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Abstract—In this paper, we propose three specific scenarios
in order to allow one to analyze the performance of swarm-
intelligence based coordination models for swarm of robots.
The specific scenarios aim to assess some features presented on
swarm robots: (i) contraction and expansion; (ii) self-segregation
and self-aggregation; and (iii) the capacity to change abruptly
the fly direction whenever it is necessary. We also propose a
metric to analyze the cohesion (COE) of the swarm during a
mission. We analyzed a recently proposed model based on the
Particle Swarm Optimization technique designed to coordinate
automatically swarms of robots in terms of Collision (CL) rate
and COE. We performed simulations varying all the parameters
in the three scenarios and we observed that the main problem
is related to collisions when the width of the passageway is not
much more higher than the UAVs collision radius. The proposed
model can assist and support the implementation of a system of
swarm robots.

Keywords—Unmanned Aerial Vehicles; Swarm Robots; Swarm
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I. INTRODUCTION

The interest in Unmanned Aerial Vehicles (UAVs) has
grown in the last years. UAVs have been applied to perform
complex and sophisticated tasks, such as for agricultural appli-
cations in order to reduce the agrochemicals [1] or for search
and surveillance operations [2].

Swarm intelligence have appeared in the 1990’s inspired
by swarms of simple creatures, such as ants, bees, birds,
fireflies and fish [3] [4]. In this case, an entity is too simple to
solve complex tasks, but the emergent behavior of the swarm
can tackle such problems. Swarm intelligence algorithms have
been successfully applied for the coordination of mobile
robots [5] [6]. The application of the swarm intelligence
concepts and algorithms to control and/or to coordinate mobile
robots is often called swarm robotics [7] and suggests that the
coordination of multiple robots does not necessarily need to
be performed by means of a multi-agent system.

One of the most used swarm intelligence algorithms is the
Particle Swarm Optimization (PSO), proposed by Kennedy and
Eberhart in 1995 [4].

Some previous works proposed to tackle the coordination
issues in swarm of robots by means of distributed mod-
els. In 2011, Wang et al. [6] used the PSO to coordinate
multiple robots aiming to perform territorial exploration in
a collaborative manner. Varela et al. [2] used the PSO to
coordinate multiple UAVs equipped with sensors aiming to
find pollutants in the atmosphere. There are other proposals
to tackle some UAVs coordination issues [8] [9], however

these works considered a global positioning systems (GPS).
Considering this, Zhu et al. [10] developed a search algorithm
for swarm robots that does not need necessarily the GPS signal.
Qu and Zhang [11] proposed a fault-tolerant collaborative
algorithm to address the loss of the GPS signal. Shames et
al. [12] proposed a self-localization mechanism for mobile
agents that uses a cooperative strategy. There are other recent
works that aims to contribute in other aspects, such as energy
consumption and errors generated by the sensors [8] [9] [13]
[14] [15] [16].

Meanwhile, the previous works did not investigate their
model effectiveness in specific scenarios. In 2012, La and
Sheng [17] investigated the contraction and expansion ca-
pability of a swarm of robots. They assessed the capability
of the swarm to avoid obstacles, but other required features
were not analyzed, such as (i) self-segregation and self-
aggregation capabilities and (ii) the capacity to change abruptly
the fly direction whenever it is necessary. In 2012, Bentes and
Saotome [18] proposed a dynamic swarm formation based
on artificial potential fields in order to control the swarm
formation and to avoid obstacles when traveling the planned
path. The proposal is interesting, but needs the GPS signal.

In 2012, Pinheiro Silva and Bastos-Filho [5] proposed a
distributed coordination model for swarms of UAVs with local
ad hoc communication based on the PSO. In their model, the
swarm robots present the following objectives: (i) allow the
locomotion through an environment; (ii) avoid obstacles and
collisions; (iii) patrol the entire environment; and (iv) detect
and track targets. They analyzed communication issues and
energy consumption [5], but some practical required features
were not assessed in the proposed model.

In this paper, we propose specific scenarios that allow
one to analyze the following capabilities of the swarm: (i)
contraction and expansion; (ii) segregation and aggregation;
and (iii) abrupt changes of direction. Besides, we assessed an
PSO-based UAV coordination model recently proposed in [5]
in these specific scenarios. We also propose in this paper a
metric to analyze the cohesion of the swarm during a mission.

The remainder of the paper is organized as follows: the
previous swarm based coodination model of UAVs is presented
in Section II; the improvements in the model are presented
in Section III; the simulation results are presented in Section
IV; and some conclusions and future works are presented in
Section V.
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II. PSO-BASED COORDINATION MODEL FOR SWARMS OF
UAVS

The previous PSO-based coordination model proposed in
[5] presents the following features: (i) locomotion mechanism,
in which the UAVs obtain their localization within the en-
vironment, x⃗uav(t). This information can be acquired by a
GPS; (ii) perception mechanism, in which each UAV has a
perception sensor in order to detect targets; (iii) anti-collision
mechanism, in which each UAV has an anti-collision sensor
to avoid obstacles and to ensure a safety locomotion; (iv)
and communication mechanism, in which every UAV owns
a wireless communication device and acts as a routing bridge
in to build a 2-connected ad hoc communication network.

The locomotion mechanism is guided by physical dynam-
ical variables and parameters, such as horizontal acceleration
(⃗a), maximum horizontal acceleration (amax), horizontal speed
(v⃗), and maximum horizontal speed (v). The a⃗ vector is
composed by other vectors: synchronism (⃗asyn); avoiding
collisions (⃗acol); avoiding losing communication (⃗acom); cog-
nitive (⃗acog); and social (⃗asoc).

The Synchronism vector is given by:

a⃗syn = a⃗col + a⃗com, (1)

in which a⃗col and a⃗com are calculated by using the information
provided by the collision and the communication sensors,
respectively.

The Cognitive (related to the UAV) and Social (related to
the UAV neighbor) vectors compose the swarm vector, which
is given by:

a⃗swm = a⃗cog + a⃗soc, (2)

where a⃗cog and a⃗soc are calculated by the PSO algorithm
at each iteration. Since the PSO algorithm needs a fitness
function, we adopted the euclidean distance to the detected
target as the quality metric for the PSO, which is given by:

fitnessuav(t) = |x⃗tar(t) − x⃗uav(t)|, (3)

in which the information about target position, x⃗tar(t), is
provided by the perception sensor.

The resultant acceleration is the sum of the Synchronism
and the Swarm vectors.

Finally, the new UAV resultant velocity is calculated by:

v⃗(t + 1) = v⃗(t) · ω + a⃗(t + 1), (4)

in which v⃗(t+1) is the new speed, v⃗(t) is the current speed
and ω is the inertia factor.

III. IMPROVEMENTS IN THE MODEL

Improvements were made in the previous model to allow
one to assess the effects of specific scenarios in the coordina-
tion of multiple UAVs.

Fig. 1. α angle used to determine the distance from an UAV to an obstacle.

A. Initialization of positions of targets, obstacles and UAVs.

The previous model does not present any mechanisms that
allow the precise initialization of the position of the targets
and UAVs. The positions of the targets and the UAVs were
initialized randomly by a uniform density function related to
all environment area. A mechanism was developed to initialize
the targets in desired pre-defined positions, i.e. the user can
indicate explicitly the position of each target, obstacle and
UAV.

B. Definition of trajectories of the targets

In order to assess the behavior of the swarm of robots in
specific scenario, we included a tool to define the trajectories
of the targets based on the definition of waypoints. This
mechanism guides the targets, which attract the UAVs through
the desired passageway.

C. Obstacles construction improvement

In the previous model, the obstacle were modeled as a
circle with a position (p) and a radius (r). Then, the area of
influence an specific obstacle is a circle centered in p with
radius r. In order to allow the definition of more complex
obstacles, we implemented a new tool. In this new tool, an
obstacle is composed by a set of line segments. The user
provides an initial and a final position and, thereupon, the line
segment is created. The equation for the line segment is given
by:

Ax + By + C = 0 , (5)

in which A and B are the linear coefficients and C is the
independent term.

When the UAV is out of the closest line segment ends, the
distance between UAV and obstacle is given by Eq. (6):

D =
√

(xa − xb)2 + (ya − yb)2, (6)

in which (xa, ya) are the coordinates of closest obstacle to the
UAV and (xb, yb) are the coordinates of the UAV.

When the UAV is within the line segment, the distance
between UAV and obstacle is given by:

D =
|Axo + Byo + C|√

A2 + B2
, (7)

in which (xo, yo) are the UAV coordinates, and A, B and C
are the coefficients and independent term of a line segment
that belongs to the obstacle.

The α angle presented in Fig. 1 distinguishes the two cases
aforementioned. We use Eq. (6) when cos(α) < 0, and Eq. (7),
otherwise.
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Fig. 2. The three specific scenarios: (a) contraction and expansion, (b)
segregation and aggregation and (c) abrupt changes of direction.

D. Cohesion metric

A collision metric (CL) was already implemented in the
previous model in order to measures the collision rate of the
swarm during the mission. The collision metric is given by
Eq. (8):

CL =
1

tmax · uavnum

tmax∑
t=1

uavcrt(t), (8)

where tmax is the maximum number of iterations, uavnum is
the total number of UAVs and uavcrt(t) is the current number
of UAVs at time t.

However, a cohesion metric (COE) is also required to as-
sess the effects of different specific scenarios in the connection
degree of the swarm. Because of this, we propose here a
cohesion metric, which is given by Eq. (9):

COE =
1

tmax · uavnum

tmax∑
t=1

uavcon(t), (9)

where tmax is the maximum number of iterations, uavnum

is the total number of UAVs and uavcon(t) is the number of
2-connected UAVs at time t. This 2-connected requirement
is necessary to guarantee the functionality of the ad-hoc
communication network.

IV. SIMULATION RESULTS OF SPECIFIC SCENARIOS

Three specific scenarios were developed in order to assess
important features of the swarm robots coordination model.
Fig. 2 presents the three scenarios. The first scenario (Fig. 2a)
evaluates the contraction and expansion capability of the robot
swarm. The second scenario (Fig. 2b) assess the segregation
and aggregation capability on the robot swarm. The third
scenario (Fig. 2c) assess the capability of the swarm to do
tight turns on their movement.

A. Contraction and expansion results

The Scenario 1 (Fig. 2a) is used to assess the contraction
and expansion swarm capability. C and L represent the length

TABLE I. COHESION AND COLLISION RESULTS FOR SCENARIO 1
WITH v = 5m/s, a = 1, 5m/s2 .

Cohesion Collision
Length 20 m, Width 200 m

Mean 63,20% 62,67%
Standard Deviation 7,06% 7,85%

Length 20 m, Width 400 m
Mean 84,91% 24,67%

Standard Deviation 9,20% 5,07%
Length 20 m, Width 800 m

Mean 99,89% 0,00%
Standard Deviation 0,00% 0,00%

Length 2000 m, Width 200 m
Mean 49,41% 71,00%

Standard Deviation 4,85% 10,29%
Length 2000 m, Width 400 m

Mean 79,12% 25,34%
Standard Deviation 13,75% 5,71%

Length 2000 m, Width 800 m
Mean 99,89% 0,00%

Standard Deviation 0,00% 0,00%

TABLE II. COHESION AND COLLISION RESULTS IN SCENARIO 1 WITH
v = 15m/sanda = 4, 5m/s2 .

Cohesion Collision
Length 20 m, Width 200 m

Mean 63,41% 51,67%
Standard Deviation 6,94% 11,97%

Length 20 m, Width 400 m
Mean 84,13% 20,67%

Standard Deviation 13,06% 8,68%
Length 20 m, Width 800 m

Mean 99,66% 0,00%
Standard Deviation 0,00% 0,00%

Length 2000 m, Width 200 m
Mean 47,35% 72,00%

Standard Deviation 2,54% 12,70%
Length 2000 m, Width 400 m

Mean 77,70% 20,67%
Standard Deviation 15,42% 9,80%

Length 2000 m, Width 800 m
Mean 99,67% 0,00%

Standard Deviation 0,00% 0,00%

and width of the narrowed path, respectively. It is important
to evaluate the swarm behavior in scenarios that require
contraction and expansion because it probably occurs in the
environment during real missions.

We performed analysis in this scenario varying the width
and the length of the path. We used width values equal to
200 m, 400 m and 800 m, and length values equal to 20 m or
2000 m. We also assessed the coordination model performance
in two different situation: maximum velocity and maximum
acceleration equal to 5 m/s and 1,5 m/s2, and 15 m/s and
4,5 m/s2.

Table I and Table II show the mean and standard deviation
values for Collisions (CL) and Cohesion (COE). Fig. 3 and
Fig. 4 show the boxplot of CL and COE as a function of
the width and length of the path, for (5m/s, 1, 5m/s2) and
(15m/s, 4, 5m/s2), respectively.

One can observe that the coordination model did not
present a good performance for widths equal 200 m and 400
m. The model presented high values for CL, specially for the
narrower path. As a consequence, the cohesion of the swarm
was affected. On the other hand, the length of the path does
not seem to affect the performance of the model, obtaining
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Fig. 3. Analysis of CL and COE as a function of the width and length of
the path, for the velocity of 5 m/s and aceleration of 1,5 m/s2.
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Fig. 4. Analysis of CL and COE as a function of the width and length of
the path, for the velocity of 15 m/s and aceleration of 4,5 m/s2.

TABLE III. COHESION AND COLLISION RESULTS FOR SCENARIO 2
FOR WIDTH OF THE PATH 200 m.

Cohesion Collision
Length of bifurcation 200 m
Width of bifurcation 200 m

Mean 52,22% 95,00%
Standard deviation 2,20% 6,82%

Length of bifurcation 1000 m
Width of bifurcation 200 m

Mean 51,65% 90,00%
Standard deviation 1,48% 7,43%

Length of bifurcation 200 m
Width of bifurcation 1000 m

Mean 46,59% 99,67%
Standard deviation 0,59% 1,82%

Length of bifurcation 1000 m
Width of bifurcation 1000 m

Mean 48,72% 94,00%
Standard deviation 2,42% 4,99%

TABLE IV. COHESION AND COLLISION RESULTS FOR SCENARIO 2
FOR WIDTH OF THE PATH 400 m.

Cohesion Collision
Length of bifurcation 200 m
Width of bifurcation 200 m

Mean 63,38% 51,33%
Standard deviation 4,77% 6,81%

Length of bifurcation 1000 m
Width of bifurcation 200 m

Mean 68,59% 44,00%
Standard deviation 9,83% 11,01%

Length of bifurcation 200 m
Width of bifurcation 1000 m

Mean 56,10% 76,00%
Standard deviation 2,54% 9,68%

Length of bifurcation 1000 m
Width of bifurcation 1000 m

Mean 52,20% 81,33%
Standard deviation 1,34% 14,56%

fairly similar results for the same width. One can observe that
it did not occur any single collision for width equal to 800 m.

B. Segregation and aggregation results

Scenario 2 (Fig. 2b) was developed to assess the segrega-
tion and aggregation swarm capability. d is the width of the
path, D is the width of the bifurcation and T is the length of
the bifurcation. For this scenario, we analyzed the width and
length of the bifurcation alongside with the width of the path.
We used the values of 20 m and 2000 m for the width and
length of the bifurcation, and 200 m, 400 m and 800 m for
the width of the path.

Table III, Table IV and Table V present the results for COE
and CL for the width of path equal to 200 m, 400 m and 800
m, respectively. The boxplots for COE and CL are shown in
Fig. 5 and Fig. 6, respectively.

One can observe that the swarm coordination was impaired
for path width of 200 m. Besides, the presence of a bifurcation
mitigates CL and COE. These effects are more evident when
the bifurcation width increases. One can observe that the
increase on the bifurcation width has more impact on the
swarm coordination than the bifurcation length. It might occur
because the obstacles are not modeled to block communication
signals. This means that a bifurcation width of 200 m is
not enough to break the communication among the two sub-
swarms.
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Fig. 5. Analysis of COE on the scenario 2 for each configuration set.
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Fig. 6. Analysis of CL on the scenario 2 for each configuration set.

TABLE V. COHESION AND COLLISION RESULTS FOR SCENARIO 2 FOR
WIDTH OF THE PATH 800 m.

Cohesion Collision
Length of bifurcation 200 m
Width of bifurcation 200 m

Mean 91,24% 13,33%
Standard deviation 8,31% 6,61%

Length of bifurcation 1000 m
Width of bifurcation 200 m

Mean 89,54% 14,67%
Standard deviation 8,95% 7,30%

Length of bifurcation 200 m
Width of bifurcation 1000 m

Mean 61,88% 57,33%
Standard deviation 2,78% 10,15%

Length of bifurcation 1000 m
Width of bifurcation 1000 m

Mean 59,02% 54,67%
Standard deviation 3,33% 16,13%

TABLE VI. COHESION AND COLLISION RESULTS FOR SCENARIO 3.

COE CL
Angle 90◦, Width 400 m

Mean 17,90% 94,33%
Standard deviation 6,80% 5,04%

Angle 90◦, Width 800 m
Mean 55,31% 29,33%

Standard deviation 21,52% 9,07%
Angle 90◦, Width 1600 m

Mean 92,96% 0,34%
Standard deviation 19,56% 1,86%

Angle 45◦, Width 400 m
Mean 21,12% 71,67%

Standard deviation 12,36% 6,48%
Angle 45◦, Width 800 m

Mean 92,38% 5,33%
Standard deviation 19,94% 5,07%

Angle 45◦, Width 1600 m
Mean 92,81% 0,33%

Standard deviation 21,33% 1,83%

C. Abrupt changes of direction results

The Scenario 3 (Fig. 2c) was developed to assess the swarm
capability to react to tight turns presented along the trajectory.
α angle is the curve inclination and x is the width of each
segment of the path.

We analyzed two curve inclinations: α equal to 45◦ and
90◦. Since we have already observed problems in narrow paths
on previous scenarios, we used widths equal to 400 m, 800 m
and 1600 m.

Table VI presents the results for scenario 3 and the boxplots
for COE and CL are shown in Fig. 7. One can observe that the
results for 45◦ are better than the ones for α = 90◦, specially
for the broader paths. The effects of the curve inclination
could be easily observed comparing the points (45◦, 800) and
(90◦, 800) in Fig. 7.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed specific scenarios in order to
allow one to analyze the performance of swarm-intelligence
distributed based coordination models with local ad hoc
communication for swarm of robots. The specific scenarios
aim to assess some features presented on swarm robots: (i)
contraction and expansion; (ii) segregation and aggregation;
and (iii) abrupt changes of direction. We also propose a
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Fig. 7. Analysis of COE and CL in the scenario 3.

metric to analyze the cohesion of the swarm during a mis-
sion. We analyzed a recently proposed model based on the
Particle Swarm Optimization technique for UAVs coordination
regarding Collision and Cohesion. We observed that the main
problem is related to collisions when the width is not much
more higher than the UAVs collision radius. However, it is
important to reanalyze the aforementioned specific scenarios
in a three-dimensional model. The proposed model, simulation
and prior analysis in this work could assist and support the
implementation of system of swarm robots, aiming to identify,
verify and validate the previously simulated system behavior.

For future work, we intend to: (i) analyze the behavior of
the swarm under different types of scenarios; (ii) improve the
current coordination model by including some collaborative
skills in the UAVs; (iii) include mechanisms to diminish the
energy consumption; (iv) add a health monitoring mechanism
in order to allow UAVs to recharge in long missions; and (v)
implement more realistic fluid dynamics.
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