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Abstract—Association rule discovery, or association mining, is 

one of the major data mining tasks that has gained much 

interest from researchers and general users. The knowledge 

obtained from association mining can be used to benefit 

business in many aspects such as recommend new products, 

design catalogs, manage sales promotion, and so on. But data 

processing for association rule discovery has expensive 

computing time because the relationships induced from data 

can be tremendously many more than those induced from 

other data mining tasks such as classification. As a 

consequence, most association mining software generally 

create so many rules from the association mining process and 

some of these rules are not beneficial to any users. To solve this 

useless rule mining problem, we propose to incorporate 

Apriori algorithm with constraint function for users to specify 

subset of association rules containing only interesting items. 

Besides specific items, users can also identify length of the 

association rules. Our two Apriori-with-constraint algorithms, 

called Association rule discovery with Constraints In Frequent 

itemset mining (ACIF) and Association rule discovery with 

Constraints After Frequent itemset mining (ACAF), are 

experimentally proven to be able to reduce processing time and 

also pruning a great number of useless rules.  

Keywords-association rules; frequent itemset mining; data 

mining; association analysis;constraint logic programming. 

I.  INTRODUCTION 

Data mining aims at extracting hidden knowledge from 
data [8]. Knowledge is known to be a valuable asset to most 
organizations as a substantial source to enhance 
understanding of relationships among data instances and 
support better decision making to increase organizational 
competency. Automatic knowledge acquisition can be 
achieved through the availability of the knowledge induction 
component. The induced knowledge can facilitate various 
knowledge-related activities ranging from expert decision 
support, data exploration and explanation, estimation of 
future trends, and prediction of future outcomes based on 
present data. The methodology of knowledge induction is 
known as knowledge discovery in databases, or data mining. 

Data mining methods are broadly defined depending on 
the specific research objective and involve different classes 
of mining tasks including regression, classification, 
clustering, identifying meaningful associations between data 
attributes. The later mining task refers to association mining, 

or market basket analysis [9] in the retail business domain, 
which is the main focus of our research. 

Association mining is a popular method for discovering 
relations between features or variables in large databases 
[11], [12], [15], [20] and then presenting the discovered 
results as a set of if-then rules, such as {milk, bread} => 
{butter} to indicate that if a customer buys milk and bread, 
he or she is more likely to buy butter as well. Association 
rule generation process is composed of two major phases: 
frequent itemset mining and rule generation. Frequent 
itemset mining is to find all items or features that are 
frequently occurred together [13], [22]. It is an important 
phase of association mining because it is a difficult task to 
search all possible itemsets. 

We thus pay attention to the design and implementation 
of frequent itemset discovery by applying the constraint 
concepts in this step. We propose two algorithms: 
Association rule discovery with Constraints In Frequent 
itemset mining (ACIF)  and Association rule discovery with 
Constraints After Frequent itemset mining (ACAF). The first 
algorithm considers constraints during the frequent itemset 
mining phase, whereas the later one applies constraints after 
the frequent itemset mining steps. Constraints in our 
proposed method include items of interest, items to be 
excluded from the mining results, and desired rule length of 
the final association mining. Our implementation is based on 
the ECLiPSe constraint system (www.eclipseclp.org). 

This paper is the extension of our previous work [14] on 
association rule discovery with constraint logic programming 
that was the proposal of extending Apriori [1] with more 
domain-specific constraints. The work presented here 
explains in more details the idea of incorporating domain-
specific constraints both during and after the frequent itemset 
mining stage (ACIF and ACAF algorithms, respectively). 
Applicability of the proposed idea and its implementation 
have also been demonstrated in this paper. 

The organization of this paper is as follows. The problem 
of association rule discovery and main concepts of logic and 
constraint logic programming are reviewed in Section 2. 
Then the design of association mining with constraint 
algorithms is explained in Section 3. The implementation of 
the two algorithms, ACIF and ACAF, together with their 
experimental results are presented in Section 4. Finally, 
Section 5 concludes the paper with discussion of our future 
research direction. 
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II. PRELIMINARIES 

A. Frequent Patterns and Association Mining 

Frequent patterns are common occurrences such as sets 
of features or items that appear in data frequently. Frequent 
pattern mining focuses on the discovery of relationships or 
correlations between items in a dataset. In frequent itemset 
mining, we are interested in analyzing connections among 
items. A collection of zero or more items is called an itemset. 
The discovery of interesting relationships hidden in large 
datasets is the objective of frequent pattern mining. The 
uncovered relationships can be represented in the form of 
association rules. An association rule is an inference of the 
form X  Y, where X and Y are non-empty disjoint itemsets. 
An itemset is called a frequent itemset if its support, i.e., the 
number of transactions that contain a particular itemset, is 
greater than or equal to user-specified support threshold 
(called MinSup). It is the MinSup constraint that helps 
reducing the computational complexity of frequent itemset 
generation. If the itemset is infrequently occurred, all 
supersets of this itemset are also infrequent and they can be 
pruned to reduce the search space. 

This pruning strategy is called an anti-monotone property 
and has been applied as a basis for searching frequent 
patterns in the well-known algorithm Apriori [1], [2]. The 
algorithms find all frequent itemsets by generating supersets 
of previously found frequent itemsets. This generate-and-test 
method is computational expensive. Han et al [10] proposed 
a different divide-and-conquer approach based on the prefix-
tree structure that consumes less memory space. Toivonen 
[21] employed sampling techniques to deal with frequent 
pattern mining from large databases. Zaki et al [23] tackled 
the problem by means of parallel computation. 

Some researchers [4], [7], [17], [18], [19] consider the 
issue of search space reduction through the concept of 
constraints. Our research is in the same direction as De Raedt 
et al [7]. We consider the problem of mining frequent 
patterns within a setting of constraint logic programming 
using the ECLiPSe constraint system [3]. Constraints can 
play an important role in improving the performance of 
mining algorithm. The problem of constraint-based pattern 
mining can therefore be formulated as the discovery of all 
patterns in a given dataset that satisfy the specified 
constraints. 

B. Constraint Logic Programming 

Constraint logic programming, or CLP, is a declarative 
programming style that combines the features of logic 
programming [16] and constraint propagation to solve 
combinatorial and optimization problems. Common structure 
of a constraint program is consisted of the part to define 
variables and constraints on variables and the part to search 
for a valid value on each variable. This is the style of 
constraint-and-search. The structure of constraint logic 
program is as follows: 

solve(Variables) :- 
          setup_constraints(Variables), 
          search(Variables). 

A constraint logic program to solve inequality A > B, in 
which both variables are integers in the range 1..5 can be 
shown as follows:  

:- lib(ic).  % include library 
solve(R) :- 
       R = [A,B], % define variables 
       R :: 1..5, % define constraint 

       A #> B, % constraint over variables           
             alldifferent([B]), 
             labeling(R). 

The predicate “labeling” is responsible for searching all 
possible values of A and B that comply with the constraints 

A > B and A  B. 
 

III. APRIORI-WITH-CONSTRAINT ALGORITHMS 

Apriori algorithm [1], [2] is a general method that can 
efficiently generate all association rules satisfying minimum 
support and minimum confidence constraints. We argue that 
besides these basic constraints, users should specify their 
item of interest constraint over the method. We thus design 
two algorithms to support the extension of Apriori that takes 
into account user-specified constraints. The first algorithm, 
called Association rule discovery with Constraints In 
Frequent itemset mining (ACIF), applies constraints during 
the phase of frequent itemset mining. The second algorithm 
is called Association rule discovery with Constraints After 
Frequent itemset mining (ACAF) in which constraints are 
considered after all frequent itemsets are generated. The 
design frameworks of both algorithm are presented in Fig. 1. 
Detailed steps of ACIF and ACAF algorithms are shown in 
Fig. 2 and Fig. 3, respectively. 

 
(a) The design of ACIF 

 
(b) The design of ACAF 

Figure 1. Design frameworks of Apriori-with-constraint 
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Algorithm ACIF 

//Input : Database D,  

              Constraints: Length, Subset, NotSubset,  

                                   RHS_items, Mincon, Minsup. 

//Output :  Rules. 

 

(1)   L1 = find_ frequent_1itemset(D) 

(2)   for (k =2; Lk-1 ≠ ∅; k++) { 

(3)         Ck  = apriori_gen(Lk-1, Minsup) 

(4)         for each transaction t ∈ D { // scan D for counts 

(5)      C1  = subset(Ck, t)  

(6)               for each candidate c ∈ C1 { c.count++ } 

(7)      C2 = checkcondition(Length, Subset,  

                                                       NotSubset, C1)  

(8)      Lk={c ∈ C2 |  c.count  ≥ Minsup}  

(9)            } 

(10)    } 

(11)  FreqSet =  

(12)  For each l ∈  FreqSet  //  l is frequent-itemset. 

(13)  k = | l |          //  size of frequent itemset  

(14) m = |Hm|        // size of right hand side Items  

(15) For each hm+1 ∈ Hm+1 { 

(16)       If hm+1 = RHS_items  { 

(17)  conf = support(fk) / support(fk – hm+1)  

(18)  If conf  >=  Mincon { 

(19)   Rules = rule(fk – hm+1)  hm+1  

(20)  } Else  

(21)   delete hm+1 from Hm+1  

(22)      } 

(23)  } 

(24)  return  Rules 

Figure 2. Pseudocode of ACIF algorithm 

 

Figure 3. Pseudocode of ACAF algorithm 

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

A. CLP Implementation 

Program and data in the constraint logic programming 
style are both in the same format, that is, a Horn clause. In 
our implementation, declaration of items and transactional 
database are in the list structure within the predicate “data” 
(as shown in Fig. 4). To run the program, user calls the 
predicate “association” and the running result will appear as 
shown in Fig. 5.  

 

Figure 4. Predicate data containing lists of items and transactions 

 

Figure 5. Running result of association rule mining 

 

A program source code of ACAF algorithm that was 

implemented with the constraint logic programming 

language using ECLiPSe constraint system is given as 

follows: 

%  User calls:  association(R,0,2,100)   

:- compile("filename.txt"). % load file. 

:- lib(sd).   

:- lib(ic).   

:- lib(ordset). 
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association(R,LengthI,MinSup,Conf) :-  

 writeln('Please specify member in [[_]] :'),read(Subset), 

 writeln('Please specify member do not need in [[_]] :'), 

read(NotSubset), 

 writeln('Please specify member in [[_]] :'),read(Goal), 

 data(Data),Data=_-_, 

        ( count(I,2,6), fromto(Data, 

S0,S1,R),param(LengthI,Subset,NotSubset,Conf,MinS

up,Goal) do 

               ( S0=A-B,  

                      findCL(A-B-MinSup,R-_-

_,LengthI,Subset,NotSubset,Conf,Goal), 

                      allUnion(I,R,NewItemSet), 

                      S1=NewItemSet-B ),!   ). 

 findCL(ItemSet-Items-MinSup,R-Items-MinSup,LengthI, 

Subset,NotSubset,Conf,Goal) :- 

 (foreach(X,ItemSet), fromto(R,S1,S0,[]), 

param(Items,MinSup) do  

            (supOK(X,Items,MinSup,LenItem) ->  

S1=[X-LenItem|S0], ! ; S1=S0) 

       ), not1Item(R,Re1), 

   findLength(LengthI,Re1,Re), 

   findSubset(Subset,Re,R1), 

   findNotSubset(NotSubset,R1,R2), 

   findRule(R2-Items-Conf,Goal). 

% Check Item set length > 1    

not1Item(R,Re) :- R=[H-_|_],length(H,LenItem), 

    LenItem =1 -> Re = [] ; Re = R . 

% findLength(0,[[a,b]-2,[a,c]-2],R). 

findLength(Cons,Re,R) :-  

         (foreach(I,Re), fromto(R,S1,S0,[]), param(Cons) do 

           I = X-_, length(X,LenItem),LenItem > Cons ->  

S1 = [ I | S0], ! ; S1=S0   ). 

% findSubset([[b],[c]],[[a,b]-2,[b,c]-2,[b,c,d]-2],R1). 

findSubset([],X, X).  

findSubset([Subset|Tr],Re,R1) :-  

   Subset = [] -> R1 = Re ; 

          (foreach(I,Re), fromto(R,S1,S0,[]), param(Subset) do 

     I = X-_, 

             Subset1&::Subset, Y&::X, Subset1&=Y  

               -> S1 = [ I | S0], ! ; S1=S0   ),   

   findSubset(Tr,R,R1).     

% findNotSubset([[b],[c]],[[a,b]-2,[b,c]-2,[b,c,d]-2],R1). 

findNotSubset([],X, X).  

findNotSubset([NotSubset|Tr],Re,R1) :-  

  NotSubset = [] -> R1 = Re ; 

       (foreach(I,Re), fromto(R,S1,S0,[]), param(NotSubset) do 

   I = X-_, 

         NotSubset1&::NotSubset, Y&::X, \+NotSubset1&=Y  

     -> S1 = [ I | S0], ! ; S1=S0   ), 

 findNotSubset(Tr,R,R1). 

% findGoal([[a]],[a,b],R).      

findGoal([],X, X).  

findGoal([Subset|Tr],Re,R1) :-  

  Subset = [] -> R1 = Re ; 

          Subset1&::Subset, Y&::Re, Subset1&=Y -> R1 = Re,   

          findGoal(Tr,Re,R1).  

supOK(X,Items,MinSup,LenItem) :-  

          (foreach(I,Items), fromto(R,S1,S0,[]), param(X) do 

                (my_subset(X,I) -> S1 = [ I | S0], ! ; S1=S0) ), 

           length(R,LenItem), 

           LenItem >= MinSup. 

% findRule   

findRule(ItemSet-Items-MinConf,Goal) :- 

     (foreach(Set,ItemSet), param(Items,MinConf,Goal) do 

 Set = X-LenItem, 

 findall(Re,powerset(X,Re),PwSet), 

 (foreach(ItemX,PwSet), 

param(X,Items,LenItem,MinConf,Goal) do 

 ( ItemX = X ; ItemX = [] -> ! ; 

createRule(ItemX,X,Re),findGoal(Goal,Re,R1) -> 

  supOK(ItemX,Items,0,LenItemX), 

  conOk(LenItem-LenItemX-MinConf,ItemX,R1),! ; ! 

  )  )  ). 

% createRule([a],[a,b,c],Result).     

createRule([],X,X).     

createRule([H|Tr],X,Result) :- 

delete(H,X,Re),createRule(Tr,Re,Result).    

% Check Confident  

conOk(LenItem-LenItemX-MinConf,ItemX,Re) :- Re11 is 

(LenItem/LenItemX)*100,Re11 >= MinConf -> write('If 

'), 

 write(ItemX),write(' '),write(LenItemX),write(' then '), 

 write(Re),write(' '),writeln(LenItem) ;! . 

% my_subset compare([1],[1,2]) return T or F   

my_subset(Sub,S) :- toSet(Sub,OrdSub), toSet(S,OrdS), 

                                     ord_subset(OrdSub,OrdS). 

allUnion(I,ItemSet,NewItemSet) :-  combi(ItemSet,R_), 

flatten(R_,R), 

       (foreach(X,R), fromto(NewItemSet_,S1,S0,[]), param(I) 

do  First-Sec=X, 

          (unionN(I,First-Sec,Out) -> S1=[Out|S0], !;S1=S0)  ), 

          toSet(NewItemSet_,NewItemSet). 

 

unionN(N,First-Sec,Out) :- toSet(First,F), toSet(Sec,S),   

                                           ord_union(F,S,Out), 

                                           length(Out,Len),Len=N. 

combi([],[]). 

combi([H|T],[HR|TR]) :- (foreach(X,T), foreach(Y,HR), 

param(H) do 

 X = Set2-_,H = Set1-_ ,  Y=Set1-Set2 ),            

       combi(T,TR). 

toSet(X,S) :- list_to_ord_set(X,S). 

% powerset([a,b],X). 

powerset([],[]).   

powerset([_|Rest],L) :- powerset(Rest,L). 

powerset([X|Rest],[X|L]) :- powerset(Rest,L). 

% ===== End of ACAF program ============= 

B. Experimentation with Chess data 

To test correctness and effectiveness of ACIF and ACAF 
programs, we use the Chess dataset obtained from the 
website http://fimi.ua.ac.be/data/. The dataset contains 3196 
records, each record has 37 attributes, or items in the context 
of association mining. The first and last records of Chess 
data can be shown as follows: 

data([[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[

15],[16],[17],[18],[19],[20],[21],[22],[23],[24],[25],[26],[27],[

28],[29],[30],[31],[32],[33],[34],[35],[36],[37],[38],[39],[40],[

41],[42],[43],[44],[45],[46],[47],[48],[49],[50],[51],[52],[53],[

54],[55],[56],[57],[58],[59],[60],[61],[62],[63],[64],[65],[66],[

67],[68], [69],[70],[71],[72],[73],[74],[75] 

]-[[1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,34,36,38,40,42, 

44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74], 

… 

[2,4,5,8,9,11,13,16,17,19,21,23,26,27,30,31,35,36,38,40,42,44,

46,48,51,52,54,56,58,61,62,64,67,68,71,73,74]  ]  ). 
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In our CLP implementations of association rule mining 
with constraints, users can specify three kinds of constraints: 
(1) items that must appear in the association rules, (2) items 
that must not appear in the rules, and (3) items that must 
appear in the consequence part of the rule. Constraints on 
items can use a conjunction (AND), a disjunction (OR), and 
an empty list of items to identify no constraint. These 
constraints have to be specified prior to the generation of 
association rules. We test the performance of ACIF and 
ACAF programs against the original Apriori (which is also 
implemented with the CLP paradigm for a fair comparison), 
and then compare the results in terms of computation time 
and number of association rules. Figs. 6 and 7 demonstrates 
the running time and number of rule comparisons, 
respectively. For the case of no further constraint (except the 
basic minimum support and confidence) are identified, the 
three programs can discover the same set of association 
rules, but ACIF and ACAF take more time to find such rules. 

For the search of rules with constraints on rule length and 
items to appear/exclude, Apriori cannot perform such 
association mining because the algorithm does not support 
constraints on specific items. It can be noticed that ACIF 
may run faster than ACAF, but it is incomplete in the sense 
that there are some rules that should be appeared in the final 
result but are excluded during the phase of frequent itemset 
mining. We thus can conclude that ACIF and ACAF are 
correct, but ACAF is better than ACIF in terms of 
completeness. 

 

Figure 6. Running time comparison of ACIF and ACAF programs against 

Apriori program 

 

Figure 7. ACIF, ACAF, and Apriori comparison in terms of number of 

association rules discovered by the program 

C. Experimentation with Customer Churn data 

To test effectiveness of ACAF program over various 
constraints, we use the Customer Churn dataset obtained 
from the website http://www.sgi.com/tech/mlc/db/. The 
dataset contains information of 3333 customers. In the 
original data set, each record has 21 features (or attributes) in 
which the last one is the label churn/non-churn customer. 
The first step of our experimentation is feature selection; the 
selected 12 features are state, account length, area code, 
international plan, voice mail plan, number vmail messages, 
total day calls, total eve calls, total night calls, total intl calls, 
number customer service calls, and churn. The other nine 
features are removed because of their insignificance in 
inducing the association model.  

We performed a series of eight experiments with the 
customer churn data set. Minimum support threshold in each 
experiment is 50 (that means there must be at least 50 
records satisfying the rule’s content), whereas the minimum 
confidence is 80%. Additional constraints are as follows: 
Exp. 1: No other constraint. 
Exp. 2: The results must contain the feature churn_False. 
Exp. 3: The results must contain rules that has at least three 

features. 
Exp. 4: The results must NOT contain the feature 

‘churn_False’. 
Exp. 5: The results must contain the feature ‘churn_False’ at 

the then-part of the rule. 
Exp. 6: The results must contain either the feature 

‘churn_False’, or ‘churn_True’. 
Exp. 7: The results must contain both the feature 

‘churn_True’ and ‘vMailPlan_no’. 
Exp. 8: The results must contain rules that has at least three 

features, must contain both ‘churn_False’ and 
‘vMailPlan_no’, the results must NOT contain either 
the feature ‘vMailMessage_0’, or ‘intlCalls_2’, and 
the target clause of the rules must be ‘churn_False’.  
(Running result is shown in Fig. 8. ) 

Running time in each experiment and number of rules 
reported as the association mining results after constraining 
with different conditions are varied. We comparatively 
illustrate the experimental results  in Fig. 9. 

 
Figure 8. Running result of experiment 8 
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Figure 9. A comparison of computational time usage and number of rules 
received from varying constraints in each of the eight experiments 

 

V. CONCLUSION AND FUTURE WORK 

Association rule discovery is one major problems in the 
areas of data mining, statistical learning, and business 
intelligence. The problem concerns finding frequent patterns, 
or itemsets, hidden in a large database. Finding such frequent 
itemsets has become an important task because it reveals 
associations, correlations, and many other interesting 
relations among items in the transactional databases. We 
suggest that the problem of frequent itemset and association 
rule mining can be efficiently implemented with the 
incorporation of constraints. 

We design the two versions of association mining with 
constraint algorithms called Association rule discovery with 
Constraints In Frequent itemset mining (ACIF)  and 
Association rule discovery with Constraints After Frequent 
itemset mining (ACAF). We demonstrated that the proposed 
algorithms can be concisely implemented with high-level 
declarative language using ECLiPSe, a constraint logic 
language. Coding in declarative style takes less effort 
because pattern matching is a fundamental feature supported 
by most logic-based languages. Experimentation to verify 
effectiveness of the proposed methods has been performed 
and compared against the well-known Apriori method. The 
results confirm the correctness of the ACIF and ACAF 
programs and also reveal the power of constraints that have 
been applied over the frequent itemsets. We focus our future 
research on the design of constraint formulating and 
processing to optimize the speed and storage requirement.  
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