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Abstract—This work presents a new heuristic for fish school 

segregation applied to the Fish School Search algorithm (FSS), 

aiming to serve as a basis for the creation of a new multi-solution 

optimization method for multimodal problems. In this new 

approach, the weight of the fish is used as a population 

segregation element, allowing the heaviest fishes, i.e the most 

successful ones, to swim,i.e. to move in the search space, more 

independently and the lightest ones to be guided by the heaviest 

ones. The obtained results showed that this new approach is able 

to find a good amount of solutions in the search space, 

overcoming the three techniques used for comparison in 6 of 7 

benchmark functions. Moreover, it can be seen that the new 

approach requires less computational effort to obtain excellent 

results. Another advantage of the new approach is that there is 

no need for an addition of operators in the original FSS. Even 

though this new version of multimodal FSS does not have an ideal 

coverage, which causes the return of many “extra” solutions, the 

sole use of the weight of the fishes, i.e. a readily available 

information, as a population segregation operator is an 

economical and good alternative to be considered upon multi-

solution problems. This specially taking into account the 

expediency of the method and that the detected candidate 

solutions are mostly false-positives, which can be more easily 

pruned than the addition of false-negatives. 

Keywords—Heuristic Search; Multi-Solution Optimization; 

Multimodal Problems; Fish School Search. 

I.  INTRODUCTION 

Optimization tasks are present in many situations where 

information technology is required. Managers, for example, 

must take decisions aiming to maximize the company’s 

income, but there are multiple ways for that to be achieved. 

Racing car teams use their resources in a way which the car 

endures the least damaged possible, and this can be pursued by 

various different ways. These are just simple real life examples 

where multi-model optimization tasks are required. Formally, 

optimization is defined as a system adjustment aiming to obtain 

the best possible output. However, in many cases, a “good” 

result is fair enough [1], not alone, the only possible. 

     Optimization problems can be classified in many different 

ways: according to the number of variables and their types, 

according to the linearity level of the objective function, the 

dynamicity of this function, the existence or not of constraints, 

the number of objective function and, finally, the number of 

optimal solutions. According to the number of optimal 

solutions, optimization problems can be classified as unimodal 

or multimodal. Unimodal problems are characterized as 

problems with only one global optimal solution. Multimodal 

problems are, thus, characterized by the existence of more than 

one global optimal solution, the objective function. 

Considering only minimization cases, multimodal optimization 

problems can be defined as the search process for all the local 

optimum   
  (solutions) in the function   as defined by (1), 

where   is the closest region to   
  and    is an n-dimensional 

real numbered search space [1]. 

 

  (  
 )   ( )           (1) 

 

Multimodal problems occur in many different fields, such 

as geophysics, electromagnetism, climatology and logistics [2].  

Optimization algorithms are computational techniques that 

search for solutions for a certain problem, this represented by 

an objective function. Several nature inspired methods have 

been developed in order to tackle the multitude of available 

problems. A successful set of these techniques are known as 

population based algorithms (PBA), due to their characteristics 

of using a group of artificial entities to collectively and in a 

coordinated way perform the search. 

Swarm Intelligence (SI), the most prominent of PBA for 

searching, can be viewed as a system in which the interaction 

between the very simple particles of the population generates 

complex functional patterns [3]. Some of the best known 

algorithms within SI are: Particle Swarm Optimization (PSO) 

[4], Ant Colony Optimization (ACO) [5], Artificial Bee Colony 

(ABC) [6], Bacterial Foraging Algorithm (BFA) [7] and Fish 

School Search (FSS) [8].  

Fish School Search (FSS), which was proposed by Bastos 

et al. [8], is, in its basic version, an unimodal optimization 

algorithm inspired on the collective behavior of fish schools. 

The mechanisms of feeding and coordinated movement, which 

provides protection to every fish within the swarm against 

external predators, were used as inspiration to create the 

collective search mechanism. The main idea is to make the 

fishes (individuals) to swim toward the direction of the positive 

gradient in order to gain weight. Collectively, the heavier fishes 

are more influent in the search process as a whole as the 

barycenter of the school gradually moves towards better places 

in the search space. 

Niching algorithms are a special member of the SI family 

that were developed in order to solve multimodal problems, 

finding multiple solutions at the same time. Some of the 
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existent niching techniques are the CPSO (Craziness PSO) [9], 

Multi_PSOer (Multi_Optimizer PSO) [10], NichePSO [11], 

GSO (Glowworm Swarm Optimization), the latter an SI 

algorithm based on the social behavior of the glowworms [12]. 

Density based Fish School Search (dFSS) is another 

niching algorithm based on the FSS proposed by Madeiro et al. 

[2]. It tackles multimodal problems elegantly using the concept 

of food sharing, rather than single fish foraging. The nearby 

fishes influence and group up around each other along the 

search process, which leads to the splitting of the whole swarm 

into sub-swarms. This makes possible the sought detection of 

multiple solutions. The major problem of that approach is the 

addition of two new operators onto the original FSS and, 

consequently, a substantial additional computational cost to the 

search process. 

The current paper proposes another heuristic for the 

original FSS as an attempt to create a new multimodal version 

of the algorithm, trying to overcome the necessity of additional 

operators. In this new approach, the weight of the fishes 

themselves determine the relations between fishes and 

consequent strength of the mutual influence among each other. 

The rationale is simple yet creative: the higher is the difference 

between the weights of two fishes, the higher is the probability 

of existing a relation between them and the stronger is the 

influence from the heavier onto the lighter. This devised 

mechanism leads to school segregation fulfilling the scope of 

multiple optimization tasks. 

In Section II and Section III, FSS and dFSS Algorithms are 

detailed, respectively. Section IV introduced the new 

segregation method based on the weight of fishes. Section V 

details the experiments whose results are presented in Section 

VI. And in Section VII conclusions and future works are 

presented. 

II. FISH SCHOOL SEARCH 

Fish School Search is inspired by the collective behavior of 

natural fish schools. In nature, many species live in groups, in 

order to increase their chances to survive to external threats 

and also to forage more effectively. In fish schools, the 

individuals work collectively as a single organism but do 

possess some local freedom. This combination accounts for 

fine as well as greater granularities during their search for 

food. 

In FSS, the success of the search process is represented by 

the weight of each fish. In other words, the heavier is an 

individual, the better is its represented solution. The weight of 

the fish is updated throughout the feeding process. A second 

means to encode success in FSS is the radius of the school. 

The mechanism to update this is explained in the following 

subsections together with the other operators. But in advance it 

is noteworthy to mention that by contracting or expanding the 

radius of the school FSS can automatically switches between 

exploitation and exploration, respectively.  The pseudo-code 

of FSS is provided in Fig. 1. Other details such as stopping 

conditions and minor variations to increase performance are 

left out as they are not important here.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Pseudo-code of FSS.  

 

A. Individual Movement Operator 

In the Individual Movement Operator, each fish moves 

randomly and independently, but toward the positive gradient. 

In other words, this operator is executed only if the new 

position is better than the previous one, with regards to the 

objective function. This movement is described by (2), where 

   (   ) is the new value of the dimension   in the position 

vector of the individual  ,    ( ) is the old value,   is a random 

value between 0 and 1 and        ( ) is the step size on time  . 

The new step size is calculated through (3), where            
 

and             
 are the initial and final step sizes and 

           is the maximum number of iterations. 

 

    (   )     ( )           ( )  (2) 

       (   )         ( )  
           

             

          
     (3) 

 

B. Feeding Operator 

As mentioned before, the feeding operator is responsible 

for the weight update of all fishes, which is made accordingly 

with the fitness increase obtained after the individual 

movement. This update process is defined by (4), where    , is 

the fitness variation after the Individual Movement of the fish 

 , and     (  ) is the maximum fitness variation in the whole 

population. 

 

  (   )    ( )  
   

    (  )
. (4) 

 

C. Collective Instinctive Movement Operator 

The Collective Instinctive Movement Operator is the first 

collective movement in the algorithm. A single vector is 

computed as a vectorial average of all individual movements 

and added to the position vector of all fish. This operator is 

defined by (5), where N is the population size,     and 

  (  ) is the position variation and the fitness variation of the 

individual of index   in the Individual Movement. 

P: Fish population; 

while Stopping condition is not met do: 

      for each fish in P do: 

           Run the individual movement; 

     for each fish in P do: 

          Run the feeding process; 

     for each fish in P do: 

          Run the collective instinctive movement; 

     Calculate the fish school’s barycenter; 

     for each fish in P do: 

          Run the collective volitive movement; 

Return the best solution found; 
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D. Collective Volitive Movement Operator 

In this step, the population must contract or expand, using 

as reference the barycenter of the fish school, which is 

calculated according to (6), where   ( ) is the weight of the 

fish   on time  . The total weight of the whole population must 

be calculated in order to decide if the fish school will contract 

or expand. If the total weight increased after the last Individual 

Movement, the school as a whole will contract in order to 

execute a finer search, as it means that the search process has 

been successful. Otherwise, the population will expand, 

meaning that the search process is not qualitatively improving. 

This could be due to a bad region of the search space or the 

school is trapped in a local minimum (hence, it should try to 

scape from it). The contraction and expansion processes are 

defined by (7) and (8), respectively, where 
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III. DENSITY BASED FISH SCHOOL SEARCH 

The dFSS is an FSS based multi-solution optimization 

algorithm for multimodal problems. In it, the food found by 

any fish during the search process is shared among ”peers”. 

Moreover, each fish stores the amount of food given by others. 

Using this information, each fish decides to which ones it will 

be linked in order to establish sub-populations. In dFSS the 

operator resemble FSS, but the collective movements are made 

in a way that the sub-populations explore in parallel many 

different niches [2]. The pseudo-code of dFSS is provided in 

Fig. 2. 

Two operators were added to the ones existing in the 

original FSS in order to create the multimodal version. They 

are: the Memory Operator and the Operator for Partitioning 

the Main Fish School. Some adjustments were made to all the 

already existent operators of the FSS to account for the various 

sub-swarm (and not only one anymore). The operators are 

described next. 

 

 

 

 

 

 

 

 

A. Individual Movement 

The Individual Movement mechanism remains almost the 

same, but individual step size update method was changed. It 

is calculated by (9), (10), (11) and (12), where         
( ) is 

the individual step of the fish  ,          is the minimum 

decay rate,              
 and            

 are the final and 

initial max decay rate, respectively,      is the maximum 

number of iterations,     is the number of fishes that lie 

between the fishes   and  , including the fish   and     
 is the 

relative distance between the fishes   and  . In other words, 

    
 

   

    (   )
, where   represents any other fish different 

from  . 
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Figure 2. Pseudo-code of dFSS. 
 

The fishes are initialized; 

The fitnesses of the fishes are calculated; 

The distances between the fishes are calculated; 

while Stopping criteria is not met: 

     for each Fish in the population do: 

          Run the Individual Movement; 

          if The fish’s fitness increased then: 

               for each Fish in the population do: 

                    Run the feeding operator; 

                    Update the fish’s weight; 

                    Run the memory operator; 

     for each Fish in the population do: 

          Run the Collective Instinctive Movement; 

          Determine the most influent fish for the given fish; 

     Run the division of the main population process; 

     for each Generated sub-population do: 

          Calculate the barycenter; 

     for each Fish in the population do: 

          Update the Individual Movement step size; 

          Run the Volitive Collective Movement of the fish; 

     Calculate the fitness for each fish in the population; 

     Calculate the distances between the fishes; 

     Update the value of the variable         ( ); 

Returns the best individual of each sub-population formed 

in the last iteration as the solutions located by the 

algorithm; 
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B. Feeding Operator 

In the dFSS, the fishes share their food. The amount of 

food shared by the fish   to the fish   is defined by (13), which 

is very similar to (12). 

 

  (   )  
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(    
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C. Memory Operator (new to original FSS) 

The memory for all fishes has the role of storing with 

which ones they have shared more food in the past. For fish  , 
the bigger is the amount of food     shared by the fish  , the 

bigger is the influence of   upon  . The memory of an 

individual   is represented by a vector    
{             } , where   is the number of fishes in the 

population. In (14), the food sharing process is defined, where 

       . 
 

    (   )  (   )   ( )   (   )  (14) 

 

D. Collective Instinctive Movement 

In the Collective Instinctive Movement of the original 

FSS, all the fishes move to the same direction. In the dFSS, 

each fish calculates its own direction according to the most 

influential fishes within its own sub-swarm (the fishes 

connected to it), as described by (15). 

 

    (   )     ( )  (
∑        ( ) 

   

∑    ( ) 
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E. Operator for Partitioning the School (new to original FSS) 

This operator is responsible for the partitioning of the main 

fish school into smaller ones. A fish   is part of the same fish 

school of the fish   if and only if   is the most influent fish for 

  or   is the most influent one for  . Moreover, if   is part of the 

same fish school of  , the contrary is also true. 

Before starting with the operator, there must be a reference 

for each individual in the fish school, because this operator 

includes removing operations. The process of definition of 

sub-populations begins with the random choice of a fish   from 

the fish school. The selected fish must be removed. Then, the 

fishes which will be in the same fish school as the fish   must 

be defined and a link between them and   must be created. 

After this, these fishes must be also removed. The same 

process must happen for the fishes that had been just removed: 

the fishes that must be in the same fish school of a given 

removed fish must be removed as well and a link between 

them must be created. When there is no fish that can be in the 

same fish school as a given fish, a new fish must be randomly 

chosen among all the fishes that is still in the main fish school, 

so that the process can start again. This procedure must be 

executed until the main fish school is empty.  

 

F. Collective Volitive Movement 

This operator has the role to drive the produced fish 

schools to the found niches. Differently from the original FSS, 

in the dFSS, the volitive movement occurs inside each fish 

school. This movement is defined by (16), where 

        ( ) is defined by (11) and    ( ) is the barycenter 

of the fish school of which the fish   is part. 

 

    (   )     ( )  (          ( ))(   ( )     ( ))  (16) 

 

IV. USING THE WEIGHT OF THE FISH AS A SEGREGATION 

ELEMENT 

In this paper, we propose a new approach for a multi-

solution optimization version of multimodal problems for the 

FSS algorithm as an alternative for the dFSS. A new operator 

is included in the original algorithm, in addition to some 

changes in the already existent operators that were needed.  

The main flow of this new approach is the same as in the 

FSS, except for the addition of the new operator right before 

the Individual Movement. This new operator is responsible for 

defining the links between the fishes, which defines the 

“guide-guided” relationship. This relationship defines a 

dependency relationship between the fishes which is directly 

proportional to the difference between the weights of the 

fishes. The bigger is this difference, the bigger is the 

dependency from the lighter to the heavier one. From these 

relationships, a desirable and fair independent behavior of the 

heaviest fishes in the main fish school emerges. The heavier is 

a fish relatively to the others, the more independent it is. The 

lighter is the fish, the more dependent it is as it is 

understandable, given that its light weight suggests lack of 

success.  

In the next sections, the new approach is described. It is 

important to point out that the individual movement and the 

feeding operator have not suffered any changes, hence no 

explanation for them are needed (again). 

 

A. “Guide-Guided” Relationship Links Definition Operator 

As mentioned before, this operator has the role of defining 

links between fishes. These links define “guide-guided” 

relationships. Fishes which are linked to each other are called 

partners. In this relationship, the lighter fish is guided by the 

heavier one. 

In (17),   ( ) and   ( ) are the weight of the fishes   and 

 , respectively and    and    are the number of fishes already 

linked to the fishes   and  , respectively, right before the 

probability calculation. 

    ( )  
  ( )

  ( )    
  (17) 
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In this operator, each fish, chosen in a random sequence, 

must be compared with all the other individuals and the links 

between them must be created or not. The pseudo-code of the 

new operator is provided in Figure 3. 

 

 

 

 

 

 

 

 

 

 
Figure 3. Pseudo-code of the new guide-guided operator. 

 

The variables    and    were included to avoid the 

monopolization of too-heavy fishes. The semantics for that is: 

the greater is the number of connections of a fish, the lower is 

the probability of creating a new link. This mechanism was 

created in order to make the search process execute wider 

searches in the given search space. 

Considering a fix indexation of the array of individuals in 

the main fish school, if the choice of fishes for link formation 

was made sequentially, the fishes with lower index would 

have a higher probability of being chosen, because, in the 

beginning, there is almost no links between the give fish and 

the other ones. Moreover, the first fishes in the queue to 

choose partners would have more chances create links, since 

there is almost no links between the fishes in the main fish 

school. In order to obtain a fair link formation process 

between fishes, the process of choosing fishes to find new 

partners is made randomly, as occurs with the choice of fishes 

to decide if the link between the given fish and the chosen fish 

must be created. In this way, any dependency of the indexation 

of the fishes within the array of individuals is completely 

avoided. 

 

B. Collective Instinctive Movement 

In this operator, the algorithm inherited the basic rationale 

from the same operator in the FSS. The difference in the new 

approach is that a given fish must calculate its own movement 

vector based only on its guiders and itself. The operator is 

defined by (18), where   is the index of the guiders of   and 

    is the number of guiders of  . 
 

    (   )     ( )  (
      (  ) ∑       (  )

   
   

  (  ) ∑   (  )
   
   

). (18) 

 

C. Collective Volitive Movement 

The Collective Volitive Movement also inherited the 

basics from the FSS algorithm. However, each fish must 

calculate its own reference point to work as the barycenter of 

the original FSS. These personal reference points are 

calculated using solely the partners of each fish. The 

barycenter calculation is described by (19), where   is the 

index of the partners of   and        is the number of partners 

of  . The mechanism of expansion and contraction is the same 

as the FSS. 

 

   ( )  
     ( ) ∑      ( )
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IV. EXPERIMENTS DESCRIPTION 

Three multi-solution optimization algorithms were used for 

comparison purposes: NichePSO, GSO and dFSS. We will 

refer to the approach proposed in this paper as thisFSS. The 

parameters setup is described in Table I. 

    Four metrics were used to evaluate and compare the 

performance of thisFSS with the other algorithms: (i) the 

number of solutions found by the algorithm; (ii) configuration 

with the lowest computational cost able to find 95% of the 

correct solutions or more; (iii) amount of solutions returned by 

the algorithm; and (iv) amount of solutions returned by the 

algorithm that is not part of the objective function’s solution 

set. However, in the last two metrics, the algorithm GSO was 

not used for comparison. 

Seven objective functions were used for benchmarking. 

These functions are detailed in [2], including their domains 

and number of peaks (correct solutions). Notice that here they 

are numbered differently: Equal Peaks A as F1; Equal Peaks B 

as F2; Griewank as F3; Himmelblau as F4; Peaks as F5; 

Random peaks as F6; Rastrigin as F7. It is important to 

highlight that these functions were not taken from real-world 

scenarios 

The performance of the algorithms was analyzed varying 

the size of the population and the number of iterations. The 

values used for the population size are defined depending on 

the objective function. They are defined on Table II. The 

values for the number of iterations are the same for all the 

functions: 50,100,150,..,500. However, for the dFSS and  

thisFSS, just the half of each value is used: 25,50,75,..,250. 

This is due to the double call of the fitness function per 

iteration made by the FSS, what was inherited by both 

versions. This way, it is possible to make fair comparisons. 30 

simulations for each algorithm (for each objective function) 

were made for each possible combination between population 

size and number of iterations. The average value of each 

metric for each combination is calculated. 

It is important to define what is considered as a returned 

solution. For thisFSS, the best individual of a fish school is 

one solution. However, in the end of the last iteration, a 

different method for defining links between fishes is used. 

According to this method, two fishes must be linked if the 

S: Set of fishes from the main fish school; 

T: Temporary set of fishes from the main fish school; 

Removes every old links between the fishes; 

while S is not empty do: 

     Choose randomly a fish   in S and remove it from this 

set; 

     Restart T with all the fishes from the population; 

     while T is not empty do: 

          Choose randomly a fish   from T and remove the 

individual from this set; 

          if   is different from   then: 

               if    ( ) , which is calculated through (17), is 

bigger or equal to a random value generated in the 

interval [0,1] and there is not any  already created link 

between   and   then: 

                      becomes partner of  , where   guides  ; 
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distance between them is lower than 0.01. This value was 

defined empirically. 

TABLE I.  PARAMETERS SETUP 

Algorithm Parameters 

NichePSO 

C1 C2         

1.2 1.2 
Linear decreasing 
from 0.7 to 0.2. 

10-4 10-2 0.1 

GSO 
              

0.4 0,6 0.08 5 0.03 5 

dFSS 
                                

              
 

0.3 0,05 0.999 0.99 0.95 

thisFSS 

                

Linear decreasing from 

0.4 to 0. 
Linear decreasing from 0.025 to 0. 

TABLE II.  VALUES FOR THE POPULATION SIZE 

Functions Values 

Equal Peaks A, Equal Peaks B, 

Himmelblau, Peaks and Random 

Peaks. 

5, 10, 15, .., 200, 210, 220, .., 350 

Griewank 
5, 10, 25, 50, 100, 150, 200, 250, .., 

1300, 1400 

Rastrigin 
5, 10, 25, 50, 100, 150, 200, 250, .., 

1000 

 

Among the returned solutions, it must be defined which 

ones correspond to the correct solutions of the objective 

function. One solution  ⃗  was successfully found if the 

normalized distance between the solution returned by the 

function and  ⃗  is lower than 0.005. Moreover, a solution 

returned by the algorithm of which distance to the closest 

solution of the objective function is higher than 0.01 is 

considered as a wrong solution. (20) and (21) explains the 

normalized distance calculation between the points    and   , 

where   is the number of dimensions of the objective 

function. 

   (     )  √(  
    

 
) (  

    
 

)

 
, (20) 

 

    (
  

     

 
  

     

   
  

     

). (21) 

V. RESULTS AND DISCUSSION 

In Table III, the superiority of thisFSS in comparison with 

the other algorithms can be noticed in five out of seven 

objective functions. In Random Peaks, none of the methods 

were able to find 95% of the correct solutions or more in none 

of the combinations between the values for population size 

and the values for the number of iterations. For this function, 

the comparison results can be analyzed in Table IV. As it can 

be noticed, thisFSS overcame all other algorithms in every 

interval defined in the first column. 

In Table V, the configuration of the lowest computational 

cost which is able to find 95% of the correct solutions or more 

for each algorithm in each objective function is shown. 

Contents of each cell in this table are represented as x/y(z); ‘x’ 

is the number of calls to the fitness function; ‘y’ is the 

population size and ‘z’=√     . In other words, ‘z’ is the 

Euclidian distance between a given configuration represented 

as a bi-dimensional vector [x,y] and the theoretical 

configuration with the lowest cost possible, [0,0]. Obviously, a 

configuration with 0 calls to the fitness function and 0 

individuals is not feasible. According to this table, thisFSS 

was able to find 95% of the correct solutions or more with less 

computational effort in five out of the six functions used for 

comparison. 

Regarding to the absolute value of the difference between 

the number of solutions returned by the algorithm and the 

number of solutions of the objective functions (Table VI and 

Table VII), thisFSS obtained lower values than the NichePSO 

in six out of seven functions, but in all the functions obtained a 

higher value than the dFSS algorithm. Moreover, regarding to 

the percentage of wrong solutions relative to the total amount 

of solutions returned by the algorithms, thisFSS overcame the 

NichePSO in five out of seven functions and lost for the dFSS 

in all the functions. 

TABLE III.  PERCENTAGE OF CONFIGURATIONS THAT ARE ABLE TO FIND 

95% OF THE CORRECT SOLUTIONS. 

Objective 

Function 

NichePSO GSO dFSS thisFSS 

Equal Peaks A 68.18% 72.55% 74% 82.18% 

Equal Peaks B 34.55% 52% 64.55% 82.18% 

Griewank 0.67% 9.33% 34.67% 50% 

Himmelblau 80.09% 73.09% 86.91% 88.36% 

Peaks 82.73% 78.18% 83.45% 82.54% 

Random Peaks 0% 0% 0% 0% 

Rastrigin 0% 0% 23.48% 56.52% 

TABLE IV.  PERCENTAGE OF CONFIGURATIONS THAT ARE ABLE TO FIND 

THE NUMBER OF SOLUTIONS OF THE FUNCTION RANDOM PEAKS DEFINED IN 

THE FIRST COLUMN. 

Number of 

Solutions 
NichePSO GSO dFSS thisFSS 

>=7.6 0% 0.18% 0.18% 3.09% 

>=6.65 and 
<7.6 

7.6 31.82% 16.36% 38.55% 

>=5.7 and 

<6.65 
6.65 42% 32.91% 38.82% 

Total>=5.7 73.82% 49.45% 77.55% 91.63% 

TABLE V.  CONFIGURATION WITH THE LOWEST COST ABLE TO FIND 95% 

OF THE CORRECT SOLUTION OF THE OBJECTIVE FUNCTIONS OR MORE. 

Objective 

Function 
NichePSO GSO dFSS thisFSS 

Equal 

Peaks A 

100/95 

(137.93) 

100/80 

(128.06) 

100/130 

(164.01) 
100/40 

(107.70) 

Equal 
Peaks B 

100/210 
(232.59) 

150/125 
(195.25) 

150/110 
(186.01) 

100/50 

(111.80) 

Griewank 
100/1400 

(1403.57) 

150/1150 

(1202.08) 

400/600 

(721.11) 
150/550 

(570.09) 

Himmelbl
au 

100/60 
(116.62) 

100/110 
(148.66) 

100/75 
(125) 

100/45 

(109.66) 

Peaks 
50/70 

(86.02) 

100/80 

(128.06) 

100/90 

(134.53) 

100/25 

(103.08) 

Random 
Peaks 

- - - - 

Rastrigin - - 
400/500 

(640.31) 
150/400 

(427.2) 

These results show that the thisFSS is able to find more 

correct solutions than the other ones in almost all the objective 
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functions used as benchmark, but is not able to satisfactorily 

attract the individuals of the population to the peaks that 

represent these solutions without decreasing the number of 

correct solutions found. This leads to a big amount of different 

returned solutions and a high percentage of false-positive 

solutions. Even though the results of thisFSS are much better 

than the results of the NichePSO and GSO; comparing to 

dFSS using the last two metrics, thisFSS did not obtain good 

results, although in the first two metrics, the new approach 

overcame the first one in six out of seven functions.Some 

attempts to speed up the convergence of the fish schools in the 

peaks of the search space without losing the number of correct 

solutions were made, such as the addition of memory for the 

links of each fish, instead of removing every link in the 

beginning of each iteration, but the results did not improve as 

expected. Moreover, different probability functions for 

creation of links between fishes were tested, but, still, the 

results did not improve and, in some cases, worsened. So, the 

results showed in this paper were the best ones found so far. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed the sole use of FSS fish weight 

as the segregation factor for producing a new multimodal 

version of the original algorithm. The obtained results showed 

that the new approach is able to find a bigger amount of 

correct solutions in most of the functions, when compared to 

the NichePSO, GSO and even dFSS. However, the technique 

also returns false-positives which is a disadvantage if 

compared to the dFSS. However, the proposed version here 

does require only one economical operator on top of FSS (and 

not two as in dFSS). This is a highlight, as computing 

resources can be a problem in high dimensional problems .  

TABLE VI.  ABSOLUTE VALUE OF THE DIFFERENCE BETWEEN THE 

NUMBER OF SOLUTIONS FOUND BY THE ALGORITHM AND THE NUMBER OF 

SOLUTIONS OF THE OBJECTIVE FUNCTIONS. 

Objective 

Function 
NichePSO dFSS thisFSS 

Equal Peaks A 45.73 0.29 16.5 

Equal Peaks B 42.42 0.31 28.3 

Griewank 109.38 28.82 138.3 

Himmelblau 54.52 0.59 37 

Peaks 59.05 3.31 29.2 

Random Peaks 51.64 1.87 25.7 

Rastrigin 70.66 25.74 53.5 

TABLE VII.  PERCENTAGE OF WRONG SOLUTIONS RELATIVE TO THE TOTAL 

AMOUNT OF SOLUTIONS RETURNED BY THE ALGORITHMS IN EACH OBJECTIVE 

FUNCTION (FALSE-POSITIVES). 

Objective 

Function 
NichePSO dFSS thisFSS 

Equal Peaks A 86.27% 4.94% 27.77% 

Equal Peaks B 82.71% 13.65% 48.39% 

Griewank 2.68% 0.81% 36.29% 

Himmelblau 98.51% 16.34% 77.56% 

Peaks 97.50% 55.47% 87.81% 

Random Peaks 95.07% 19% 65.83% 

Rastrigin 3.86% 1.09% 24.30% 

From all presented results, it is possible to conclude that the 

use of the weight of the fishes is indeed a good alternative to 

the concept of density used in the dFSS, but one needs to 

consider the trade-offs in both ways. Another advantage of the 

algorithm proposed here when compared to the dFSS is that in 

the latter, a shared memory was added to all fishes in order to 

make it possible the definition of relations between them. This 

is no longer necessary here because the weights are already 

existent in all fishes of the original FSS. And they are used to 

define these links, what makes the new approach simpler than 

the first one. Moreover, the calculation of food sharing in 

dFSS uses topological information, such as the calculation of 

Euclidian distances, what makes it highly sensitive to 

dimensional explosion , i.e. high dimensional problems. And 

this does not happen at all in the new approach since the 

weight is independent of the number of dimensions of the 

objective function. 

As future work, different mechanisms will be tested in 

order to reduce the number of returned false-positives. The 

new approach will also be tested for a higher number of 

dimensions.  Moreover, a computational cost evaluation will 

be performed. 
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