
To define the formal definitions of spatial relations we 

consider: C1, C2: two spatial concepts; P1, P2: two variables 
of Point; G1, G2: two variables of Polygon; L1, L2: two 
variables of Line. We also consider the sets: E1and E2, 
where E1= {e1, e2, e3, e4, e5} representing the extremities 
of G1 and E2 = {e’1, e’2, e’3, e’4, e’5} representing the 
extremities of G2. 

 
Rule 4: Equality (C1, C2) is a relation which 

holds between two spatial concepts C1 and C2 if and only if 
the intersection of C1 and C2 is equal to the concept 
itself. Then, we write: 

Equality8C1, C2; ⇔ 8C1 ∩ C2 = 8C1 ∨ C2;; ∧
AC1, C2: Point ∧ C1. name = C2. name ∧C1. x = C2. x ∧ C1. y = C2. y C ∨
DC1, C2: Ligne ∧ C1. name = C2. name ∧C1. ds = C2. ds ∧ C1. fs = C2. fs H ∨

DC1, C2: Polygone ∧ C1. name = C2. name ∧C1. E1 = C2. E2 H       

(4)                 

Equality(C1, C2) is transitive : 

Equality8C1, C2; ∧ Equality8C2, C3 ⇒ Equality8C1, C3; 

(5) 
Equality(C1, C2) is symmetric: 

Equality8C1, C2; ⇔ Equality8C2, C1;        (6) 

Rule 5: Extremity(P1, L1) is a relation which 
holds between two concepts P1 and L1 of respective graphic 
shapes Point and Line, if and only if the intersection of 
P1 and L1 is equal to P1 and P1 is one extremity of 
L1. Then, we write: 

Extremity8P1, L1; ⇔ L1 ∩ P1 =P1 ∧ 8Equality8L1. ds, P1; ∨ Equality8L1. fs, P1;)      (7) 

Extremity(P1, L1) is not transitive. 
Extremity(P1, L1) is not symmetric.  

Rule 6: Inclusion (P1, L1) is a relation which 
holds between two spatial concepts P1 and L1of respective 
graphic shapes Point and Line if and only if the 
intersection of P1 and L1 is equal to P1 and the function 
Linear(P1, L1.ds, L1.fs) is satisfied. 
Linear( ) is a mathematical function which checks that three 
points are linear. This function is defined as follows: 

considering P1, P2 and P3 three points with respective 
coordinates (x, y), (x ', y') and (x'', y''); 

 

JKLMNO8P1, P2, P3; ⇔ 8Q − Q′′; ∗ 8T′ − T′′; − 8Q ′ − Q′′; ∗8T − T ′′; = 0                      (8) 

Then, we write: 

VLWXYZK[L8P1, J1; ⇔ P1 ∩ J1 =P1 ∧ JKLMNO8P1, J1. \Z, J1. ]Z;       (9) 

Inclusion(P1, L1) isn’t transitive. 
Inclusion(P1, L1) is not symmetric.  

 
Rule 7: Connection(P1, G1) is a relation which holds 

between two spatial concepts P1 and G1 of respective 
graphic shapes point and Polygon if and only if the 
intersection of P1 and G1 is equal to P1 and P1 belongs to 
the extremities of G1. Then, we write: 

 

^[LLMQK[L8P1, _1; ⟺ 8P1 ∩ _1 = P1; ∧ P1 ∈ _1. b 

(10) 
Connection(P1, G1) isn’t transitive. 
Connection(P1, G1) isn’t symmetric.  

Rule 8: Inclusion(P1, G1)  is a relation which holds 
between two spatial concepts P1 and G1 of respective 
graphic shapes point and Polygon if and only if the 
intersection of P1 and G1 is equal to P1 and the relation 
Inclusion (P1, Rect(G1) ) is true. 

In order to check if a point belongs to a polygon G1, we 
use the concept of the minimum bounding rectangle which is 
defined as the smallest rectangle containing the geometry of 
an object. The sides of the rectangle can be oriented parallel 
to the x axis and the y axis, we obtain the minimum 
bounding rectangle x, y. The bounding polygon of G1is 
named Rect(G1) defined by [Xmin, Xmax, Ymin, Ymax] 
Then we write: 

Inclusion8P1, G1; ⇔ P1 ∩ G1 = P1 ∧ 8Xmin <P1. Q < Xmax;     ∧         8Ymin < P1. T < Ymax;            (11) 

Inclusion(P1, G1) is not transitive. 
Inclusion(P1, G1) is not symmetric.  

 
Rule 9: Inclusion (L1, L2) is a relation which holds 

between two spatial concepts L1 and L2 of line graphic 
shapes is verified if and only if the intersection of L1 and L2 
is equal to L1; and the extremities of L1 admit an Inclusion 
() relation with L2. Then, we write: 

VLWXYZK[L8J1, J2; ⟺8J1 ∩ J2 = J1; ∧ VLWXYZK[L8J1. \Z, J2;  ∧VLWXYZK[L8J1. ]Z, J2;            (12) 

Inclusion(L1, L2) is transitive. 
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VLWXYZK[L(J1, J2) ∧ VLWXYZK[L(J2, J3) ⇒VLWXYZK[L(J1, J3)        (13) 

Inclusion(L1, L2) is not symmetric. 
 
Rule 10: Joint(L1, L2) is a relation which holds between 

two spatial concepts L1 and L2 of Line graphic shapes is 
satisfied if and only if the intersection of L1 and L2 is equal 
to a point P1 which is the extremity of both L1 and L2. Then, 
we write: 

i[KLj(J1, J2) ⟺(J1 ∩ J2 = P1) ∧ bQjOMkKjT(P1, J1) ∧bQjOMkKjT(P1, J2)        (14) 

Joint(L1, L2) isn’t transitive. 
Joint(L1, L2) is symmetric : 

i[KLj(J1, J2) ⟺ i[KLj(J2, J1)        (15) 

Rule 11: Junction (L1, L2) is a relation which holds between 
two spatial concepts L1 and L2 of line graphic shapes is 
verified if and only if the intersection of L1 and L2 is equal 
to a point P1which is neither an extremity of L1 nor of L2. 
Then, we write: 

iYLWjK[L(J1, J2) ⇔(J1 ∩ J2 = P1) ∧ VLWXYZK[L(P1, J1) ∧VLWXYZK[L(P1, J2) ∧ ¬bQjOMkKjT(P1, J1) ∧¬bQjOMkKjT(P1, J2)    
          (16) 

Junction(L1, L2) isn’t transitive. 
Junction(L1, L2) is symmetric : 

iYLWjK[L(J1, J2) ⇔ iYLWjK[L(J2, J1)      (17) 

Rule 12: Meet(L1, L2) is a relation which holds between 
two spatial concepts L1 and L2 of Line graphic shapes is 
satisfied if and only if the intersection of L1 and L2 is equal 
to a point which is equal to one extremity of L1. Then, we 
write: 

Meet8L1, L2; ⇔8L1 ∩ L2 = P1; ∧ Extremity8P1, L1;  ∧ Inclusion8P1, L2;
           (18) 

Meet(L1, L2) isn’t transitive. 
Meet(L1, L2) isn’t symmetric. 

Rule 13: Adjacency (L1, L2) is a relation which holds 
between two spatial concepts L1 and L2 of line graphic 
shapes is verified if and only if the intersection of L1 and L2 
is equal to a line L3 and the L3 extremities are equal to L1 or 
L2 extremities. Then, we write: 

Adjacency8L1, L2; ⇔ L1 ∩ L2 =L3 ∧  pL3. ds, L3. fsq ≡ 8pL1. ds, L1. fsq ∨ pL2. ds, L2. fsq;
          (19) 

Adjacency (L1, L2) isn’t transitive. Adjacency (L1, L2) is symmetric: 

Adjacency8L1, L2; ⇔ Adjacency8L2, L1;   (20) 

Rule 14:  Superposition (L1, L2) is a relation which holds 
between two spatial concepts L1 and L2 of line graphic 
shapes is verified if and only if L1 has a height different to 
zero and L1 extremities belong to L2. Then, we write: 

Superposition8L1, L2; ⇔ 8L1. height ≠ 0 ∧Inclusion8l1. ds, L2; ∧ Inclusion8L1. fs, L2;       (21) 

Superposition(L1, L2) isn’t transitive. 
Superposition(L1, L2) isn’t symmetric. 
 
Rule 15: Inclusion (L1, G1) is a relation which holds 

between two spatial concepts L1 and G1 of respective 
graphic shapes line and polygon is satisfied if and only if the 
intersection of L1 and G1 is equal to L1 and L1 extremities 
admit Inclusion( ) relation with G1. Then, we write: 

Inclusion8L1, G1; ⇔ L1 ∩ G1 =L1 ∧ Inclusion8L1. ds, G1; ∧Inclusion8L1. fs, G1;                                                                (22) 

Inclusion(L1, G1) is not transitive. 
Inclusion(L1, G1) is not symmetric. 
 
Rule 16: Meet(L1, G1) is a relation which holds between 

two spatial concepts L1 and G1 of respective graphic shapes 
Line and polygon is satisfied if and only if the intersection of 
L1 and G1 is equal to a point which is one of the extremities 
of L1 and the other extremity of L1 does not admit 
Inclusion( ) relation with G1. Then, we write: 

Meet8L1, G1; ⇔ L1 ∩ G1 = P1 ∧ u8L1. ds = P1 ∧¬Inclusion8L1. fs, G1;v  ∨uL1. fs = P1 ∧ ¬Inclusion8L1. ds, G1;v     (23) 

Meet (L1, G1) is not transitive. 
Meet (L1, G1) is not symmetric. 
     
Rule 17: Adjacency (L1, G1) is a relation which holds 

between two spatial concepts L1 and G1 of respective 
graphic shapes line and polygon is satisfied if and only if the 
intersection of L1 and G1 is equal to a line L2 which 
extremities belong to G1 extremities and the extremities of 
L1 do not admit Inclusion( ) relation with G1. Then, we 
write: 

Adjacency8L1, G1; ⇔ L1 ∩ G1 = L2 ∧ ∃pe1, e2q⊂ E1 ∧ pL2. ds, L2. fsq= pe1, e2q ∧ ¬Inclusion8L1. ds, G1;  ∧ ¬Inclusion8L1. fs, G1;  
(24) 

Adjacency (L1, G1) is not transitive. 
Adjacency (L1, G1) is not symmetric. 
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Rule 18: Connection(L1, G1) is a relation which holds 

between two spatial concepts L1 and G1 of respective 
graphic shapes line and polygon is satisfied, if and only if the 
intersection of L1 and G1 is equal to a line L2 and at least 
one of the extremities of L1 doesn’t admit Inclusion() 
relation with G1. Then, we write: 

Connection8L1, G1; ⇔ L1 ∩ G1= L2 ∧ Inclusion8L2. ds, G1;∧ Inclusion8L2. fs, G1; ∧ ∃P: Point 8P∈ pL1. ds, L1. fsq ∧ ¬ Inclusion8P, G1;; 

                                                                                      (25) 
Connection(L1, G1) is not transitive. 
Connection(L1,G1) is not symmetric. 
 
Rule 19: Inclusion (G1, G2) is a relation which holds 

between two spatial concepts G1 and G2 of polygon graphic 
shapes if and only if the intersection of the two concepts G1 
and G2 is equal to G1 and all the extremities of G1 admit an 
Inclusion( ) relation with G2. Then, we write: 

Inclusion8G1, G2; ⇔ G1 ∩ G2 = G1 ∧ ∀ e ∈E1  Inclusion8e, G2;         (26) 

Inclusion(G1,G2) is transitive : 

Inclusion8G1, G2;  ∧ Inclusion8G2, G3; ⇒Inclusion8G1, G3;        (27) 

Inclusion(G1,G2) is not symmetric. 
 
Rule 20: Connection(G1, G2) is a relation which holds 

between two spatial concepts of polygon graphic shapes if 
and only if the intersection of G1 and G2 is equal to a point 
belonging to the extremities of both G1 and G2, the other 
extremities of G1 do not belong to G2 and other extremities 
of G2 do not belong to G1. Then, we write: 

Connection8G1, G2; ⇔ G1 ∩ G2 = P1 ∧ 8P1 ∈ G1. E ∧P1 ∈ G2. E; ∧ u∀e ∈ E1 − P1, ¬Inclusion8e, G1;v ∧u∀e ∈ E2 − P1, ¬Inclusion8e, G2;v   
              (28) 

Connection (G1, G2) is not transitive. 
Connection (G1, G2) is symmetric: 

Connection8G1, G2; ⇔ Connection8G2, G1;      (29) 

Rule 21: Adjacency (G1, G2) is a topological relation 
which is satisfied between two spatial concepts G1 and G2 
of polygon graphic shapes if and only if the intersection of 
G1 and G2 is equal to a line L1 and the extremities of L1 
belong to the extremities of both G1 and G2. Then, we write: 

Adjacency8G1, G2; ⇔ G1 ∩ G2 = L1 ∧ ∃ pe1, e2q ⊂E1, pe1, e2q ⊂ E2 ∧ pL1. ds, L1. fsq = pe1, e2q     (30) 

Adjacency(G1,G2) is not transitive. 
Adjacency(G1,G2) is symmetric: 

Adjacency8G1, G2; ⇔ Adjacency8G2, G1;     (31) 

 
Rule 22: Partial-Recovery(G1, G2) is a topological 

relation which holds between two spatial concepts G1 and 
G2 of polygon graphic shapes if and only if the intersection 
of G1 and G2 is equal to a polygon G3 and there is at least 
one extremity e1 of G1 admitting Inclusion() relation with 
G2 and there is at least one extremity e'1 of G2 admitting an 
Inclusion() relation with G1 and {e1, e'1} ⊂ E3 (Extremities 
of G3). Then, we write: 

PNOjKNX − zMW[{MOT8_1, _2; ⇔ G1 ∩ G2 = G3 ∧ ∃ e1 ∈E1, e 1 ∈ E2, pe1, e’1q ⊂  E3, Inclusion8e1, G2; ∧Inclusion8e 1, G1;   (32)  

Partial-Recovery (G1,G2) isn’t transitive. 
Partial-Recovery (G1,G2) is symmetric: 

PNOjKNX − zMW[{MOT8_1, _2; ⇔ PNOjKNX −zMW[{MOT8_2, _1;         (33) 

IV. CONCLUSION AND FUTURE WORK 

 In this paper, we presented an approach of building 
spatial ontologies, which defines a process of building 
realised in two phases: the meta-modelling phase and the 
modelling phase. Then, we detailed, the meta-modeling 
phase of the ontologization step of the process of building a 
spatial ontology. The result of this step is an ontological 
meta-model "meta-OntologicalOnto" representing the formal 
definitions of topological relations of the ontology using 
description logic. In future work, we will define the 
modeling phase of the building process of a spatial ontology. 
This phase depends on the field of study and refers to the 
meta-modeling phase to define the models of the ontology. 
Our approach is applied to the road domain to give as a result 
a road ontology named “OntoRoad” which will be 
instantiated with data from several geographic areas of Sfax 
city in Tunisia in purposes of geo-localization. 
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