
Apriori-with-Constraint for Flexible Association Rule Discovery

Kittisak Kerdprasop, Phaichayon Kongchai, Nittaya Kerdprasop

Data Engineering Research Unit,

School of Computer Engineering,

Suranaree University of Technology, Thailand

kerdpras@sut.ac.th, zaguraba_ii@hotmail.com, nittaya@sut.ac.th

Abstract—Association rule discovery, or association mining, is

one of the major data mining tasks that has gained much

interest from researchers and general users. The knowledge

obtained from association mining can be used to benefit

business in many aspects such as recommend new products,

design catalogs, manage sales promotion, and so on. But data

processing for association rule discovery has expensive

computing time because the relationships induced from data

can be tremendously many more than those induced from

other data mining tasks such as classification. As a

consequence, most association mining software generally

create so many rules from the association mining process and

some of these rules are not beneficial to any users. To solve this

useless rule mining problem, we propose to incorporate

Apriori algorithm with constraint function for users to specify

subset of association rules containing only interesting items.

Besides specific items, users can also identify length of the

association rules. Our two Apriori-with-constraint algorithms,

called Association rule discovery with Constraints In Frequent

itemset mining (ACIF) and Association rule discovery with

Constraints After Frequent itemset mining (ACAF), are

experimentally proven to be able to reduce processing time and

also pruning a great number of useless rules.

Keywords-association rules; frequent itemset mining; data

mining; association analysis;constraint logic programming.

I. INTRODUCTION

Data mining aims at extracting hidden knowledge from
data [8]. Knowledge is known to be a valuable asset to most
organizations as a substantial source to enhance
understanding of relationships among data instances and
support better decision making to increase organizational
competency. Automatic knowledge acquisition can be
achieved through the availability of the knowledge induction
component. The induced knowledge can facilitate various
knowledge-related activities ranging from expert decision
support, data exploration and explanation, estimation of
future trends, and prediction of future outcomes based on
present data. The methodology of knowledge induction is
known as knowledge discovery in databases, or data mining.

Data mining methods are broadly defined depending on
the specific research objective and involve different classes
of mining tasks including regression, classification,
clustering, identifying meaningful associations between data
attributes. The later mining task refers to association mining,

or market basket analysis [9] in the retail business domain,
which is the main focus of our research.

Association mining is a popular method for discovering
relations between features or variables in large databases
[11], [12], [15], [20] and then presenting the discovered
results as a set of if-then rules, such as {milk, bread} =>
{butter} to indicate that if a customer buys milk and bread,
he or she is more likely to buy butter as well. Association
rule generation process is composed of two major phases:
frequent itemset mining and rule generation. Frequent
itemset mining is to find all items or features that are
frequently occurred together [13], [22]. It is an important
phase of association mining because it is a difficult task to
search all possible itemsets.

We thus pay attention to the design and implementation
of frequent itemset discovery by applying the constraint
concepts in this step. We propose two algorithms:
Association rule discovery with Constraints In Frequent
itemset mining (ACIF) and Association rule discovery with
Constraints After Frequent itemset mining (ACAF). The first
algorithm considers constraints during the frequent itemset
mining phase, whereas the later one applies constraints after
the frequent itemset mining steps. Constraints in our
proposed method include items of interest, items to be
excluded from the mining results, and desired rule length of
the final association mining. Our implementation is based on
the ECLiPSe constraint system (www.eclipseclp.org).

This paper is the extension of our previous work [14] on
association rule discovery with constraint logic programming
that was the proposal of extending Apriori [1] with more
domain-specific constraints. The work presented here
explains in more details the idea of incorporating domain-
specific constraints both during and after the frequent itemset
mining stage (ACIF and ACAF algorithms, respectively).
Applicability of the proposed idea and its implementation
have also been demonstrated in this paper.

The organization of this paper is as follows. The problem
of association rule discovery and main concepts of logic and
constraint logic programming are reviewed in Section 2.
Then the design of association mining with constraint
algorithms is explained in Section 3. The implementation of
the two algorithms, ACIF and ACAF, together with their
experimental results are presented in Section 4. Finally,
Section 5 concludes the paper with discussion of our future
research direction.

36Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

II. PRELIMINARIES

A. Frequent Patterns and Association Mining

Frequent patterns are common occurrences such as sets
of features or items that appear in data frequently. Frequent
pattern mining focuses on the discovery of relationships or
correlations between items in a dataset. In frequent itemset
mining, we are interested in analyzing connections among
items. A collection of zero or more items is called an itemset.
The discovery of interesting relationships hidden in large
datasets is the objective of frequent pattern mining. The
uncovered relationships can be represented in the form of
association rules. An association rule is an inference of the
form X Y, where X and Y are non-empty disjoint itemsets.
An itemset is called a frequent itemset if its support, i.e., the
number of transactions that contain a particular itemset, is
greater than or equal to user-specified support threshold
(called MinSup). It is the MinSup constraint that helps
reducing the computational complexity of frequent itemset
generation. If the itemset is infrequently occurred, all
supersets of this itemset are also infrequent and they can be
pruned to reduce the search space.

This pruning strategy is called an anti-monotone property
and has been applied as a basis for searching frequent
patterns in the well-known algorithm Apriori [1], [2]. The
algorithms find all frequent itemsets by generating supersets
of previously found frequent itemsets. This generate-and-test
method is computational expensive. Han et al [10] proposed
a different divide-and-conquer approach based on the prefix-
tree structure that consumes less memory space. Toivonen
[21] employed sampling techniques to deal with frequent
pattern mining from large databases. Zaki et al [23] tackled
the problem by means of parallel computation.

Some researchers [4], [7], [17], [18], [19] consider the
issue of search space reduction through the concept of
constraints. Our research is in the same direction as De Raedt
et al [7]. We consider the problem of mining frequent
patterns within a setting of constraint logic programming
using the ECLiPSe constraint system [3]. Constraints can
play an important role in improving the performance of
mining algorithm. The problem of constraint-based pattern
mining can therefore be formulated as the discovery of all
patterns in a given dataset that satisfy the specified
constraints.

B. Constraint Logic Programming

Constraint logic programming, or CLP, is a declarative
programming style that combines the features of logic
programming [16] and constraint propagation to solve
combinatorial and optimization problems. Common structure
of a constraint program is consisted of the part to define
variables and constraints on variables and the part to search
for a valid value on each variable. This is the style of
constraint-and-search. The structure of constraint logic
program is as follows:

solve(Variables) :-
 setup_constraints(Variables),
 search(Variables).

A constraint logic program to solve inequality A > B, in
which both variables are integers in the range 1..5 can be
shown as follows:

:- lib(ic). % include library
solve(R) :-
 R = [A,B], % define variables
 R :: 1..5, % define constraint

 A #> B, % constraint over variables
 alldifferent([B]),
 labeling(R).

The predicate “labeling” is responsible for searching all
possible values of A and B that comply with the constraints

A > B and A B.

III. APRIORI-WITH-CONSTRAINT ALGORITHMS

Apriori algorithm [1], [2] is a general method that can
efficiently generate all association rules satisfying minimum
support and minimum confidence constraints. We argue that
besides these basic constraints, users should specify their
item of interest constraint over the method. We thus design
two algorithms to support the extension of Apriori that takes
into account user-specified constraints. The first algorithm,
called Association rule discovery with Constraints In
Frequent itemset mining (ACIF), applies constraints during
the phase of frequent itemset mining. The second algorithm
is called Association rule discovery with Constraints After
Frequent itemset mining (ACAF) in which constraints are
considered after all frequent itemsets are generated. The
design frameworks of both algorithm are presented in Fig. 1.
Detailed steps of ACIF and ACAF algorithms are shown in
Fig. 2 and Fig. 3, respectively.

(a) The design of ACIF

(b) The design of ACAF

Figure 1. Design frameworks of Apriori-with-constraint

37Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

Algorithm ACIF

//Input : Database D,

 Constraints: Length, Subset, NotSubset,

 RHS_items, Mincon, Minsup.

//Output : Rules.

(1) L1 = find_ frequent_1itemset(D)

(2) for (k =2; Lk-1 ≠ ∅; k++) {

(3) Ck = apriori_gen(Lk-1, Minsup)

(4) for each transaction t ∈ D { // scan D for counts

(5) C1 = subset(Ck, t)

(6) for each candidate c ∈ C1 { c.count++ }

(7) C2 = checkcondition(Length, Subset,

 NotSubset, C1)

(8) Lk={c ∈ C2 | c.count ≥ Minsup}

(9) }

(10) }

(11) FreqSet =

(12) For each l ∈ FreqSet // l is frequent-itemset.

(13) k = | l | // size of frequent itemset

(14) m = |Hm| // size of right hand side Items

(15) For each hm+1 ∈ Hm+1 {

(16) If hm+1 = RHS_items {

(17) conf = support(fk) / support(fk – hm+1)

(18) If conf >= Mincon {

(19) Rules = rule(fk – hm+1) hm+1

(20) } Else

(21) delete hm+1 from Hm+1

(22) }

(23) }

(24) return Rules

Figure 2. Pseudocode of ACIF algorithm

Figure 3. Pseudocode of ACAF algorithm

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

A. CLP Implementation

Program and data in the constraint logic programming
style are both in the same format, that is, a Horn clause. In
our implementation, declaration of items and transactional
database are in the list structure within the predicate “data”
(as shown in Fig. 4). To run the program, user calls the
predicate “association” and the running result will appear as
shown in Fig. 5.

Figure 4. Predicate data containing lists of items and transactions

Figure 5. Running result of association rule mining

A program source code of ACAF algorithm that was

implemented with the constraint logic programming

language using ECLiPSe constraint system is given as

follows:

% User calls: association(R,0,2,100)

:- compile("filename.txt"). % load file.

:- lib(sd).

:- lib(ic).

:- lib(ordset).

38Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

association(R,LengthI,MinSup,Conf) :-

 writeln('Please specify member in [[_]] :'),read(Subset),

 writeln('Please specify member do not need in [[_]] :'),

read(NotSubset),

 writeln('Please specify member in [[_]] :'),read(Goal),

 data(Data),Data=_-_,

 (count(I,2,6), fromto(Data,

S0,S1,R),param(LengthI,Subset,NotSubset,Conf,MinS

up,Goal) do

 (S0=A-B,

 findCL(A-B-MinSup,R-_-

_,LengthI,Subset,NotSubset,Conf,Goal),

 allUnion(I,R,NewItemSet),

 S1=NewItemSet-B),!).

 findCL(ItemSet-Items-MinSup,R-Items-MinSup,LengthI,

Subset,NotSubset,Conf,Goal) :-

 (foreach(X,ItemSet), fromto(R,S1,S0,[]),

param(Items,MinSup) do

 (supOK(X,Items,MinSup,LenItem) ->

S1=[X-LenItem|S0], ! ; S1=S0)

), not1Item(R,Re1),

 findLength(LengthI,Re1,Re),

 findSubset(Subset,Re,R1),

 findNotSubset(NotSubset,R1,R2),

 findRule(R2-Items-Conf,Goal).

% Check Item set length > 1

not1Item(R,Re) :- R=[H-_|_],length(H,LenItem),

 LenItem =1 -> Re = [] ; Re = R .

% findLength(0,[[a,b]-2,[a,c]-2],R).

findLength(Cons,Re,R) :-

 (foreach(I,Re), fromto(R,S1,S0,[]), param(Cons) do

 I = X-_, length(X,LenItem),LenItem > Cons ->

S1 = [I | S0], ! ; S1=S0).

% findSubset([[b],[c]],[[a,b]-2,[b,c]-2,[b,c,d]-2],R1).

findSubset([],X, X).

findSubset([Subset|Tr],Re,R1) :-

 Subset = [] -> R1 = Re ;

 (foreach(I,Re), fromto(R,S1,S0,[]), param(Subset) do

 I = X-_,

 Subset1&::Subset, Y&::X, Subset1&=Y

 -> S1 = [I | S0], ! ; S1=S0),

 findSubset(Tr,R,R1).

% findNotSubset([[b],[c]],[[a,b]-2,[b,c]-2,[b,c,d]-2],R1).

findNotSubset([],X, X).

findNotSubset([NotSubset|Tr],Re,R1) :-

 NotSubset = [] -> R1 = Re ;

 (foreach(I,Re), fromto(R,S1,S0,[]), param(NotSubset) do

 I = X-_,

 NotSubset1&::NotSubset, Y&::X, \+NotSubset1&=Y

 -> S1 = [I | S0], ! ; S1=S0),

 findNotSubset(Tr,R,R1).

% findGoal([[a]],[a,b],R).

findGoal([],X, X).

findGoal([Subset|Tr],Re,R1) :-

 Subset = [] -> R1 = Re ;

 Subset1&::Subset, Y&::Re, Subset1&=Y -> R1 = Re,

 findGoal(Tr,Re,R1).

supOK(X,Items,MinSup,LenItem) :-

 (foreach(I,Items), fromto(R,S1,S0,[]), param(X) do

 (my_subset(X,I) -> S1 = [I | S0], ! ; S1=S0)),

 length(R,LenItem),

 LenItem >= MinSup.

% findRule

findRule(ItemSet-Items-MinConf,Goal) :-

 (foreach(Set,ItemSet), param(Items,MinConf,Goal) do

 Set = X-LenItem,

 findall(Re,powerset(X,Re),PwSet),

 (foreach(ItemX,PwSet),

param(X,Items,LenItem,MinConf,Goal) do

 (ItemX = X ; ItemX = [] -> ! ;

createRule(ItemX,X,Re),findGoal(Goal,Re,R1) ->

 supOK(ItemX,Items,0,LenItemX),

 conOk(LenItem-LenItemX-MinConf,ItemX,R1),! ; !

))).

% createRule([a],[a,b,c],Result).

createRule([],X,X).

createRule([H|Tr],X,Result) :-

delete(H,X,Re),createRule(Tr,Re,Result).

% Check Confident

conOk(LenItem-LenItemX-MinConf,ItemX,Re) :- Re11 is

(LenItem/LenItemX)*100,Re11 >= MinConf -> write('If

'),

 write(ItemX),write(' '),write(LenItemX),write(' then '),

 write(Re),write(' '),writeln(LenItem) ;! .

% my_subset compare([1],[1,2]) return T or F

my_subset(Sub,S) :- toSet(Sub,OrdSub), toSet(S,OrdS),

 ord_subset(OrdSub,OrdS).

allUnion(I,ItemSet,NewItemSet) :- combi(ItemSet,R_),

flatten(R_,R),

 (foreach(X,R), fromto(NewItemSet_,S1,S0,[]), param(I)

do First-Sec=X,

 (unionN(I,First-Sec,Out) -> S1=[Out|S0], !;S1=S0)),

 toSet(NewItemSet_,NewItemSet).

unionN(N,First-Sec,Out) :- toSet(First,F), toSet(Sec,S),

 ord_union(F,S,Out),

 length(Out,Len),Len=N.

combi([],[]).

combi([H|T],[HR|TR]) :- (foreach(X,T), foreach(Y,HR),

param(H) do

 X = Set2-_,H = Set1-_ , Y=Set1-Set2),

 combi(T,TR).

toSet(X,S) :- list_to_ord_set(X,S).

% powerset([a,b],X).

powerset([],[]).

powerset([_|Rest],L) :- powerset(Rest,L).

powerset([X|Rest],[X|L]) :- powerset(Rest,L).

% ===== End of ACAF program =============

B. Experimentation with Chess data

To test correctness and effectiveness of ACIF and ACAF
programs, we use the Chess dataset obtained from the
website http://fimi.ua.ac.be/data/. The dataset contains 3196
records, each record has 37 attributes, or items in the context
of association mining. The first and last records of Chess
data can be shown as follows:

data([[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[

15],[16],[17],[18],[19],[20],[21],[22],[23],[24],[25],[26],[27],[

28],[29],[30],[31],[32],[33],[34],[35],[36],[37],[38],[39],[40],[

41],[42],[43],[44],[45],[46],[47],[48],[49],[50],[51],[52],[53],[

54],[55],[56],[57],[58],[59],[60],[61],[62],[63],[64],[65],[66],[

67],[68], [69],[70],[71],[72],[73],[74],[75]

]-[[1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,34,36,38,40,42,

44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74],

…

[2,4,5,8,9,11,13,16,17,19,21,23,26,27,30,31,35,36,38,40,42,44,

46,48,51,52,54,56,58,61,62,64,67,68,71,73,74]]).

39Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

In our CLP implementations of association rule mining
with constraints, users can specify three kinds of constraints:
(1) items that must appear in the association rules, (2) items
that must not appear in the rules, and (3) items that must
appear in the consequence part of the rule. Constraints on
items can use a conjunction (AND), a disjunction (OR), and
an empty list of items to identify no constraint. These
constraints have to be specified prior to the generation of
association rules. We test the performance of ACIF and
ACAF programs against the original Apriori (which is also
implemented with the CLP paradigm for a fair comparison),
and then compare the results in terms of computation time
and number of association rules. Figs. 6 and 7 demonstrates
the running time and number of rule comparisons,
respectively. For the case of no further constraint (except the
basic minimum support and confidence) are identified, the
three programs can discover the same set of association
rules, but ACIF and ACAF take more time to find such rules.

For the search of rules with constraints on rule length and
items to appear/exclude, Apriori cannot perform such
association mining because the algorithm does not support
constraints on specific items. It can be noticed that ACIF
may run faster than ACAF, but it is incomplete in the sense
that there are some rules that should be appeared in the final
result but are excluded during the phase of frequent itemset
mining. We thus can conclude that ACIF and ACAF are
correct, but ACAF is better than ACIF in terms of
completeness.

Figure 6. Running time comparison of ACIF and ACAF programs against

Apriori program

Figure 7. ACIF, ACAF, and Apriori comparison in terms of number of

association rules discovered by the program

C. Experimentation with Customer Churn data

To test effectiveness of ACAF program over various
constraints, we use the Customer Churn dataset obtained
from the website http://www.sgi.com/tech/mlc/db/. The
dataset contains information of 3333 customers. In the
original data set, each record has 21 features (or attributes) in
which the last one is the label churn/non-churn customer.
The first step of our experimentation is feature selection; the
selected 12 features are state, account length, area code,
international plan, voice mail plan, number vmail messages,
total day calls, total eve calls, total night calls, total intl calls,
number customer service calls, and churn. The other nine
features are removed because of their insignificance in
inducing the association model.

We performed a series of eight experiments with the
customer churn data set. Minimum support threshold in each
experiment is 50 (that means there must be at least 50
records satisfying the rule’s content), whereas the minimum
confidence is 80%. Additional constraints are as follows:
Exp. 1: No other constraint.
Exp. 2: The results must contain the feature churn_False.
Exp. 3: The results must contain rules that has at least three

features.
Exp. 4: The results must NOT contain the feature

‘churn_False’.
Exp. 5: The results must contain the feature ‘churn_False’ at

the then-part of the rule.
Exp. 6: The results must contain either the feature

‘churn_False’, or ‘churn_True’.
Exp. 7: The results must contain both the feature

‘churn_True’ and ‘vMailPlan_no’.
Exp. 8: The results must contain rules that has at least three

features, must contain both ‘churn_False’ and
‘vMailPlan_no’, the results must NOT contain either
the feature ‘vMailMessage_0’, or ‘intlCalls_2’, and
the target clause of the rules must be ‘churn_False’.
(Running result is shown in Fig. 8.)

Running time in each experiment and number of rules
reported as the association mining results after constraining
with different conditions are varied. We comparatively
illustrate the experimental results in Fig. 9.

Figure 8. Running result of experiment 8

40Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

Figure 9. A comparison of computational time usage and number of rules
received from varying constraints in each of the eight experiments

V. CONCLUSION AND FUTURE WORK

Association rule discovery is one major problems in the
areas of data mining, statistical learning, and business
intelligence. The problem concerns finding frequent patterns,
or itemsets, hidden in a large database. Finding such frequent
itemsets has become an important task because it reveals
associations, correlations, and many other interesting
relations among items in the transactional databases. We
suggest that the problem of frequent itemset and association
rule mining can be efficiently implemented with the
incorporation of constraints.

We design the two versions of association mining with
constraint algorithms called Association rule discovery with
Constraints In Frequent itemset mining (ACIF) and
Association rule discovery with Constraints After Frequent
itemset mining (ACAF). We demonstrated that the proposed
algorithms can be concisely implemented with high-level
declarative language using ECLiPSe, a constraint logic
language. Coding in declarative style takes less effort
because pattern matching is a fundamental feature supported
by most logic-based languages. Experimentation to verify
effectiveness of the proposed methods has been performed
and compared against the well-known Apriori method. The
results confirm the correctness of the ACIF and ACAF
programs and also reveal the power of constraints that have
been applied over the frequent itemsets. We focus our future
research on the design of constraint formulating and
processing to optimize the speed and storage requirement.

ACKNOWLEDGMENT

This research work has been funded by grants from the
National Research Council of Thailand (NRCT) and
Suranaree University of Technology.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining
association rules between sets of items in large databases,” in
Proc. ACM SIGMOD, 1993, pp. 207-216.

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules,” in Proc. VLDB, 1994, pp. 487-499.

[3] K. R. Apt and M. Wallace, Constraint Logic Programming
using ECLiPSe, Cambridge University Press, 2007.

[4] S. Bistarelli and F. Bonchi, “Soft constraint based pattern
mining,” Data and Knowledge Engineering, vol. 62, 2007, pp.
118-137.

[5] I. Bratko, Prolog Programming for Artificial Intelligence, 3rd
ed., Pearson, 2001.

[6] A. Cegler and J. Roddick, “Association mining,” ACM
Computing Surveys, vol.38, no.2, 2006.

[7] L. De Raedt, T. Guns, and S. Nijssen, “Constraint
programming for itemset mining,” in Proc. KDD, 2008, pp.
204-212.

[8] W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus,
“Knowledge discovery in databases: an overview,” AI
Magazine, vol. 13, no. 3, 1992, pp. 57-70.

[9] J. Han and M. Kamber, Data Mining: Concepts and
Techniques, 2nd ed., Morgan Kaufmann, 2006.

[10] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without
candidate generation,” in Proc. ACM SIGMOD, 2000, pp. 1-
12.

[11] J. Hu and X. Li, “Association rules mining including weak-
support modes using novel measures,” WSEAS Trans. on
Computers, vol. 8, no. 3, 2009, pp. 559-568.

[12] M.C. Hung, S.Q. Weng, J. Wu, and D.L. Yang, “Efficient
mining of association rules using merged transactions,”
WSEAS Trans. on Computers, vol. 5, no. 5, 2006, pp. 916-
923.

[13] N. Kerdprasop and K. Kerdprasop, “Recognizing DNA splice
sites with the frequent pattern mining technique,” Int. J. of
Mathematical Models and Methods in Applied Science, vol.5,
no. 1, 2011, pp. 87-94.

[14] P. Kongchai, K. Kerdprasop, and N. Kerdprasop,
“Association rule discovery with constraint logic
programming,” in Proc. 11th WSEAS Int. Conf. on
Computational Intelligence, Man-Machine Systems and
Cybernetics, 2012, pp. 135-140.

[15] R. Kuusik and G. Lind, “Algorithm MONSA for all closed
sets finding: basic concepts and new pruning techniques,”
WSEAS Trans. on Information Science & Applications, vol.
5, no. 5, 2008, pp. 599-611.

[16] S.-H. Nienhuys-Cheng and R.D. Wolf, Foundations of
Inductive Logic Programming, Springer, 1997.

[17] J. Pei and J. Han, “Can we push more constraints into
frequent pattern mining?” in Proc. ACM SIGKDD, 2000, pp.
350-354.

[18] J. Pei, J. Han, and L. Lakshmanan, “Pushing convertible
constraints in frequent itemset mining,” Data Mining and
Knowledge Discovery, vol. 8, 2004, pp. 227-252.

[19] R. Srikant, Q. Vu, and R. Agrawal, “Mining association rules
with item constraints,” in Proc. KDD, 1997, pp. 67-73.

[20] H. Sug, “Discovery of multidimensional association rules
focusing on instances in specific class,” Int. J. of mathematics
and Computers in Simulation, vol. 5, no. 3, 2011, pp. 250-
257.

[21] H. Toivonen, “Sampling large databases for association
rules,” in Proc. VLDB, 1996, pp. 134-145.

[22] G. Yu, S. Shao, and X. Zeng, “Mining long high utility
itemsets in transaction databases,” WSEAS Trans. on
Information Science & Applications, vol. 5, no. 2, 2008, pp.
202-210.

[23] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “Parallel
algorithm for discovery of association rules,” Data Mining
and Knowledge Discovery, vol. 1, 1997, pp. 343-374.

41Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

